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- Applied to Anisotropic Maxwell system
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- For the Residual Stress System with Gevrey
Coefficients
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Part 1: The enclosure method for the anisotropic Maxwell

system

What is the enclosure method ?
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Inverse obstacle problems

Discontinuity in a medium affects propagation of various physical
quantity (signal) in a medium.
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Inverse obstacle problems

Discontinuity in a medium affects propagation of various physical
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geometry of unknown discontinuity embedded in a given

background medium from observed signal propagating inside the
medium.
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Inverse obstacle problems

Discontinuity in a medium affects propagation of various physical
quantity (signal) in a medium.

Cavity, Inclusion, Crack, Obstacle...etc

(the interface of jump discontinuity of the medium)

Inverse Obstacle Problem is: extract information about the
geometry of unknown discontinuity embedded in a given
background medium from observed signal propagating inside the
medium.

Applications: Nondestructive/Noninvasive testing, Sonar, Radar,
EIT, etc.
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Problem description

We consider unknown obstacles in electromagnetic fields with
anisotropic medium lies in Q.
Let Q be a bounded domain in R3. D is an inclusion in €.

Q
Problem: How to find D?
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Various methods

There are several methods to retrieve the information of obstacles
D inside .

1. Probe Method (lkehata)

2. Enclosure Method (lkehata)

3. Linear Sampling Method (Colton-Kirsch)

4. Factorization Method (Kirsch)

5. Singular Source Method (Potthast)

We focus on the enclosure method to find the unknown
inclusions.
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The enclosure method

In order to understand ideas, here we consider the simplest case:
AUO =0in Q.

Goal: Reconstruct unknown D by the boundary measurements.
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Consider the function u satisfying
V- ((1+7ypxp)Vu)=0in Q.

The corresponding Dirichlet-to-Neumann (DN) map is given by

du
Ap(ulae) = 5’(99,

where v is the unit outer normal on 99.
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|deas

Key ideas in the enclosure type method:

J
(A) Let Ag be the DN map when D = 0 and Ag(uosq) = Tlf"m'

By energy method, one can show the following energy integral
/ (Ap — Ag)f - FdSz/ IV uo[2dx (1.1)
a0 D
where vy is the solution of the unperturbed equations (without D,

AUQ =0in Q)
(1.1) is true due to the positivity of the equation.
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Special solution

(B) One can find solutions of the Laplace equation in the following

form
Uo,d.h = ehlox—d+iotx]

This is the complex geometrical optics (CGO) solution of the
Laplace equation.
Behavior of ug p:

U()’d,h\l,o as h— 0t for w-x<d,
UpdhTeoas h— 0T forw-x>d.
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Indicator function

From the energy integral, we can define the indicator function /:
for any f € H/2(9Q),

I(F) = /(m(/\D — No)f - FdS,

I(f) is completely determined by the boundary measurements.
We can take f := fy = ug g.n|gq into the indicator functional
I=1(d,h).
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lf DN{w-x>d} =0, then I(d,h) -0 as h— 0T,
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lf DN{w-x>d} #0, then I(d,h) — o as h— 0T,
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Change the direction @ and move the level set {x-® = d}, we can
enclose the unknown obstacle D.

The enclosure reconstruction method consists of: CGO solutions
and Energy integral.
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Anisotropic Maxwell system

This is a joint work with Rulin Kuan and Mourad Sini.

Let D be an unknown obstacle and let k > 0 be the wave number.
We consider the anisotropic Maxwell system
VxE—ikuH=0 inQ,
VxH+ikeE=0 inQ, (2.1)
VXE=f on dQ.
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Description of the problem

For the inclusion case, the coefficients €(x) = € (x) — ep(x)xD,
where £ (x) to be a C* positive definite matrix-valued function,
ep(x) is a matrix-valued function which is regarded as a
perturbation in the unknown obstacle D. p(x) > 0is a C* scalar
function, and v is the unit outer normal on dQ

As before, D is an inclusion.
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Assume k is not an eigenvalue for the spectral problem to (2.1),
then (2.1) is well posed.

Impedance Map: We define the impedance map

Ap: TH™2(9Q) — TH2(9Q) by

Ap(v x Hlpq) = (v x El|sq),

where TH™2(9Q) := {f € H 2(9Q)|v-f =0} and x is the
standard cross product in R3.

We denote by Ay the impedance map for the domain without an
obstacle.

Inverse Problem: Find D from Ap.
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Difficulties

For the anisotropic Maxwell’s system, until now, there are NO
CGO solutions. Similar to anisotropic elliptic case, we will construct
new special solutions: The oscillating-decaying (OD) solutions.

The OD solutions were first constructed by G. Nakamura, G.
Uhlmann, J. N. Wang, 2005.
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Construction OD solutions

Consider the anisotropic Maxwell system

(2.2)

VxE—ikuH=0 inQ,
VxH+ikeE=0 inQ,

where € is a matrix and U is a scalar and we want to construct OD
solutions.

The first step of constructing OD solutions is to reduce the
anisotropic Maxwell system to a strongly elliptic system.
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From Maxwell to Elliptic

If E and H are of the following forms

E= —ée‘lv x (U Y(VxB))—e1(VxA)
H= éuflv X (671(V x A)) — u~1(V x B)

with A, B satisfying the strongly elliptic systems

)

La(A) = uVtr(MAVA) =V x (e 1(V x A)) + k’uA =0
Lg(B) =¢eVtr(MBVB) -V x (u™1(V x B))+ k*c¢B =0

where MA = mu~'l5 and MB = mu~'¢ for arbitrary positive
constant m. Then (E, H) satisfies (2.2).

Yi-Hsuan Lin, Mathematics Department, NTU



Oscillating decaying solutions for Elliptic

Then we represent A and B to be two oscillating-decaying solution
in the following form: Let @ be a unit vector, then

A:W£7b7t,Nw+r biNo N 2(0) =20 {x 0>t}
A /
W)ﬁ,b,t,N,w Xe(X') Qre™™ 6 e Tl oA )b+7’A beNao(X:T):
_ B
B_Wxt,b,t,N,w+r beNo N 2e(0), .
We b.e.Nw = XX ) QpeitrEertro-A FDb4 Yy (X 7)

with suitable decay in 7 for y*,75,r* and rE.
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Oscillating decaying solutions for Maxwell

Via the relations between E, H, A, B, for the inclusion obstacle case,
we have

E, = Fl( )e itx-§ o= T(x-0—t)AL(X) p

Al
+rxt,thw+rxt,thw inQ( )
H, = F,%( ) I‘L'xéefr(xa) )AL (x ’)b

A2
TNt rxt,b t.N.o

where Fi(x) = O(t), Fa(x) = O(t?) are some smooth functions
and for |a| =, j=1,2, we have

{Hrfc\:b,tw oD@, (o) < ctlel=3/2g=7(s—t)aa_

I "ebit,N a)( )HL2 Qo) = <y /V-i-1/27

for some positive constants as and c.
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Energy integral

The impedance maps Ap : v X H|yq — vV X E|yq and
No =V X Hylgqa — V X Eg|gq. By energy method, one can show that

/(m(v % Ho) - (Mo — M) (v x Ho) x v)dS =~ /D IV x Ho|2dx.

However, the OD solutions are not well-define on the whole domain
Q, we cannot obtain the full boundary information from the OD
solutions.
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Runge approximation property

In fact, we can find a sequence of solutions solving the anisotropic
Maxwell's system and they will approximate to the OD solution.
This property is called the Runge approximation property. If we

setuz(Z)and

(et 0 0 Vx
L.—I( 0 ‘LL_]'I3 ) ( —VX O >+k/67

then we have
Lu=0,

where [; means j x j identity matrix for j = 3,6.
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Theorem (Runge approximation property)

Let D and Q be two open bounded domains with C* boundary in
R3 with D € Q. If u € (H(curl,D))? satisfies

Lu=0 in D.

Given any compact subset K C D and any € > 0, there exists
U € (H(curl,Q))? such that

LU=0inQ,

and HU_ uHH(CurI,K) < &, where
11l teunicy = (1Fl2(iy + leurdf ]| 2k )
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Technical part

Support function: For w € S?, we define the support function of
D by hD((D) = infxer- .

>0

o

Q: (o)

hD((I))

When t = hp(p), Q:(@)NdD # 0. We cannot use the Runge
approximation property directly.
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Let n be any positive real number.
% (0]
oD

Qs (@)

hp(w)—n

This will imply D € Q;_ (o).
We denote (E;_y, H;—y) to be the OD solution defined on
Qi (o).
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By the Runge approximation property, we can find a sequence of
functions {(Ey ¢, Hy¢)}7, satisfying the Maxwell system in  such
that (E; ¢, Hy,¢) approximates to (E;_y,H;—p) as £ — oo in
[2(Q¢_y(®)) and in H(curl, D) by interior estimates since

D e Qi (o).

In addition, we can show that (E;_y, H:—y) converges to (E;, Hy) in
H(curl,D) as n — 0.

From the energy integral, we can define the indicator function as
follows.

Yi-Hsuan Lin, Mathematics Department, NTU



Indicator function

Indicator function: For ® € S2, 7> 0 and t > 0 we define the
indicator function

lo(T,t) := lim ||m I3t (7,t),
N—0/(—o

where

10z, ) = ikr/a (v Hyt) - (Ao — Ao)(V X Hipg) % v)dS.
Q

Goal: We want to characterize the convex hull of the obstacle D
from the impedance map Ap.
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Integral Inequalities

Eadrd gc/DWxHn,g\2dx+k2/ﬂmfm|2dx,

PRl zc/D\Vx H,,,gy2dx—k2/ﬂu|fmy2dx,
where I-m = H — Hy ¢ be the reflected solution, then /—7,77 satisfies

V x (€71V x Hy ¢) — k2uHp o = =V x (e 71 (x) — &5 1(x))V X Hp ¢) in Q
V X Iflnvg =0 on d9.

Then we have some estimate for Hy .
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Meyers LP estimate

Proposition (Estimate for Fl;()

Assume Q is a smooth domain and D € ). Then there exist a
positive constant C and 6 > 0 such that

[Hn.ell2) < CIIV x Hy elle(o)

4
for every p € (=,2].

§>

The proof is by using a global LP estimate for the curl of the
solutions of the anisotropic Maxwell system.
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Theorem (Main Theorem)

Let @ € S, we have the following characterization of hp(®).

limz e |lo(T,t)| =0 when t < hp(®),
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Conclusion for part 1

eWe develop an enclosure type method for identifying inclusion
obstacles in anisotropic Maxwell system. Our main tool is the OD
solutions for the anisotropic Maxwell system.

eOur theory shows that we are able to determine the convex hull
of inclusions by the impedance map.
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Part 2: SUCP for residual stress system with Gevrey

coefficients

Unique Continuation Property
We call u has the unique continuation property If u € H} ()
satisfies Lu=0 in Q and v vanishes on an open subset of , then u

must vanish identically in €.
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Strong Unique Continuation Property (SUCP)

We call u has the SUCP if u € Hi () satisfies Lu =0 in Q and

loc

vanishes to infinity order at a point xg € Q,i.e., for all N >0
/ u[2dx = O(RY), R—0, (3.1)
R<|x—xp|<2R

then u must vanish identically in Q. If u is smooth, the condition
(3.1) is equivalent to all partial derivatives of u vanishing at xq,
which means 98 f(xg) = 0 for all multiindices .

Yi-Hsuan Lin, Mathematics Department, NTU



Residual Stress System

Let Q be a open connected domain in R3 and consider the
time-harmonic elasticity system

V.o+x%pu=0inQ, (3.2)

where 0 = (GU)?le is the stress tensor field, kK € R is the
frequency and p = p(x) > 0 denotes the density of the medium.
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The vector field u(x) = (u;j(x))%_; is the displacement vector.
Suppose that the stress tensor is given by

o(x)=T(x)+(Vu) T(x)+A(x)(trE) +2u(x)E,
Vu+Vut .

where E(x) = — s the infinitesimal strain and A(x), u(x)
are the Lamé parameters.
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The second-rank tensor T(x) = (t,-j(x))?d-:1 is the residual stress
and satisfies

t,'j(X) = tj,'(X), Vi,j=1,2,3and xeQ

and
V.- T=)0tj=0inQ, Vi=1,2,3.
J
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If we define the elastic tensor C = (Cijk/)ij,k,lzl with
Cijk1 = A0 8ks + (O Sj1 + Ojic 8ir) + tj1Ojc
then (3.2) is equivalent to

V-(CVu)+x?pu=0in Q.
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Results on (strong) unique continuation property for the residual
stress system has been proved by:

e G. Nakamura and J.N. Wang (2003) proved the unique
continuation property for (3.2) under the condition max; ; ||tjj||e is
small and T(x),A(x), u(x) € W= and p(x) € W=,
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Results on (strong) unique continuation property for the residual
stress system has been proved by:

e G. Nakamura and J.N. Wang (2003) proved the unique
continuation property for (3.2) under the condition max; ; ||tjj||e is
small and T(x),A(x), u(x) € W= and p(x) € W=,

e C.L. Lin (2004) proved the SUCP for (3.2) under the assumptions
that T(0) =0, max; ; ||t;] is small, 1(x), u(x) and p(x) are in C2.
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Results on (strong) unique continuation property for the residual
stress system has been proved by:

e G. Nakamura and J.N. Wang (2003) proved the unique
continuation property for (3.2) under the condition max; ; ||tjj||e is
small and T(x),A(x), u(x) € W= and p(x) € W=,

e C.L. Lin (2004) proved the SUCP for (3.2) under the assumptions
that T(0) =0, max; ; ||t;] is small, 1(x), u(x) and p(x) are in C2.
e G. Uhlmann and J.N. Wang (2009) proved unique continuation
principle for (3.2) under the conditions T(x),A(x), u(x) € W?=,
p(x) € WL and general residual stress.
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Reduction - First step

We want to prove the SUCP for

V-(CVu)+Kk?pu=0in Q.

We define

Ru=V-(VuT) (3.3)
with Ru = ((Ru)1,(Ru)2,(Ru)3), where (Ru); =¥ i tjkaﬁ(u,',
i=1,2,3.
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Set U= (u,v,w)t, where v=V-u, w=V x u and u satisfies
V- (CVu)+K?pu=0in Q. (3.4)

Take divergence on (3.4) and take curl on (3.4), we can find two
equations for v, w. We write differential equations for u,v,w in the
following form.
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(u,v,w) satisfies

— R
Pi(x,D)u:= Fu—&—Au— Z Atm(u,v)

m=0

Rv 1 1
T :_72 V(ti)- 02 2 Ao m
P2(X D)v : (7L+2,u) + Av 2 iou ] (tik) 8Jku+m:o 2.m(u,v,v

~ R 1 !
Pi(x,D)w = TW +Aw = “u ZV(tjk) X aﬁ(qu Z Az m(u,v,w),
ik m=0

where Ay, are m-th order differential operator, /=1,2,3, m=0,1.
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Difficulties

We want to prove the SUCP for general residual stress T. The
main difficulty is:

1. The system of (u,v,w) is not decoupled.
2. We cannot find a change of coordinates such that the

differential operators ,Pvl(x, D) and /F\);(X,D) are Laplacian at x =0
simultaneously (If T(0) =0, then P1(0,D) = P,(0,D) = A).
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Our main tool is to reduce (3.2) into a special fourth order

elliptic system.
We need to derive suitable Carleman estimates in order to get the

SUCP for this elliptic system.
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In general, the SUCP doe not hold even the coefficients are
smooth, Alinhac (1980) gave a counterexample. Thus, we consider
the coefficients of (3.2) lie in the Gevrey class.
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Gevrey Class

We say that f € C*(Q) belongs to the Gevrey class of order s,
denote it as G°(Q) (or G?), if there exist constants ¢, A and
multiindices B such that

10PF| < cAPI(IB]1) in Q.
We give several useful properties for Gevrey class G*°.

The Gevery class collects functions between smooth and analytic.
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Properties for Gevrey functions

1. f € G® and vanishes to infinity order at 0. If s—1 < p, then

F(x)] < e ™™ near x =0.
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Properties for Gevrey functions

1. f € G® and vanishes to infinity order at 0. If s—1 < p, then
F(x)] < e ™™ near x =0.

2. e M e gs provided 1 +p =s.
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Properties for Gevrey functions

1. f € G® and vanishes to infinity order at 0. If s—1 < p, then
F(x)] < e ™™ near x =0.

2. e M e gs provided 1 +p =s.

3. (Gevrey regularity) Let P(x,D)u = f in Q be an elliptic

differential system with coefficients and f are in the Gevrey class
G*. Then u € G*(O) for all bounded O € Q.
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We assume P; and P, are two strongly elliptic operators, where

Pl(X7D) = Z xxk 3:Z(M5jk+tjk)ax2jxk7 (41)
I

P2(x,D) = Z ()0 = 2 (A +20) 8 + ti) 0 ., (4.2)
Jjk Jjk

with af, (x) = p(x) 8k + t(x) and
Jzk( x) = (A(x)+2u(x ))Sjk—i—l’jk(x)_
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The elliptic condition means that there exists ¢y > 0 such that for
any & = (&)}, €R®

Z (x)Eé = qukéjék+u|5122co\é|2 (4.3)
J
Zajk<x)éjék = Yta&i&+ (A +2u)E2 > ol (49)
Jjk Jjk
for all x € Q.
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Colombini, Grammatico and Tataru (2006) derive the following
condition for the appropriate index s for G°. Ja > 0 such that the
eigenvalues 1] < AJ < A{ of (af-k(O)) satisfying

Y
i

o>

and
1
s<1l+4+—
o

uniformly in x and for £ =1,2.

Yi-Hsuan Lin, Mathematics Department, NTU



Main result

Theorem (Main Theorem)

Let the residual stress (t,-j(x))?d-:l, the Lamé parameters A(x),
u(x) and the density of the medium p(x) be in the Gevrey class

(UR?)

1
G*(2) with s satisfying s <1+ o Then for all u € H2_
solving (3.2) and for all N >0

/ |u[dx = O(RN) as R — 0,
R<|x|<2R

then u is identically zero in Q.
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However, it is not easy to prove the main theorem directly for the
general residual stress, we will introduce a reduction method to
transform (3.2) into a new fourth order elliptic system with
principally diagonal leading terms. Moreover, we need to derive
suitable Carleman estimates in order to obtain the SUCP.
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Reduction - Second step

Recall that in the first step, we have reduce the residual stress
system into

1
Pi(x,D)u=Ru+ulAu= Y Bim(u,v)

1
Py(x,D)v = Ru+ (A +2u)A ZV tik) iu—l— Z By m(u,v,w),

Pi(x,D)w = Rw + uAw = — ZV tik x&ku—l— Z B3 m(u,v,w),

m=0

where By ,, are m-th order differential operators, m = 0,1 and
(=1,2,3.
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Key observation 1

If we act P> on Pi(x, D)u-equation, P;i(x,D)w-equation and act
P1 on P,(x,D)v equation, we will obtain fourth order elliptic
equations P> Py for u,w and PP, for v.

Py (Pi(x,D)u (ZBlmuv)
P1 (Px(x,D)v ( ZV tik) ﬁ(u—l— 21: By m(u,v, W)),

P2 (P1(x,D)w) = ( ZV tik) X I+ Z B3,m(u, v W)>’

m=0

Use PPy = PPy +[P1, P2], where [Py, P;] is a commutator, a
third order differential operator.
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Key observation 2

We also observe that
(x,D) [ZV tik) Z D (u,v,w)
m<3

and

Py (x, D)[ZkV(tjk) X 8ﬁ(u] = Z D%(u, v,w),

m<3

where DL D2 are m-th order differential operators.
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Let U= (u,v,w)", we transform (3.2) into a fourth order
principally diagonal elliptic system

PP U = i Bm(U), (4.5)
m=0

where B, (U) is an m-th order differential operator. Note that the
leading coefficients of U is principally diagonal and U € G*® since
the coefficients of (4.5) are in G”.
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Main result for fourth order elliptic system

Theorem (Main Theorem)

Let P = P,P; be a fourth order elliptic operator with coefficients in
G*. Then the SUCP holds for the elliptic system

PU="Y Bn(U)
|BI<3

provided that all the coefficients are in G*°.

If U has the SUCP, then u has the SUCP.
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The main theorem was first proved by Colombini and Koch in 2010,
they use iterative method to derive the Carleman estimate for
higher order elliptic equations. They proved the Carleman estimates
in the following type:

Let Py, P>, -, Py be second order elliptic operators with Gevrey
coefhicients. Let P = Py;Pp_1--- P1 be an 2M order elliptic
operator, then the SUCP holds for

Pu= Z aﬁaﬁu

BI<[3"]

provided ag € G*, V|B| < [%]
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The proof of the theorem is based on the iteration from the
Carleman estimates for the 2nd order elliptic operator. In our case,
when M =2, 2M =4 and [%] =3, then we can apply the
Colombini-Koch's result directly.
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Carleman Estimates

We are going to derive the Carleman estimates for the weight
e™XI™ for the fourth order elliptic operator P = P,P;. The main
point is that U € G* and vanishes to infinity order, then we have

—a . 1
|U| < e X" near 0 provided that s < 1+a.
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We have the following Carleman estimates for P:

4
Z T6_2j/|X|—8—606|X|2j(1+a)e2ﬂx|7a|DjV|2dX
j=0

2 _ _ .
S Z 32 / ’X‘7473(x’X‘J(1+a)e2r\x| |DJ(P1 V)\zdx
j=9

§/e2T‘X|’“|(P2P1 V)|2dx=/e2f|X"”|PV|2dx.
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Use the vanishing to infinity order of U at 0 and the Carleman
estimate we can obtain U =0 in a small neighborhood of 0, then
u =0 in a small neighborhood of 0.

Furthermore, by using the unique continuation principal was proved

by Uhlmann-Wang's result in 2009, therefore, we can obtain u=0
in 2, then we are done.
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Conclusion 2

Under the assumptions for the Gevrey coefficients with appropriate
indices s, we can prove if u vanishes to infinity order at xg € Q,
then u vanishes identically in Q provided that €2 is a simply
connected domain.
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Thank you for your attention |
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Proof of the Main Theorem

The operator P = P, P; is strongly elliptic in the Gevrey class G*,
then U is also in the Gevrey class G*. Therefore, we have the
vanishing of infinite order implies that

juf e M

for some y> «.
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Let x € C°(R®) be such that y =1 for |x| < R and x =0 for
|x] > 2R (R >0 is small enough). Then we can apply the Carleman
estimates to the function y U, which means

4
cy £6-2IB] |x|GIBI=0)A+@) =2 21" DB y2dx  (5.1)
- [x]<R

< / 27X | PU[2dx

< [ eEIPUPdr [ P )P
[x|<R

[x|>R

< W“WZE U)Pdct | PGP,
|x|<R

[x|>R
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If T is large and R is sufficiently small, then we have

4
C Y, 2P |x|GProra2e2ad ™| Dy 2dx
BI=0 [x|<R

<[ e IPGu)
[x|>R

for some constant C > 0.
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Notice that e ™ > ™™ for |x| < R and ™™ < e™®™ for
|x| > R. Therefore, we can use (5.2) to obtain

4
Z 6-216] Ix|@IBI=6)(1+0)-2) DB 2

[x|<R

< /X|>R\P(XU)I2-

Let T — oo, we get U =0 in {|x| < R} for R small, which implies
u=0in {|x| <R}
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