2023 FALL REAL ANALYSIS (I) @ NYCU APPL. MATH. HOMEWORK 4

- Please answer the following questions in details, which means you need to state all theorems and all reasons you have been using.
- Please mark your name, student ID, and question numbers clearly on your answer sheet. The deadline to hand in the exercise is on **December 21, 2023**.
- (1) Let $f: E \to \mathbb{R}$ be a measurable function, for either p = 1 or $p = \infty$, with $\frac{1}{p} + \frac{1}{q} = 1$. Then show that

$$||f||_p = \sup\left\{\int_E fg \mid ||g||_q \le 1 \text{ and } \int_E fg \text{ exists}\right\}.$$

- (2) Show that the Minkowski's inequality $||f + g||_p \le ||f||_p + ||g||_p$ fails for p < 1.
- (3) Prove the integral version of Minkowski's inequality for $1 \le p \le \infty$, and measurable function f(x, y):

$$\left[\int \left(\int |f(x,y)|\,dx\right)^p\,dy\right]^{1/p} \leq \int \left(\int |f(x,y)|^p\,dy\right)^{1/p}\,dx.$$

(4) If $f \in L^2(0, 2\pi)$, show that

$$\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_0^{2\pi} f(x) \sin kx \, dx = 0.$$

Prove that the same is true if $f \in L^1(0, 2\pi)$.

(5) Prove the parallelogram law holds for L^2 :

$$||f + g||_{L^2}^2 + ||f - g||_{L^2}^2 = 2||f||_{L^2}^2 + 2||g||_{L^2}^2.$$

Is this true for L^p when $p \neq 2$? Give you answer in a detailed way.

- (6) Suppose that $f_k \to f$ a.e. and that $f_k, f \in L^p$, $1 . If <math>||f_k|| \le M < \infty$, show that $\int f_k g \to \int fg$ for all $g \in L^q$ with 1/p + 1/q = 1. Show that the result is false if p = 1.
- (7) Let \mathcal{S} denote a subspace of a Hilbert space \mathcal{H} . Show that $(\mathcal{S}^{\perp})^{\perp}$ is the smallest closed subspace of \mathcal{H} that contains \mathcal{S} .
- (8) An operator T is an **isometry** if ||Tf|| = ||f||, for all $f \in \mathcal{H}$ (a Hilbert space).
 - (a) Show that if T is an isometry, then $\langle Tf, Tg \rangle = \langle f, g \rangle$, for all $f, g \in \mathcal{H}$.
 - (b) If T is an isometry and T is surjective, then T is unitary and $TT^* = \text{Id}$ (the identity map).
 - (c) Given an example of an isometry but not unitary.
 - (d) Show that if T^*T is unitary then T is isometry.

(9) Let $\{e_k\}_{k=1}^{\infty}$ denote an orthonormal set in a Hilbert space \mathcal{H} . If $\{c_k\}_{k=1}^{\infty}$ is a sequence of positive real numbers such that $\sum_{k=1}^{\infty} c_k^2 < \infty$, then the set

(0.1)
$$A = \left\{ \sum_{k=1}^{\infty} a_k e_k : |a_k| \le c_k \right\}$$

is compact in \mathcal{H} .