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Abstract

The goal of this dissertation is to develop reconstruction schemes to determine
penetrable and impenetrable obstacles in a region in 3-dimensional in an anisotropic
background. We demonstrate the enclosure-type method for two different
mathematical models: The anisotropic elliptic equation and the anisotropic Maxwell
system. So far, in the anisotropic case, there are no complex geometrical optics
solutions which we can use to reconstruct the unknown obstacles in a given medium.
Therefore, we use another special type solution: the oscillating decaying solutions,
which are useful in our inverse problems.

In particular, for the anisotropic Maxwell system model, we also introduce a new
reduction method to transform the Maxwell system into a second order strongly
elliptic system. This reduction method is the main tool to construct the oscillating
decaying solutions for the anisotropic Maxwell system. In addition, we prove the
strong unique continuation for a residual stress system with Gevrey coefficients.
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Chapter 1

Preliminaries

Inverse boundary value problem is a field of discussing the inverse problems of partial differential
equations. The inverse boundary value problems have become a popular field since A.P. Calderén
published his pioneering work “On an inverse boundary value problem” [l in 1980s. The problem
proposed by Calderén is: “Is possible to determine the electrical conductivity of a medium by
making voltage and current measurements on its boundary ?” More specifically, for each volt-
age density on the boundary, there would be the corresponding current which can be measured
theoretically on the same periphery. In addition, the Calderén problem is also called the inverse
conductivity problem.

Under the assumptions of no sources or sinks of current in €2, a voltage potential f at the bound-
ary 0f) induces a voltage potential  in €2, which solves the Dirichlet problem for the conductivity
equation,

V-(vVu)=0 in Q,
u=f on 0N).

Since v is positive, there exists a unique weak solution v € H'(Q) for any boundary value f €
H'2(09). One can define the Dirichlet-to-Neumann map (termed as DN map hereafter) formally

as

ou
Ay f— ’Y@b@

The question is whether this DN map uniquely determines the conductivity v in £2. This problem
led to the development of the Electrical Impedance Tomography (EIT), an imaging method with
potential applications in medical imaging and nondestructive testing. The ideas of solving Calderén
problem is based mainly on gaining information from boundary data, which can be extended to
tackle many physical issues in the reality. The questions evolve from theoretical determinations

to practical reconstructions. For example, boundary measurements determines the information of
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unknown obstacles in a given medium.

By extending Calderdén’s ideas, we not only can determine the conductivity v from the bound-
ary information but also we can reconstruct unknown obstacles in a given subject. There are
several reconstruction methods to know the information of unknown obstacle inside a given do-
main: The enclosure method(Ikehata), the linear sampling method(Colton-Kirsch), the factoriza-
tion method(Kirsch) and the singular source method(Potthast). The enclosure method can be
applied in the following: the subject contains unknown obstacles and the conductivity is unknown
in the unknown obstacle which is different from the background. The enclosure method is not only
a theoretical detection method but also provides an algorithm to draw the unknown obstacle. In
this article, we will illustrate how to reconstruct unknown obstacles in a known background from
boundary information. We will employ a nondestructive method: “the enclosure method”, which
was first introduced by Ikehata [19].

The simplest inverse obstacle problem has the following formulation. Let u be a solution of the
conductivity equation

V-(wVu)=0 in Q,
u=f on 0,

where v(x) := 1+ vpxp, where D € € is an unknown obstacle in 2. By defining the DN map
Ap:f— W%bm we are able to explore the shape of D through the above reconstruction method
and the DN map Ap. This geometrical inverse problem is quite well studied in the literature see
[24] and several methods have been proposed to solve it. In this chapter, we focus on the enclosure
method, which is initiated by Tkehata, see for examples [[17, 19], and developed by many researchers
[27, BO, 44, 53, 55, 61], [26, 55] for the acoustic model, [25, B0] for the Lamé model and [27, 66] for
the Maxwell model. The testing functions used in [27, 66] are complex geometric optics (CGO)
solutions of the isotropic Maxwell’s equation. The construction of CGO solutions for isotropic
inhomogeneous Maxwell’s equations is first proposed in [51]. After that, the authors in [28] also
constructed CGO solutions for some special anisotropic Maxwell’s equations. However, there are
not yet of CGO solutions for general anisotropic Maxwell system. Besides, CGO solutions, another
kind of special solutions for anisotropic elliptic system was proposed for substitution in [4&€] and
[49]. They are called oscillating-decaying (OD) solutions.

This thesis is organized as follows. In Chapter 2, we first review the idea of the enclosure
method for the isotropic scalar elliptic equations and generalize such a concept to the anisotropic
scalar elliptic equations and fully examine the enclosure method including the complex geometric
optics (CGO) solutions and the indicator functional (or indicator function). Consequently, the
theoretical linkage between the enclosure method and the Calderén’s problem will be presented.

In the absence of CGO solutions for the anisotropic elliptic equation in R?, we introduce another
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special solutions called the oscillating-decaying solutions and use the Runge approximation property
to obtain our reconstruction algorithm in the anisotropic case, which primarily steams from the
enclosure method (intuitively, viewed as the enclosure-type method). In addition, the traditional
indicator function requires some modifications.

In Chapter 3, we confine the framework of the enclosure method to the isotropic Maxwell
system, which has been addressed in [66], in the similar approach of the CGO solutions and suitable
choice of the indicator function. Instead, we can define the impedance map, the counterpart for the
elliptic case (that is, the DN map). The indicator function and the reconstruction algorithm are
adjusted due to the slight differences between the impedance map and the DN map. Stretching the
result of isotropic case to the anisotropic case poses plenty of challenges. We thereby propose a new
reduction method which transforms the anisotropic Maxwell system into a second order strongly
elliptic system in R3. Further, given the relationship between the oscillating-decaying solutions
and the strongly elliptic system, we utilize the newly-proposed (reduction) method to convey such
the relation to the anisotropic Maxwell systems and, in turn, derive the representation of the
oscillating-decaying solutions of the anisotropic Maxwell system.

In the following chapter, we prove the strong unique continuation property (SUCP) for a
residual stress system with Gevrey coefficients on the basis of the SUCP for the scalar elliptic
equations with coefficients in the Gevrey class. Finally, we provide some guidelines for the future

works.
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Chapter 2

The enclosure method for second

order elliptic equations

The enclosure method is to reconstruct an unknown obstacle in a known background, which was
first introduced by Ikehata, see [[L7]. The main tool of this reconstruction algorithm is by the indi-
cator functional and the complex geometric optics (CGO) solutions. The idea of these tools can be
traced back to the Calderén’s pioneering work. In the following, we will show the relations between
Calderén’s work and these tools. Moreover, if the mathematical models are complicated, we need
to introduce appropriate elliptic regularity estimates (C® estimates or Meyers’ LP estimates), we

will discuss these details in the following sections.

2.1 Calderén’s problem

In 1980s’, Calderén published his pioneer work “On an inverse boundary value problem” [[]. His
work affected the development of the inverse boundary value problem and the inverse conductivity
problem. We will give a brief introduction about the Calderén problem how to relate to the
enclosure method.

Let us begin by giving the mathematical model. Let 2 C R™ be a bounded open subset in R"”
for n = 2,3 with C* boundary. Assume that v > 0 is a C? function defined on Q. Let u € H(Q)
satisfy

V- -(vwVu)=0 in,
(2.1.1)
u=f on 0f2,

where f € HY2(9Q). Tt is well-known that () has a unique weak solution u € H'(Q). We can
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define the Dirichlet-to-Neumann (DN) map formally as

ou
Awf = 7$|aﬂ-

More precisely, the DN map is defined weakly as

(A fr9)on = / YWVu-Vudz, f,g€ HY?(09),
Q

where u is the solution of () and v is any function in H(Q) with v|sq = ¢g. The pairing on

the boundary is integration with respect to the surface measure

(/. 9)on = /6  fgds.

With the definition, we know that A is a bounded linear map from H'/2(9Q) into H~'/2(99Q).
The Calderén problem (also called the inverse conductivity problem) is to determine the con-
ductivity function 7 from the knowledge of the map A,. That is, if the measured current A, f is
known for all boundary voltages f € H'/2(9), one would like to determine the conductivity 7.
There are several aspects of this inverse problem which are interesting to both the mathematical

theory and the practical applications. When Q C R”™ for n > 3, we have the following results.

1. Uniqueness. If A,, = A,,, we have 7, = ¥2. The result was proved by Sylvester-Uhlmann
[67] in 1987.

2. Reconstruction. Given the boundary measurements A, find a procedure to reconstruct

the conductivity . There is a convergent algorithm which was found by Nachman [12].

3. Stability. If A, is close to A, in a suitable sense, then ; and 7, are close. In 1988,
1
Alessandrini [2] proved that if v; € H*(2) for s > g +2, |1Vl (@) < M and i <v <M

(j =1,2). Then

71 — ’V2||L°C(Q) <w([|Ay, — Ay, ||H1/2(BQ)—>H*1/2(BQ))1

where w(t) = C|logt|~7 for small t > 0 and C = C(2, M,n,s) >0, 0 = o(n,s) € (0,1).

4. Partial data. If T is a subset of 9Q and if A, f|r = A, f|r for all boundary voltages f, show
that v1 = 2. When ) is convex and I' is any open subset of 92, Kenig-Sjostrand-Uhlmann

then proved this result in [29].
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In order to deal with the Calderén problem, Calderén considered the following nonlinear map

Q,(f) = /Q V| Vul?dz = /a A1) T 212)

where ds is the standard surface measure and u solves () with u|gq = f. Calderén proved
@~ is analytic and the Frechet derivative of @) at g is injective whenever 7 is a constant, which
means the map from ~ to @, is injective for constant conductivity .

Calderén’s work has made the huge influences in the inverse problems. The nonlinear map @,
can be widely applied to other areas of the inverse problems. For example, @ is also called the
indicator functional, which is useful in the enclosure method for the reconstruction of unknown
obstacles. Moreover, Calderén took a special harmonic function v = e (P+ir") to show the injec-
tivity of the linearized map, where p € C"™ with p-p* = 0. In addition, we call @ (P+iP™) to be the
complezx geometric optics (CGO) solutions and the CGO solution plays an important role in the

inverse problem, for more details, we refer readers to [60].

2.2 Ideas of the enclosure method

We give two different examples to demonstrate ideas of the enclosure method. Here is the math-
ematical setting: Let @ C R", for n = 2,3 and D € 2 be an unknown obstacle. We con-
sider the simplest case in the following: Let 79 = 1 be a given conductivity on the background
medium and Y(x) = 70 + yp(x)xp = 1+ ypxp be a total conductivity defined on €2, where

1, ifzeD
XD = is the characteristic function of domain D and yp(x) > 0 is a bounded func-

0, otherwise

tion on Q. Then we have two different conductivity equations with boundary value f € HY/?(99),

Aug =0 in Q,
ug = f on 012,
and
V- -F@)Vu) =0 in Q,
u=f on 09,
where ug is the voltage when D = (} (no unknown obstacles in Q) and u is the voltage when

D # (9 contains unknown obstacles). Then we can define the Dirchlet-to-Neumann maps: For

fe HV2(09),

ou
A’Yo(f) = 7087; 0

6 d0i:10.6342/NTU201600158



and

_Ou

where v is a unit outer normal on 0€2. The enclosure method consists of two tools: The indicator
functional and the special solutions (CGO solutions).
First, we introduce the indicator functional and the ideas came from the nonlinear map @, we

have defined in the previous section (see ()) We consider the indicator functional

E(f) = /8 () = A () - TS,

If given voltage f on 09, we can regard E(f) as a difference of currents or energies corresponding
to the situations with and without D. Furthermore, due to the positivity property of the equations,

we can easily derive

E(f)~C / Vo Pde,
D

where C' > 0 is independent of f and ug and recall that ug solves Aug = 0 with ug|sn = f.

Second, it is not hard to see for any h > 0,

ug = et (pretirt o)

is a solution of the Laplace equation, where p, p~ € S"~! (for n = 2,3) and p- p* = 0. Note that
the special function uo was also appeared in [1], which was proposed by Calderén. Moreover, let

d € R be arbitrary,

_d 1(, oL -
Ug,ap = € hen P

satisfies the Laplace equation, i.e. Aug 45 = 0.
We set fo.an = uo.anlon and take fo 45 into the indicator functional E(f) = E(fo,q4,n), then

we have

E(fo,an) = C/|Vuo,d,h|2d$
D

~ C’%/e%(p‘mfd)dx
D

for some positive constants C, C’ independent of h. Now, we define the support function hp(p)
hp(p) :=supz - p

xeD

and let d := hp(p), then we have the following two situations:

7 d0i:10.6342/NTU201600158



1. If x € {p- = > d}, then we can see that
u0,d7h—>ooash—>0+.

In addition, we also have

E(fo,an) > ocash—0+.

2. If x € {p-x < d}, then we can see that
ug,g,n —+ 0ash—0+4.

In addition, we also have

E(fo@ﬁ) —0ash—0+.

Then from the limiting behaviors of E(fo.q4.5) as h tends to 0, we can conclude that if we choose
fo,a,n to be our testing boundary measurements, then the limit behavior of E(fy q.) will tell us
whether the level set {z - p = d} touches 9D or not. By varying the direction p and the real value

d, we can reconstruct a convex hull for the unknown obstacle D theoretically.

Remark 2.1. We call E(f) to be the indicator functional. In fact, in [20], Ikehata called E(foq4.5)

the indicator function.

Let us summarize the ideas of previous reconstruction procedures. First, we define the indicator
function E(f) from the DN map on the boundary. Second, we construct a sequence of special so-
lutions ug 4,5 (CGO solutions) for the Laplace equation, and let fo.4.n = wo.4,n|o0 be the boundary
testing functions, then the limit behavior of E(fo 4.5) will tell us whether the level set {z - p = d}
touches 0D or not when h tends to 0. It looks like to use the hyperplanes to enclose the unknown

obstacle D in €2, and named the enclosure method.

2.3 Complex geometric optics solutions and related topics

Since Tkehata proposed the idea of the enclosure method, there are many applications of this
method to other physical problems. We will show how to extend the ideas to different physical
settings and related results.

Recall that the enclosure method contains two different tools: The indicator function and the
special solutions. In different mathematical problems, we can define similar indicator functions
via the Dirichlet-to-Neumann map (for the Maxwell system, we define the impedance map, it
will be seen in Chapter 3). The main problem lies on how to find a suitable sequence of testing

functions, which satisfy the specific partial differential equation. For example, we know that
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1 oL . . ; .
Uo,d,h = en(@p=dtizp™) golves the Laplace equation. Notice that ug 4, are harmonic functions

with complex phases. By using the following form of solutions,
¢ (a(w) + Ri(x)).

one can construct approprate testing data with a complex phase function p(z) and Ry, (z) < a(z) as
h — 0+. The solutions with this form are so-called the complex geometric optics (CGO) solutions,
which play an essential role in the enclosure-type method.

The results to the existence of CGO solutions for various mathematical problems and CGO
solutions are useful for the inverse boundary value problem, for example, see [56, 57, 51, 52, [L8, [16,
61]. In particular, CGO solutions play an important role of the probing method in the enclosure

type method, we refer readers to [16, 17, 19, 22, 23, 43, b5, b4, b8, 61, 66].

From linear phase to general phase

From Ikehata’s previous work, he used the Calderén’s harmonic function e (P+r) o construct
the boundary testing data. The phase function = - (p + pt) is linear and we use it to enclose the
unknown obstacle. By using the linear phase type harmonic function, we can only reconstruct the
convez hull of the unknown obstacle. One can refer to a survey paper [21] for detailed explanation
and early development of this theory. In [b4, 15, 16], the writers used the complex spherical
wave solutions to detect concave parts of the unknown obstacles. Moreover, in [61], the researchers
proposed a framework to construct the CGO solutions with general phases for some elliptic systems
in 2 dimension. This work provides more choices for the phase function of the CGO solutions in
2D. They also gave a concrete example: the CGO solutions with complex polynomial phases and
apply these CGO solutions for the conductivity equations to determine unknown obstacles with
more general shapes. This type of CGO solutions were also applied to elastic system [64] and
Helmholtz equation [43].

More results for the Helmholtz type equation

Recall that we know that e# @P—d+izr") are CGO solutions for various h,d € R and p € S*!
for n € N (we only consider n = 2,3). For more general mathematical models, we can consider the
following problem

V- H@)Vu+ku=0 inQ,
(2.3.1)

u=f on 01,

9 d0i:10.6342/NTU201600158



where Y(z) = 1 4+ ypxp, for some vp > 0, vp € L®°(D) and xp is the characteristic function

defined on D. For the unperturbed case, i.e. when D = (), we have the Helmholtz equation

Aug + k?ug =0 in Q,
(2.3.2)

ug = f on 9.

Now, we want to know the information of the unknown obstacle D & ).

In the beginning, we need to define the DN map

8UQ

ou
Apf = $|aﬂ and Agf := gbﬂ;

where u and wug are solutions of (}23]]) and (b3ﬂ), respectively and v is a unit outer normal on

0f). Similarly, we can define the indicator function

E(f) = /8 (Ao = Ag)f - 7.

and use integration by parts many times, we will obtain the upper bound estimates and the lower

bound estimates for E(f):

E(f) gc/ |Vu0|2dac+k2/ |w|?da
D Q

and

Bz e [ [Vufdo 12 [ fufda,
D Q

where ¢, C' are independent of ug,w and w = u — uyg is called the reflected solution satisfying

V- (J(z)Vw) + k*w = -V - (§(z) = 1)Vug in Q,
(2.3.3)

w=20 on 0f2.

For more calculation details, we refer readers to [£3]. Note that the upper and lower bounds only
involve uy and w. Our remaining task is to find appropriate estimates for [, |wl|?.

In fact, there are two different approaches for [, |w|*dz: One is the C®-estimates method
which was first introduced by [43] and the other is Meyers’ L? estimates method which was first
introduced by [p5]. We give a brief comparison with C'“-estimates method and Meyers’ L estimate
method. Note that in the following estimates, the constants C' may change line to line, and they

are independent of ug and w.

1. C*-estimates method: This method was introduced in [43]. Recall that we have an upper
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bound for the indicator function
E(f) < C’/ |Vuo|2dx—|—/<:2/ |w|?dz.
D Q
By () and the standard elliptic regularity estimates, we have

/\w|2dw§C/ | Vg |*de,
Q D

then we obtain

E(f) < C/D |Vug|*de.

The main problem appears on the lower bound for E(f). In [43], the authors defined a new

function
I / Ouo | — xo|*dS
To,00 . — &0 )
° oD 81/
for any z € 2, then they derived
[ 0Pde < Cod I+ Tav Vol + ol (2:3.4)

for any « € (0,1) and ¢ € (2,4]. The estimate () relies on the C“-estimates for the elliptic
equation, which were proved in the paper [35]. In order to apply this type C*-estimate, we
need to add regularity assumptions on the unknown obstacle D, which is D € C2. In
addition, we know that

Ug = et (@ p=d)+iVTZHkZap* (2.3.5)

are CGO solutions for the Helmholtz equation. Combine the lower bound of E(f), () and
put the CGO solutions () into the indicator function E(d, h) := E(fo,a.n) = E(uo,4,1]00),

then we can obtain

E(d,h) - 0ash— 0+ ifw-2<hp(p),
(2.3.6)

E(d,h) >0 ash — 0+ ifw-x>hp(p),

where hp(p) = inf.ep « - p is the support function we have mentioned before.

. Meyers’ LP-estimates method: This method was introduced in [65]. Similarly, since the upper
bound of E(f) can be obtained by the standard elliptic regularity, we only need to take care
of the lower bound of E(f). Recall that w is the reflected solution of (), and in [39],
the author derived the following estimates (Meyers’ LP estimates): Assume D € Q and D

is Lipschitz. For every py > 2, there exists a positive constant Cp, independent of w and ug
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such that

[wllz2(2) < Cpolluollwr(p), (2.3.7)

6
for p € (g,po]. In addition, by (), we have

B() > ¢ [ [Vuolde = cluolfyroio)

In [55], the authors used a decomposition technique to obtain the lower bound of E(f), and
we will give details in the next chapter (section 3.4.2). Note that the key point is that we
only need 9D is Lipschitz. In summary, we can use the Meyers’ LP estimates to obtain the
same result () For more enclosure methods for the Helmholtz-type equations, we refer

readers to the survey paper [65].

From Laplacian leading term to general elliptic operator

Until now, we only considered the case when the mathematical models with the Laplacian as
the leading order term. For the leading term - Laplacian, we call this mathematical model to be
isotropic. In order to consider more general situation, we need to consider the equations or systems
with non-Laplacian leading terms and we call the case to be anisotropic. However, the anisotropy
of the non-Laplacian prevents us from constructing CGO solutions by using the standard methods.
As a result, in [4§], the authors constructed another special type of solutions which is called the
oscillating-decaying (OD) solutions. The OD solutions are also useful in the inverse problems,
especially for the reconstruction problems. In two-dimensional case, we can use the isothermal
coordinates to transform a general second order elliptic equation into Laplacian type equations.
However, for three-dimensional case, we do not know how to construct CGO solutions yet, we will
use OD solutions to reconstruct the unknown obstacles. We will give all the details in the next

section.

2.4 The enclosure-type method: Second order anisotropic
elliptic equations

In this section, we develop an enclosure-type reconstruction scheme to identify penetrable obstacles
in acoustic waves with anisotropic medium in R?. The main difficulty of treating this problem
lies in the fact that there are no complex geometrical optics solutions available for the acoustic
equation with anisotropic medium in R3. Instead, we will use another type of special solutions
called oscillating-decaying solutions. Even though that oscillating-decaying solutions are defined

only on the half space, we are able to give necessary boundary inputs by the Runge approximation
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property. Moreover, since we are considering a Helmholtz-type equation, we turn to Meyers’
LP estimate to compare the integrals coming from oscillating-decaying solutions and those from

reflected solutions.

2.4.1 Problem for the anisotropic elliptic equation

In the study of inverse problems, we are interested in the special type of solutions for elliptic
equations or systems which play an essential role since the pioneer work of Caldéron. Sylvester and
Uhlmann [57] introduced complex geometric optics (CGO) solutions to solve the inverse boundary
value problems of the conductivity equation. Based on CGO solutions, Ikehata proposed the so
called enclosure method to reconstruct the impenetrable obstacle, for more details, see [L7, 20, 21].
There are many results concerning this reconstruction algorithm, such as [43, 62]. The researchers
constructed CGO-solutions with polynomial-type phase function of the Helmholtz equation Au +
k?u = 0 or the elliptic system with the Laplacian as the principal part.

When the medium is anisotropic, we need to consider more general elliptic equations, such as

anisotropic scalar elliptic equation in a bounded domain  C R3,

V- (A(z)Vu) + k*u =0, (2.4.1)
where A%(z) = (af;(x)), af;(z) = af;(x), and we assume the uniform ellipticity condition, that
is, for all £ = (&1,&2,--- &) € R™, A°)E* < 37, s ad(2)&&; < A°)f* and = € Q. In two dimen-
sional case, we can transform () to an isotropic equation by using isothermal coordinates,
then we can apply the CGO-solutions for this case, which can be found in [58]. When Q C R3,
we cannot directly transform () to an isotropic equation as we do in R?, thus we need to use
the oscillating-decaying solutions in our reconstruction algorithm. In [46], the author introduced

oscillating-decaying solutions for the conductivity equation V - (y(z)Vu) = 0 with the isotropic

conductivity.

We make the following assumptions.

1. Let © € R? be a bounded C*-smooth domain and assume that D is an unknown obstacle
with Lipschitz boundary such that D € Q ¢ R? with an inhomogeneous index of refraction

subset of a larger domain (2.

2. Let A(x) = (ay(x)) and A°(z) = (af;(x)) be symmetric matrices with a;;(x) = af;(x) +
ai;(z)xp, where each af;(x) is bounded C*-smooth, A(z) = (ai;(z)) € L= (D) is regarded
as a perturbation in the unknown obstacle D and g(m)f € > X|§|2 for any ¢ € R? and

2 € D with some X > 0. Further A(z) satisfies A[¢|2 < A(x)¢ - € < Al¢|? for some constants
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0<A<A

Now, let £ > 0 and consider the steady state anisotropic acoustic wave equation with Dirichlet

boundary condition

V- (A(@)Vu)+ k*u=0 inQ

(2.4.2)
u=f on 0N).
For the unperturbed case, we have
V- (A%(2)Vug) + k*up =0 in Q
(2.4.3)

up = f on JN).

In this paper, we assume that k% is not a Dirichlet eigenvalue of the operator —V - (AVe) and
—V - (A°Ve) in Q. It is known that for any f € H'/2(9%), there exists a unique solution u to
() We define the Dirichlet-to-Neumann map Ap : HY/2(9Q) — H~/2(99) in the anisotropic

case as the following.

Definition 2.2. Apf:= AVu-v = Zf_jzl a;;0u-v; and Agf := AVuy v = Zf_jzl a;;05up - V4,

where v = (v, 12, v3) is a unit outer normal on Of).

Inverse problem: Identify the location and the convex hull of D from the DN-map Ap.

The domain D can also be considered as an inclusion embedded in €. The aim of this work
is to give a reconstruction algorithm for this problem. Note that the information on the medium
parameter A(x) = (a;;(x)) inside D is not known a priori.

The main tool in our reconstruction method is the oscillating-decaying solutions for the second
order anisotropic elliptic differential equations. We use the results from the paper [47] to construct
the oscillating-decaying solution. In the next section, we will construct the oscillating-decaying
solutions for anisotropic elliptic equations. Note that even if & = 0, which means the equation
is V- (A(x)Vu) = 0, we do not know of any CGO-type solutions. Roughly speaking, given a
hyperplane, an oscillating-decaying solution is oscillating very rapidly along this plane and decaying
exponentially in the direction transverse to the same plane. Oscillating-decaying solutions are
special solutions with the imaginary part of the phase function non-negative. Note that the domain
of the oscillating-decaying solutions is not over the whole 2, so we need to extend such solutions to
the whole domain. Fortunately, the Runge approximation property provides us a good approach
to extend this special solution.

In Ikehata’s work, the CGO-solutions are used to define the indicator function (see [21] for the
definition). In order to use the oscillating-decaying solutions to the inverse problem of identifying

an inclusion, we employ the Runge approximation property to redefine the indicator function. It
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was Lax [31] that first recognized the Runge approximation property is a consequence of the weak
unique continuation property. In our case, it is clear that the anisotropic elliptic equation has the
weak unique continuation property if the leading part is Lipschitz continuous. Finally, the main

theorem and reconstruction algorithm will be presented in the end of this chapter.

2.4.2 Construction of oscillating-decaying solutions

In this section, we follow the paper [47] to construct the oscillating-decaying solution in the
anisotropic elliptic equations. In our case, since we only consider a scalar elliptic equation, its

construction is simpler than that in [47]. Consider the anisotropic Helmholtz type equation
V - (A(z)Vu) + k*u = 0 in Q. (2.4.4)
Note that the oscillating-decaying solutions of
V- (A(z)Vu) =01in Q

will have the same form as the equation (), which means the lower order term k%u will not
affect the representation of the oscillating-decaying solutions, the following are the construction
details. Now, we assume that the domain € is an open, bounded smooth domain in R?® and the
coefficients A(z) = (a;;(z)) is a symmetric 3 x 3 matrix satisfying uniformly elliptic condition,
which means Z?,j:l aij(2)&&; > clé)?, VE = (&1,&2,&3) € R3 for some ¢ > 0.

Assume that
A(z) = (a;j(z)) € B*(R®*) = {f € C®°(R?) : 9°f € L™(R?), Vo € Z3 }

is the anisotropic coefficients. Note that A(z) € B> already implies that A is Lipschitz continuous
and the Lipschitz continuity property of A(z) will apply the weak unique continuation property of
() (see [15] for example).

We give several notations as follows. Assume that 2 C R? is an open set with smooth boundary
and w € S? is given. Let n € S? and ¢ € S? be chosen so that {n,(,w} forms an orthonormal
system of R3. We then denote 2’ = (z-n,z-¢). Lett € R, Q(w) = QN {z-w > t} and

Yi(w) = QN {z-w =t} be a non-empty open set. We consider a scalar function uy, ¢ nw (2, 7) :=

u(z,7) € C(Q(w)\X¢(w)) N CO(Q4(w)) with 7> 1 satisfying:

Lau=V"-(A(z)Vu) + k*u =0 in Q(w)
(2.4.5)

u= e X (a)Qu(a")b + By b vw}  on Ty(w),
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where ¢ € 52 lying in the span of 1 and ¢ and fixed x;(z') € C§°(R?) with supp(xs) C L¢(w),
Q:(') is a nonzero smooth function and 0 # b € C3. Moreover, By, »+ N w(2',7) is a smooth

function supported in supp(y;) satisfying:

1Bsbit N (> T) | L2y < er ™

for some constant ¢ > 0. From now on, we use c¢,c’ and their capitals to denote general positive
constants whose values may vary from line to line. As in the paper [47], uy, »t n,w can be written
as

Uy b,t,Nw = Wy bt,Nw T Ty ,bit,Now

with

Wy bt Nw = Xt (2)Que ™8T @w DA L N, T) (2.4.6)

and ry,p.¢, N, satisfying

(7xe, b8, Nl E2 (2 () < er N2, (2.4.7)

where A;(-) € B®(R?) is a complex function with its real part ReA;(z') > 0, and vy, p.t. N0 iS

smooth function supported in supp(x;) satisfying
1027 bt Nl 20, () < er!®732em Tt (2.4.8)

for |a| <1 and s > t, where a > 0 is some constant depending on A ().

Without loss of generality, we consider the special case where t = 0, w = e3 = (0,0,1) and
choose n = (1,0,0), ¢ = (0,1,0). The general case can be obtained from this special case by change
of coordinates. Define L = L4 and M- = e~i7%"¢' [(ei7®"€".) where 2/ = (z1,22) and & = (&1,&)
with [¢'| = 1, then M is a differential operator. To be precise, by using aj; = a;;, we calculate M

to be given by

M = -7 ap&&+2m Y an(ig)d; + Y aj0;0,
il il !

+ Z(ajaﬂ)(”gl) + Z(Bjajl)al + k?
jl 4l
= - Z a;i&€ + 27 Z a3;(i&;)03 + az30303
Jjl 1

+27 Z a;1(1€)0; + Z a;,0;0,

J#3,1 J#3,1#£3
+> (05a)(im) + Y (95000 + K
4l 4l
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with &3 = 0. Now, we want to solve

Mv =0,

which is equivalent to Mv = 0, where M = a§31M . Now, we use the same idea in [47], define

(e, )= Zij aije;fj, where e = (eq, ez, e3), f = (f1, f2, f3) and denote (e, f), = (&, f) [z5—0- Let P

be a differential operator, and we define the order of P, denoted by ord(P), in the following sense:
”P(ef-r:ng(:p’)(p(xl)”Lz(Ri) < CTord(P)*1/2,

where R} = {z3 > 0}, A(2’) is a smooth complex function with its real part greater than 0 and
o(z") € C§°(R?). In this sense, similar to [47], we can see that 7, 93 are of order 1, 9y, are of
order 0 and x5 is of order -1.

Now according to this order, the principal part My (order 2) of M is:

My = —{D3 + 27 (e3,es)q " (€3,p)o D3 + 7> (e3,€3)5 " (P, )0}
with Dg = —id3 and p = (£1,&2,0). Note that the principal part Ms does not involve the lower
order term k?-, so we can follow all the constructions in the same procedures as in [47] and we

omit details.

2.4.3 Runge approximation property

Definition 2.3. [B1] Let L be a second order elliptic operator, solutions of an equation Lu = 0 are
said to have the Runge approximation property if, whenever K and 2 are two simply connected
domains with K C €, any solution in K can be approximated uniformly in compact subsets of K

by a sequence of solutions which can be extended as solution to 2.

There are many applications for the Runge approximation property in inverse problems. Similar
results for some elliptic operators can be found in [B1], [87]. The following theorem is a classical

result for Runge approximation property for second order elliptic equations.

Theorem 2.4. (Runge approzimation property) Let Lo- = V(A%(2)V:) + k?- be a second order
elliptic differential operator with A°(x) to be Lipschitz. Assume that k* is not a Dirichlet eigenvalue
of =V (A%(z2)V-) in Q. Let O and Q be two open bounded domains with smooth boundary in R3
such that O € €.

Let ug € HY(O) satisfy

LQUO =0 in 0.
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Then for any compact subset K C O and any € > 0, there exists U € H'(Q) satisfying
LoU =0 in Q,

such that

||u0 — U||H1(K) <e.

Proof. The proof is standard and it is based on the weak unique continuation property for the
anisotropic second order elliptic operator Ly and the Hahn-Banach theorem. For more details,
how to derive the Runge approximation property from the weak unique continuation, we refer

readers to [31] O

It remains to use the same ideas which comes from the reflected solutions. Here we use the

useful elliptic estimates, which is called the Meyers’ L? estimates.

2.4.4 Meyers’ LP estimates and some identities

We need some estimates for solutions to some Dirichlet problems which will be used in next
section. Recall that, for f € H/ 2(09), let u and ug be solutions to the Dirichlet problems ()
and ()7 respectively. Note that a;;(z) = af;(z) + az;(z)xp and we set w = u — ug, then w
satisfies the Dirichlet problem

V- (A(z)Vw) + k2w = =V - ((Axp)Vug) in Q
(2.4.9)

w=20 on 0N

where A(z) = (a;j(x)), A%(z) = (a?j(:r)) and A(z) = (ai;(x)). Then we have some estimates for

Lemma 2.5. There exists a positive constant C' independent of w such that we have
[wllrz(0) < ClIVwl| Ly (o)

6
forg§p§2ifn:3.

Proof. The proof follow from [55] by Freidrich’s inequality, see [38] p.258 and use a standard elliptic

regularity. O

Lemma 2.6. There exists € € (0,1), depending only on Q, A%(x) = (af;(x)) and Az) = (ai;(x))
such that

[Vwl|zr ) < Clluollwr.r(p)
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6
formax{2—6,5}<p§2 if n=3.

Proof. The proof is also followed from [53]. Set f := —(Axp)Vuo. Let wy be a solution of

V- (A(x)Vwy) =V - f inQ,
(2.4.10)

wy =0 on 0f).

The following LP-estimate of wg, known as Meyers estimate, followed from [39], then we can get

[Vwollro) < Cllfllzr o) (2.4.11)

for p € (max{2 — ¢, g},Q], where € € (0,1) depends on Q, A%(x) = (a;(x)) and A(z) = (ay;(x)).

We set W := w — wyp, then since w = wyg + W, we have
[Vwl| e @) < C([Vwol Lr@) + VW] Lr(0))- (2.4.12)

Moreover, W satisfies

V- (A@)VW) + k2W = —k*>wy  in Q,

(2.4.13)
W =0 on 0f).
By the standard elliptic regularity, we have
Wz o) < Cllwollz2()-
Thus, we get for p < 2,
[VW[Le) < CIVWL2(0) < ClIW #1(0) < Cllwoll2(e)- (2.4.14)
By Sobolev embedding theorem, we get
lwoll L2y < Cllwollwrr o) (2.4.15)
6 . . . .
for p > R if n = 3. Use Poincare’s inequality in L? spaces (wg|aq = 0), we have
[wollL2(0) < ClIVwo|lLr(a) (2.4.16)

for p > g if n = 3. Combining (E41I) with (|‘2.4.1ﬂ), (b414|) and (l2.4.1d), we can obtain

IVwl zr) < Cllfllzr) < Clluollwrr(py
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6
formax{2—6,5}<p§2ifn:3. O

Recall the Dirichlet-to-Neumann map which we have defined in the section 1: Apf := AVu-v
and Agf := A°Vug - v, where v = (v1,v2,v3) is a unit outer normal on 9§2. We next prove some

useful identities.
Lemma 2.7. [, (Ap — Ay)ffdo = Re [, AVug - Vudz.

Proof. 1t is clear that

/(9 (AVW) - vpdo - /Q V- (AVug)dz

/ V- (AVu)g + AVu - Vpdz
Q

—k2/ u@da:—i—/ AVu - Vdz
Q Q

Vo € HY(Q). Since u = ug = f on 09, the left hand side of the identity has the same value

whether we take ¢ = u or ¢ = ug, and it is equal to faQ Apffdo.

Apffdo
o0

—k2/ mTde—i—/ AVu - Vugdzr
Q Q

—k2/ lu|?dz + / AVu - Vudz.

Q Q

The right hand side of the identity above is real. Hence, by taking the real part, we have
/ Apffdo = —k2Re/ utgdr + Re/ AVu - Vupdz
le) Q Q

and

/ Aoffdo = —K*Re / Wi + Re / AV Tasde.
o0 Q Q

Therefore, we have

/ (Ap — Ag)ffdo = Re/(A—AO)vu-vTodx (2.4.17)
o0 Q

= Re/ gVu~Vuodx.
D

O

The estimates in the following lemma play an important role in our reconstruction algorithm.
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Lemma 2.8. We have the following identities:

/ (Ap —Ap)ffdo = — AVw-de—!—k’Q/ |w|*dz (2.4.18)
a0 Q Q

-|-/ fNIVuo - Vugdz,
D

/ (Ap — Ag)ffdo = /AOVudex—kQ/ |w|*dz (2.4.19)
oN Q Q

+ / AVu - Vudz.
D
In particular, we have

/ (AD—A@)fdeSkQ/ |w|2dx+C’/ |Vug|*dz, (2.4.20)
a0 Q D

/ (Ap — Ag)ffdo > c/ |Vuo|?dx — k2/ lw|*de, (2.4.21)
o0 Q Q

where C' > 0 is a constant depending on g(w) and ¢ is a constant depending on A, A° and A.

Proof. Multiplying the identity
V- (A(z)Vw) + k2w + V - (AxpVug) = 0

by w and integrating over €2, we get

o
I

/V-(AVw)wd:B—/ V~(EXDVuo)wdx+k2/ |w|*dx
Q Q Q
= —/ AVw~Wdac+/ (AVw-u)de—/gXDVudex
Q o9 Q
+/ (EXDVuO-V)u’)dU—l—kQ/ lw|*dx
o9 Q
= —/AVw~Wda:—/ gVuo-de—l—kQ/ |w|*dx
Q D Q
= —/AVu%%da:—/ AVug - Vudz + K [ |w|*dx
Q

D Q

+/ EVu(quodx,
D
and use () we can obtain

/ (Ap — Ag)ffdo = —/ AVw-de+/ Zvuo-vuodwrk?/ lw|?dz.
o0 Q D Q
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Similarly, multiplying the identity

V- (AxpVu) + V - (A°Vw) + k*w =0

by w and integrating over €2, we get

o
I

/ V- (EXDVu)dex—k/ V- (AOVw)wd$+k2/ |w|?da
Q Q Q

—/ EVU-de—/AOVw~de+k2/ |w|?da
D Q Q

—/ Zw-ﬁdwr/ gVu-Vuodx—i—kQ/ lw|?da
D D Q

- [ AV Fud,
Q
and use () again, we can obtain
/ (AD—A@)ffda:/AOVw~de—k2/ \w|2dx+/ AVu - Vudz.
09 Q Q D

For the remaining part, () is an easy consequence of (P

Q0
~

AN

/ (Ap — Ag)ffdo kz/ \w|2dx—|—/ AVug - Vugdz
o9 Q D

= kQ/\w|2dx—|—C'/ |Vug|*d,
Q D

since A € L>®(D).

Finally, for the lower bound, we use

AVw - Vw + EXDVU Vu = AVu-Vu—2Red’Vu-Vug + A’V - Vug

= A(Vu— (A)1AVug) - (Vu — (A)~1AW )

+(A? = (A%)(A)7H(A%) Vg - Vg

Y

(A% = (A")(A)7H(A°)Vuo - Vuo

vV

C\Vu0|2,

since A(Vu — (A)7tAVug) - (Vu — (A)~1A%ug) > 0 and note that A° — (A%)(A)~1(A%) =
A%(A)~1(A — A = A°(A)~1Axp is a positive definite matrix by our previous assumptions in

section 1. O

Before stating our main theorem, we need to estimate ||w||2(q). Fortunately, we can use Meyers

LP estimates to help us to overcome the difficulties (see Lemma 2.5 and Lemma 2.6). For the upper
bound of [,(Ap — Ag)ffdo, see (), we use |lwl|z2q) < Clluollwir(py for p < 2. Then we
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have

AQ(AD — Ag)ffdo < Clluo||f2(py- (2.4.22)

By () and the Meyers LP estimate |[w||r2(q) < Clluollw.»(p), we have
/ (Ap — Ay)ffdo > c/ Vo 2z — clluollZy 1.0 (2.4.23)
o9 Q

In this section, we introduce the Runge approximation property and a very useful elliptic estimate:

Meyers LP-estimates.

2.4.5 Runge approximation property

Definition 2.9. [31] Let L be a second order elliptic operator, solutions of an equation Lu = 0 are
said to have the Runge approximation property if, whenever K and ) are two simply connected
domains with K C (2, any solution in K can be approximated uniformly in compact subsets of K

by a sequence of solutions in 2.

There are many applications for Runge approximation property in inverse problems. Similar
results for some elliptic operators can be found in [B1], [37]. The following theorem is a classical

result for Runge approximation property for second order elliptic equations.

Theorem 2.10. (Runge approzimation property) Let Lo- = V - (A°(x)V-) 4+ k- be a second order
elliptic differential operator with A°(x) to be Lipschitz. Assume that k* is not a Dirichlet eigenvalue
of =V (A%z)V-) in Q. Let O and Q be two open bounded domains with smooth boundary in R3
such that O @ Q and Q\O is connected.
Let ug € HY(O) satisfy
Loug =0 in O.

Then for any compact subset K C O and any € > 0, there exists U € H*(Q) satisfying
L()U =01 Q,

such that

luo — Ul g1y < e

Proof. The proof is standard and it is based on the weak unique continuation property for the
anisotropic second order elliptic operator Ly and the Hahn-Banach theorem. For more details,
how to derive the Runge approximation property from the weak unique continuation, we refer

readers to [31] O
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2.4.6 Elliptic estimates and some identities

We need some estimates for solutions to some Dirichlet problems which will be used in next
section. Recall that, for f € H'/2(95), let u and ug be solutions to the Dirichlet problems ()
and ()7 respectively. Note that a;;(z) = a?j () + ai;(x)xp and we set w = u —ug, then w

satisfies the Dirichlet problem

V- (A(z)Vw) + k2w = =V - ((Axp)Vue) in Q
(2.4.24)

w=20 on 0f)

where A(z) = (ai;(x)), A°(z) = (af;(x)) and A(x) = (a@;;(x)). Then in the following lemmas, we

give some estimates for w.

Lemma 2.11. There ezists a positive constant C' independent of w such that we have
[wllrz2(0) < ClIVwl| Ly (o)

6
forg§p§2ifn:3.

Proof. The proof follows from [65] by Freidrich’s inequality, see [B8] p.258 and use a standard

elliptic regularity. O

Lemma 2.12. There exists € € (0,1), depending only on Q, A°(x) = (aj;(x)) and A(z) = (ay;(x))

such that

IVw| zr ) < Clluollwrr ()

formax{?—e,g}<p§2 if n=3.

Proof. The proof also follows from [55]. Set f := —(Axp)Vuo. Let wo be a solution of

V- (A(x)Vwy) =V - f inQ,

(2.4.25)
wy =0 on 0f).
The following LP-estimate of wg, known as Meyers estimate, follows from [39],
[Vwollrr o) < Cll fllLr (o) (2.4.26)

for p € (max{2 — ¢, g},Q], where € € (0,1) depends on Q, A%(x) = (a;(x)) and A(x) = (ay;(x)).

We set W := w — wg, then since w = wyg + W, we have

[VwllLr @) < [[Vwolle@) + VW Lo (q)- (2.4.27)
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Moreover, W satisfies

V- (A@)VW) + k*W = —k*>wy  in Q,

(2.4.28)
W =0 on 0f).
By the standard elliptic regularity, we have
Wz o) < Cllwollzz()-
Thus, we get for p < 2,
[VW[Le) < CIVWL20) < ClIW 1 (0) < Cllwoll2(e)- (2.4.29)
By Sobolev embedding theorem, we get
lwoll L2y < Cllwollwrrq) (2.4.30)
6 . . . o
for p > R if n = 3. Use Poincare’s inequality in L? spaces (wg|aq = 0), we have
[wollL2(0) < Cl|VwollLe(a) (2.4.31)
for p > = if n = 3. Combining (5.4.26) with (}2.4.271), (}24QQ) and (}2.4.3]]), we can obtain
IVwl zr) < Cllfllzr) < Clluollwrr(py
6 .
formax{2—6,5}<p§21fn:3. O

Recall the Dirichlet-to-Neumann map which we have defined in Section 1: Apf := AVu-v and
Apf = A°Vuq - v, where v = (v1,v2,v3) is a unit outer normal on 9.

We next prove some useful identities.
Lemma 2.13. [, (Ap — Ay)ffdo = Re [, AVug - Vudz.

Proof. 1t is clear that

/a (AVW) - vpdo = /Q V- (AVug)dz

= /(V - (AVu)p + AVu - Vo)dx
Q

—k? / updx + / AVu - Vodz
Q Q
for any ¢ € H'(2). Since u = ug = f on 95, the left hand side of the identity has the same value
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whether we take ¢ = u or ¢ = ug, and it is equal to faﬂ Apffdo. Hence we have

Apffdo

— k2 / ultigde + | AVu - Vugdz
le) Q Q

—k2/ |u\2dx+/AVu-de.
Q Q

The right hand side of the above identity is real. Hence, by taking the real part, we have

Apffdo = —kQRe/

wugdr + Re/ AVu - Vugdz
Q Q

o0

and

/ Apf fdo = —kQRe/ mTde—kRe/ A'Vu - Vugdz.
o9 Q Q

Therefore, we have

/(AD—A@)ffdo = Re/(A—AO)Vu~mdw
a9 Q

= Re/ AVu-Vuod:E.
D

(2.4.32)

O

The estimates in the following lemma play an important role in our reconstruction algorithm.

Lemma 2.14. We have the following identities:

/ (Ap — Ag)ffdo = —/AVw-Wd:c—i—kQ/ lw|*dx
o Q Q

+/ ZVuo - Vupdz,
D

/ (Ap — Ag)ffdo = /AOVw-de—k2/|w|2dx
o9 Q Q

—|—/ AVu - Vudz.

D

In particular, we have
/ (AD—A@)ffdang/ \w|2dm+C/ |Vug|?de,
a0 Q D

/ (Ap — Ag)ffdo > c/ |Vu0|2da:—k2/ lw|*d,
o9 D Q

where C' > 0 is a constant depending on Z(x) and ¢ is a constant depending on A, A°
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Proof. Multiplying the identity
V- (A(z)Vw) + kE*w + V - (AxpVug) = 0
by w and integrating over €2, we get

0 = /v-(AVw)wd:c+/v-(ﬁXDvuO)wderk?/ lw|?dz
Q Q Q

—/ AVw - Vwdz +/ (AVw - v)wdo — / AxpVug - Vwdz
Q o9 Q

+/ (AxpVug - V)wda+k2/ lw|*dx
o9 Q

—/AV’U)~WCZ$—/ gVuo-de—l—kQ/ |w|*dx
Q D Q

—/AVw~Wda:—/ gVuo-de—l—kQ/ lw|*dx
Q D Q

+/ gVu(quodx,
D

and use () we can obtain

/ (AD—A@)ffda:—/AVw-de—i—/ gVu0~Vu0dx+k2/ lw|?dz.
9] Q D Q

Similarly, multiplying the identity
V- (AxpVu) + V - (A°Vw) + k*w =0
by w and integrating over 2, we get

0 = /v(ﬁXDvu)wder/v-(AOVw)wdx+k2/ lw|?da
Q Q Q

—/ ZVU-de—/AOVudew—&—kQ/ |w|?da
D Q Q

—/ Zvu-ﬁdwr/ Zvu-vuodwrk?/ lw|?da
D D Q

— / AV - Vwdz,
Q
and use () again, we can obtain

/ (AD—A@)ffda:/AOVw~stc—k2/ \w|2dx+/ AVu - Vudz.
o Q Q D

27
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For the remaining part, () is an easy consequence of ()

IN

/ (Ap — Ap) ffdo k2/ \w|2dx—|—/ AVug - Vugdz
a0 Q D

= kQ/\w|2das—|—C'/ |Vuo|2de,
Q D

since A € L=(D).

Finally, for the lower bound, we use

AV - Vw + AXDVU Vu = AVu-Vu—2ReA’Vu - Vug + A°Vug - Vug

= A(Vu— (A)1AVug) - (Vu — (A)~1AW )

+(A” = (A%)(A)7H(A%) Vg - Vg

Y

(A% = (A")(A)~H(A°)Vuo - Vuo

Y%

C\Vu0|27

since A(Vu — (A)71AVug) - (Vu — (A)~1A%Vuyg) > 0 and note that A — (A%)(A4)~1(A4%) =
AY(A)~H(A — A% = A°(A)"LAxp is a positive definite matrix by our previous assumptions in

section 1. O

Applying Lemma 3.3 to (),
‘/BQ(AD — A@)ffda < CHMOH%/VlZ(D) (2437)

By () and the Meyers LP estimate ||w||r2(q) < Clluollw.»(p), we have
/ (Ap — Ay)ffdo > c/ Vuo[2dz — clluoZy 1) (2.4.38)
a0 D

2.4.7 Detecting the convex hull of the unknown obstacle

We give the reconstruction algorithm in the following.

Main result

Recall that we have constructed the oscillating-decaying solutions in section 2, and note that
this solution can not be defined on the whole domain, that is, the oscillating-decaying solutions
Uy, b,t,N,w (2, T) only defined on Q2 (w) C Q. Nevertheless, with the help of the Runge approximation
property, we can only determine the convex hull of the unknown obstacle D byAp f for infinitely
many f.

We define B to be an open ball in R? such that Q C B. Assume that QC R3isan open smooth
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domain with B C €. As in the section 2, set w € S? and {n,(,w} forms an orthonormal basis of
R3. Suppose tg = infyep - w = 20 - w, where zg = zo(w) € dD. For any t < ¢y and € > 0 small

enough, we can construct

’ N ite-é  —T1(xw—(t—e))Ai_ (2
Une obiteNw = Xe—e(@)Quoe(a))e T S e T (mN Ay oy N

Frye—cbit—e,Nw

to be the oscillating-decaying solution for V- (A%(z)V-)+k? in B;_(w) = BN{z-w > t—¢}, where
Xt—e(z') € C§°(R?) and b € C. Note that in section 2, we have assumed the leading coefficient

A%(z) € B*(R?). Similarly, we have the oscillating-decaying solution

. . _ . _ !’
Uxt,b,t,N,w (.13, T) = Xt (x/)Qte”x Ee T(@w—t) A )b F Vxe,bit, Nyw (Z‘, T) F Txenbit, Now

for L 40 in By(w). In fact, for any 7, uy, . pt—e Nw(Z,T) = Uy, bt,N0(2, T) in an appropriate sense
as € — 0. For details, we refer readers to consult all the details and results in [47], and we list

consequences in the following.
N () Qe )T ST DA L 3, (1) QT ST @O

in H?(B;(w)) as € tends to 0,

Vxt—ebt—e,Nw 7 Vxe,b,t,Nw

in H?(B;(w)) as € tends to 0, and finally,

Txt—ebt—6,Nw 7 Txy,b,t,N,w

in H*(By(w)) as € tends to 0.
Obviously, B;—_.(w) is a convex set and Q(w) C Bi_(w) for all ¢t < tg. By using the Runge
approximation property, we can see that there exists a sequence of functions @, ;, j = 1,2,---,

such that

llej = Uy, bi—e,Nw 0 H' (Q(w)),

where i, ; € H* ((NZ) satisfy Lot ; = 0 in Q for all €, j. Define the indicator function I(r, x4, b, t,w)
by the formula:
I(7, xt,b,t,w) = lim lim (Ap — Ag) fe,j fe jdo,

e=>0j—00 [0

where fe ; = te j|oq-

Now the characterization of the convex hull of D is based on the following theorem:
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Theorem 2.15. (1) If t < tq, then for any x; € C§°(R?) and b € C3, we have
limsup |I(7, x¢, b, t,w)| = 0.

T—r00

(2) If t = tg, then for any xi, € C§(R?) with zf, = (zo - n,x0 - €) being an interior point of

supp(xt,) and 0 # b € C, we have
lim inf | I(7, xt,, b, to,w)| > 0.
T—00

Proof. First of all, note that we have a sequence of functions {&.;} satisfies the equation V -
(A°Vu) + k*u = 0 in €, as in the beginning of the section 3, let we j = u — @, j, then w, ; satisfies

the Dirichlet problem

So we can apply () directly, which means
/aQ(AD — Ag)fejfejdo < Cllicllznpy with fe; = e jlo,

where the last inequality obtained by the Holder’s inequality.

By the Runge approximation property we have
fej = Uy, bi—eNw 0 H' (Bi(w))

as j — oo and we know that the obstacle D C Bi(w), so we have

Hae,j — Uy _,bit—e,N,w |H1(D) —0

as j — oo for all € > 0. Moreover, we know that wy, . pt—e Nw — Uy,,b,t,N,w @S € — 0in HY(B(w)),
which implies

l|te,j — U, e, NwllHE (D) — O

as € > 0, j — oco. Now by the definition of I(7, x¢, b, t,w), we have

I<Tv Xt b’taw) < CHuxt,b,t,N,w |%{1(D)

Now if ¢t < 19, we substitute wy, .4, N0 = Wyy,b,t,Nw + Txeb,t,Nw With Wy, ¢ N, being described
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by () into
I(r, x0, by t,w) < O /D fty o 2+ /D Vit 0/ 2d2)
and use estimates (2.4.7), () to obtain that
|I(7,x¢,b,t,w)| < Cr2N~1

which finishes

limsup |I(7, x¢,b,t,w)| = 0.

T—>00

For the second part, as inequality (), we use ()7 then the similar argument follows.

It is easy to get
(7, xt, b0, t,w) > C/ |vuXt-,b7t1N7W‘2dx - C||sz,b,t7N,wH12/V1,p(D); (2.4.39)
D

6
For p € (max{2 — e, S}’ 2]. For the remaining part, we need some extra estimates in the following

section. O

2.4.8 End of the proof of Theorem 2.15

For further estimate of the lower bound, we need to introduce the sets D;s C D, Ds C D as
follows. Recall that hp(w) = infyepx - w and tg = hp(w) = xo - w for some zog € 9D. For
any o € DN {x-p = hp(w)} := K, define B(a,d) = {z € R% |z —a| < §} (§ > 0). Note
K C Uaerx B(a,d) and K is compact, so there exists ay,- -+, am € K such that K C UL, B(ay;, d).
Thus, we define

Djs = DN B(a;,0) and Ds := UL, Dj 5.

It is easy to see that

/ e—pT(ch—to)Af,o(ac’)bdaj _ O(e—[)(1<57—)7
D\Ds

because Ay, (2') € B®(R?) is bounded and its real part strictly greater than 0, so Ja > 0 such that
ReA: (') > a > 0 on D\D;. Let a; € K, by rotation and translation, we may assume a; = 0
and the vector a; — 9 = —x¢ is parallel to es = (0,0,1). Therefore, we consider the change of

coordinates near each «; as follows:
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where © = (21, x2,23) = (2/,x3) and y = (y1,y2,y3) = (v, y3). Denote the parametrization of 9D

near «; by [;(y’), then we have the following estimates.

Lemma 2.16. For q < 2, we have

m
/ [Uxrg bito. Now|?dz < 07_12// e_aquj(y/)dy’+O(T_1e_qa57)
D

j=1Iy'I<é

+0(e™1) + O(773) + O( 72N 71, (2.4.40)

m
/ |uXt0;b7tD;N7UJ 2de > COr ! Z // e—Qale(y’)dy/ + O(T—le—Qa&r)
D j=1 ly’| <8
+0(r73) + O(r2N 1), (2.4.41)
/ Vg, boto,NwlTdr < crit Z // e~ (W) dy! 4 O (71 em 90T
D =1 |y’ |<d
+0(e 1) + O(r7 1) + O(r 2N =1, (2.4.42)

and

m
/ |VUX,,0,b,t0,N,w|2dI > CTZ// eanle(y’)dy/+O(T716726a7—)
D ly’|<é

+O(r™H + O(r2N 1), (2.4.43)

j=1

Proof. We follow the argument in [55]. We only prove (b.4.4d) and (}2.4.4]]) and the proof of ()
and () are similar arguments.
For ()
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D D D
+CQ/D|TXt07b7t07N7W|qd‘r
< C/ efqa’r(arwfto)dx + C/ efqaf(m-wftg)dx
B Ds D\Ds
+C/DWxto,b,to,N,wIdeJrC/D\Txto,b,to,N,wIde
m 5
< CZ// dy'/ €998y + Cle™ 9907
j=1"1y'[<é Li(y")
2 2
+C1Vxag it Nl 22(D) T Cllrxeg bito. N w71 ()
<

- C
CTfl Z // efaquj (y’)dy/ _ 77_7167(1(157
j=1"/1y'I<é q

—|—C€7qa67 + CT73 + 07_72N71

note that D C €, (w), which proves ()
For (R.4.41):

2 —2 ‘w—t, 2
/D |uXm7b,to7N.w| dz > C/De e O)dx_C”’YX‘O’b’tO’N7w||L2(Qto(""))
2
—ClIrxey boto.NwllE1 (@ (w))
> C e 2ar(@w—to) gy _ O3 — 072NV
Ds
_1 m —2a7l;(y') 3,/ C —1_—2adT
= Cr Z e IWdy" — 57 e
j=171y'[<é

—Cr 3 —Cr N1,

O

Recall that we have (), the lower bound of I(7, x¢,, b, to,w), S0 we want to compare the or-

der (in 7) of [[uy,  b,to,Nwll22(D)s [ Vxey bt NwllL2(D)s [txiy b,to, N wll LoDy a0d (Vg b,to, Nl Lr (D)

6
Lemma 2.17. For max{2 — e, 3} < p < 2, we have the estimates as follows:

Hvuxto’b,to,N,wH%?(D) > Op2 ||uXt07bthaN,w||%P(D) > o012
||uXt0ab,t07NaWH%2(D) B ’ ||uXt07b1t07N7w‘%2(D) N
and
Hvuxto,b,tO,N,w”%p(D) > C’TS_%
[txeg brtosNwllT2py
for > 1.

Proof. The idea of the proof comes from [55], but here we still need to deal with the vy,  b.to,Nw
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and 7y, bto,Nw i D C Q4 (w). Note that if 9D is Lipschitz, in our parametrization I;(y’), we

have ;(y’) < Cly’|. Hence,

m m
Z // 2L gy > OZ // e=2actly| g/
y'|<é =17/ 1y'I<é
m

V

Jj=1

> 07*12// e 2y’
j=1 |y’ |<T8
= O(r™h).

For simplicity, we denote ug := Uy ,b,to,N,w in the following calculations. Using Lemma 2.16, we

obtain
[p [Vuo|*dx

Jp luo|?dz

T E;”Zl ﬂ"‘y/|<5 e—2a‘rlj(y’)dy/ + O(T—le—2a67—) + O(T—l) + O(T—QN—l)
1 Z;W:l ff\y’\<6 e=207LW ) dy’ + O(7—'e=2207) + O(7-3) + O(r—2N-1)

1+ O(T’QE’Q“‘ST)+O(T’2)+0(772N’2)
> (Or? P
= 1 4 021 +0(r=2)+0(r—2N)
S My<s e gy
= 0()
as 7 > 1, where
) O(T—Qe—Qaér) + 0(7—2) —|—O(T_2N_2)
A ST T e e @gy L
J=1JJy'|<é

and

—2a57 ) —oN
lim O(e )+ O %)+ 0(r*Y)

, —0.
T—00 ZT:1 ff\y’\<5 e—2atl;(y )dy/

Now, by using the Holder’s inequality with the exponent ¢ = — > 1, we have

m m
Z // e~ PaTli (W) gy < C(Z // e~ 207l (W) gy /)5
ly'|<s =1 HMly1<s

Jj=1

hSHN V]

Hence we use Lemma 2.16 again, we have

([p luolPdz)>
Jp luo|?dz
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Tf%(z:;_nzl ffly/|<6 e—])ale(y/)dy/)% + O(T*%e—Qaér) + O(e2)
71 Z;ﬂ:l ff\y"<6 e=207LW ) dy’ + O(1—'e=2997) + O(7-3) + O(r—2N-1)

O(T_%) I O(T—4N—2)
71 Z;n:l ffly/|<6 e=207LW) dy + O(T—1e—2097) + O(7-3) + O(7—2N-1)

C

+

Z;”Zl ff|g/|<6 e—Qale(y’)dy/ + O(e—QaéT) + 0(6—20,7'7_%)

< cr it -
it Mycs ey + O(e7207) + O(772) + O(72N)
n O(r #)+0(r 7 )
1 27:1 ff\y/\<5 e=207LW ) dy’ + O(r—Le=2497) + O(7-3) + O(r—2N-1)
| | Ol 40( 21 8) 10l $) 40t 7 )
. —%—‘rl Z;‘”:l ff\y’|<5 672117'1_7’ (y/)dy/
- Pl G o B G e Gl
Z;-nzl .[f‘y,|<5 e—2a7li(y )dy’
= O(r i th
as 7> 1 and
2
I luo|?dz
TN [y s e P dy') e + O(r 8 72007 4 O(e207)
1 Z;n:l ff\y/\<6 e=2a7l(¥) dy! + O(t=1e=2a07) £ O(773) + O(7—2N-1)
+C O ) +0(r—)
71 Z;"zl ff\y’\<6 e=207 (W) dy! + O(1—Le—2097) + O(7-3) + O(r—2N-1)
- C 5 2 Z;nzl ff‘y"<5 672a7lj(y’)dy/ + O(T71672a57) + 0(6720,77_%—1)
< Cror

Sy [y <s €207 @dy + O(e2497) + O(r2) + O(r—N)
el R G

—4N-—2

+O(r ) +0(r v )

2 —AN _
4 O te 2P 40(e T rr Do 4o »

— Tl 7
crr Sy s e 2Ty
O(e=2a07)+O(7=2)+0(1 2N
T+ 5 “Zari; (v))
S Myn<se 37 gy

)

IN

= O(r* %)
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as 7> 1. By () and above estimates, we have

I(T7 Xt b7 ta w)

> Cr?—Cri v —Cr*h
l[txe b,t.v 0l T2y

Y

Or?

Y

for 7> 1. On the other hand, for ||u, ¢ Nl L2(D), We have

U e > Or! =207, gy 4 O(1—Le— 9907
‘ Xt,b7t,N7UJ y
b j=1"1y'I<é
+0(r™ %) + O(r 2N 1)
> 07_12// 6_2a7|yl|dy/+O(T—le—qaéq-)
j=1""1y'[<é
+O(r7?) + O(r 2N 71
>

Cr—2 Z // eiZQlylldy’ + O(r~ tem999m)
j=1 ly’|<Td
+O(r73) + O(r—2V 1)

= O(r7?).
Therefore, we have
1(7-7 Xts ba hD(p)7w) > C7—2Hu)<t,b,t,N,w||%2(D) > >0

for 7> 1. O

In view of Theorem 2.15 and Lemma 2.16, we can give an algorithm for reconstructing the
convex hull of an inclusion D by the Dirichlet-to-Neumann map Ap as long as A(z) and D satisfy

the described conditions.

The Reconstruction algorithm.
1. Give w € 5% and choose 1,(, & € S? so that {n,(,&} forms a basis of R? and ¢ lies in the

span of n and (;

2. Choose a starting ¢ such that Q C {x-w > t};

3. Choose a ball B such that the center of B lies on {z - w = s} for some s < ¢t and Q C Bi(w)

and take 0 # b € C;
4. Choose x; € C§°(R?) such that x; > 0 in $;(w) and x; = 0 on 9% (w);

5. Construct the oscillating-decaying solution uy, . pt—e nw i Bi—c(w) with x:—c = X+ and the

approximation sequence . ; in €;
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. Compute the indicator function I(7,x¢,b,t,w) which is determined by boundary measure-

ments;
I I(7, X, b, t,w) — 0 as T — oo, then choose t' > t and repeat (iv), (v), (vi);
I I(7, X, b, t,w) = 0 for some Xy, then ¢/ =ty = hp(w);

. Varying w € S? and repeat (i) to (viii), we can determine the convex hull of D.
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Chapter 3

The enclosure method for the

Maxwell system

We have finished to introduce the enclosure-type method for the isotropic or anisotropic second
order elliptic equations. Now, our goal in this chapter is to give more enclosure methods for the
isotropic or anisotropic Maxwell system model. Similar to Chapter 2, we handle the problem of
reconstructing interfaces using complex geometric optics (CGO) solutions for the isotropic Maxwell
system and using the oscillating-decaying (OD) solutions for the anisotropic Maxwell system. We
develop an enclosure-type reconstruction scheme to identify penetrable and impenetrable obstacles
in electromagnetic field with isotropic or anisotropic medium in R3. For the penetrable case,
we model the interface by the jump discontinuity of the magnetic permeability p. The main
tool is based on the global LP estimate for the curl of the solutions of the Maxwell system with
discontinuous coefficients. For the impenetrable case, the main tool is based on the potential theory
in a suitable Sobolev space, and we will give more detailed descriptions in the following.

Before stating our inverse problem, we give basic properties which will be used in the enclosure-

type method for the Maxwell system.

3.1 Basic properties for the Maxwell system

The Maxwell system contains the following properties which will be used in our inverse problem.

For more details, we refer readers to [27, 40].

3.1.1 Well-posedness and L” estimate for the Maxwell system

In the following, we would list the eigenvalue property and well-posedness results of the following

problem: let Q C R? and K € ,
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V x E =ikpH in Q\ K

VxH=—ikeE+J inQ\K
(3.1.1)

vxE=f on 052

vxH=g on 0K,

where u, € are symmetric and positive definite matrix-valued functions. More precisely, we assume

there exist constants pg, t1, Ao, Ag > 0 such that

pol < p(@) < pl,
(3.1.2)

Xl < e(z) < Aol

These well-posedness for the isotropic Maxwell systems can be found in Theorem 4.18 and 4.19 of
[41]. However, we have the same result under our assumption () following the arguments in
11]. Let

X = {u € H(curl; @\ K)|v x u =0 on 9Q and ur € L? (9K)* on BK}.
Definition 3.1. We say (E, H) or E is a weak solution of () if E € X and satisfies

(W'V x B,V x ¢>Q\K — K (VE, ®)on i = (kT O)qp i — (1710, 01) i VP EX,  (3.1.3)

and v X E = f on 09, where ¢ = (v X ¢) X v and (-,-) denotes the standard Hermitian inner
product of L? space. Moreover, if () fails to have a unique solution, then k is called an

eigenvalue or a resonance of ()

Lemma 3.2. There is an infinite discrete set ¥ of eigenvalue k; > 0, j = 1,2,... and corresponding
eigenfunctions E; € Ho(curl;Q), E; # 0, such that ) holds with J =0 and f =g =0 is
satisfied.

From the above lemma, we have the following theorem.

Theorem 3.3. For k ¢ X, there exists a unique weak solution (E,H) € H(curl;Q\K) x
H(curl; Q\K) of ) given any f € H='/?(Div;00Q), g € H-Y?(Div; 0K) and J € H-Y(Q\K).

The solution satisfies

||E||L2(Q\f) + [ H | 2\x) < CUf Il a-172(Divso0) + 19l -1/2(Divior) + HJHHA(Q\?))
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for some constant C' > 0, where

H™Y?(Div;T) := {f e H /2 (1)°

v-f=0, Vag~f€H_1/2(F) }7

I'=00 or 0K.

In the following, we state the LP theory for the anisotropic Maxwell’s system. For this purpose,

we define a bilinear form

Bu(E,F) := /Q(A(x)v x E(z)) - (V x F(x))dz + M/QE(x) - F(z)dz

’ 1 1
for all E € Hy"(curl,Q) and F € Hy? (curl,Q) with — + — = 1. We only state L? estimate in
qa q

the following theorem, but we do not prove the theorem. For more details, we refer readers to read

k7.

Theorem 3.4. [27] Let Q be a a smooth domain. Suppose that A = A(x) is a real symmetric

matriz with smooth entries and satisfies the uniform elliptic condition
e < A(w)€ - € < Mg, for all € € R,

for some constants 0 < A < A < co. Assume q is some number satisfying 2 < q < co. Under the
condition

1
inf sup |[BAE,F)|>— >0
I1EN1,q =11 E|1,4=1 K

the Mazwell’s systems of the equations
VX(AVXE)+ E=VXxf+g

is uniquely solvable in H&’q' (curl,Q) for each g € LY (Q) and f € LY (Q) and the weak solution
satisfies

1Bl Lo ) + IV X Ell L @) < KAl fll Lo ) + 9]l 2o}
where K is a positive constant depending on p.

We end up this section with the following lemma on the embedding related to the Sobolev-Besov

spaces, for more details, see [40] or property 5 in the appendix of [27].

Lemma 3.5. Let uw € LP(D) such that V -u € LP(D) and V x uw € LP(D). If v x u € LP(0D),

then also v -u € LP(OD) for p € (1,00). If in addition 1 < p < 2, then u € BY*(D) and we have

p
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the estimate

Hu||BTi*2(D) < C{llullzr(py + lleurtul| o (py + IV - ullLr 0y + [V ¥ ullLrap) }

where the Sobolev-Besov space B2 (D) := [LP(D), WP(D)]q.q is obtained by real interpolation for

1<pqg<ooandd<a<l.

3.2 Enclosing unknown obstacles in the isotropic media

Let Q C R3 be a bounded domain with a smooth boundary, and assume that R3\( is connected. Let
D € Q be with Lipschitz boundary and the connected complement in R*\ D. We are concerned with
the electromagnetic wave propagation in an isotropic medium in R3 with the electric permittivity
€ > 0 and the magnetic permeability u > 0. We also assume that e € W1(Q) with € = 1 in
O\D and u(x) = 1 — up(x)xp to be a measurable function with pp(x) € L>(D) and xp is the
characteristic function defined on D.

For the penetrable (inclusion) case, we consider the boundary value problem of finding the

electromagnetic fields F and H satisfying

VxE—ikpH =0 inQ,
VxH+ikeE=0 in(Q, (3.2.1)

vxE=f on 0§,

where v is a unit outer normal on 92, Vx denotes the curl in R? and x is the standard cross product

in R3. For the impenetrable (cavity) case, we consider the following boundary value problem

VxE—ikH=0 inQ\D,

VxH+ikE=0 inQ\D,
(3.2.2)

vxE=f on 0f2,

vx H=0 on 0D,

where v is a unit outer normal on 92 U dD. In these two boundary value problems problems, we
assume that the wave number k is not an eigenvalue for the spectral problems (B.2.1) and ()7

respectively. Then by using results in [40, 41], we know that (52 ) and (525) are well-posed in

the spaces H (curl,Q) and H (curl, Q\D), respectively, where

H(curl,Q) == {u € (L*()3|V x u € (L*(R))*}.
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It is similar to the elliptic case, we can the “Dirichlet-to-Neumann” type map in the Maxwell
system, we call the map to be the impedance map.

Impedance map: We define the impedance map Ap : TH™2 (09) — TH 2 (09) by
AD(Z/ X E‘@Q) = (l/ X H|5Q),
where TH™2(9Q) := {f € H 2(0Q)|v - f = 0}. We denote by Ay the impedance map for the

domain without an obstacle.

Proposition 3.6. There exists a reconstruction framework to determine the convex hull of the

unknown obstacle D from the information of the impedance map Ap.

The previous Proposition is similar to the elliptic reconstruction. Recall that the enclosure
method contains two tools: One is special solutions (CGO solutions) and the other is the indicator
function. If we can find these two tools, then we can prove the Proposition 3.6. We first introduce

how to construct CGO solutions for the isotropic Maxwell system.

3.3 Constructing CGO solutions

Our goal is to construct CGO solutions for the isotropic Maxwell system

VxE—ikpH=0 in,
(3.3.1)

V x H+ikeE=0 in €,

where p and e are smooth positive scalar functions. The ideas for constructing CGO solutions
is to transform the isotropic Maxwell system into a Schrodinger type equation, which was first
introduced by [p1]. Moreover, in [66], the author used the reduction technique to construct CGO

solutions for the isotropic Maxwell system, let me give a brief introduction in the following.

Reduction algorithm: From Maxwell to Schrodinger

First, we define the (zero) scalar fields ® and ¥ by
i i
® = %V (eE), ¥ = EV - (uH).

Then the Maxwell system is equivalent to

1_,1 11
VxE-— fV(;\I/) —ikpH =0, V x H + EV(@) +ikeE = 0.
€ €
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1 1
If we set X = (¢, e, h, )" with e = €'/2E, h = p*/?H, ¢ = — & and @) = ——W. Then we
EMI/Q 61/2M

have

(P(iV) = A+ V)X =0 in €,

where
0 V- 0 0
\% 0 Vx 0
P(iV) =
0 -Vx 0 V
0 0 V- 0
and
0o V- 0 0
vV 0 -Vx 0
V=MN-r)lg+ D| D™,
0 Vx 0 \%
0 0 V- 0

where D = diag(u'/?,€'/2I3, u'/?I3,€'/?), k = k(ep)'/? and A = k(eopo)*/?. The most important
property of this operator is that we can reduce a isotropic Maxwell system to a Schrodinger matrix
equation by

(P(IV) = A+ V)(PEV)+ A= V) = ~(A +wH Iz +Q,

where

Q=VP@iV) - PiV)VT +w(V +VT) —vvT

is a zeroth order matrix multiplier. If we define X = (P(iV) + A — VT)Y, then Y satisfies
(~A =X +Q)Y =0in Q. (3.3.2)

It is well-known that we can find CGO solutions for Schrodinger equation. By using the Faddeev
kernel and the Sommerfeld’s radiations conditions, one can ensure that if Y satisfies the Schrodinger
equation (), then (E, H) will satisfy the isotropic Maxwell system (B.3.1). For more details,
we refer readers to [pl]. Let p, pt € S%, given 6,7 € C? of the form

1

(—=(¢-a)¢ — k¢ x b+ k*a) and 0 := 7

= (k¢ x a—(C-b)¢ + kD)
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where ( = —itw + V72 + k2w' and @ € R, b € C3. Then the authors constructed the CGO

solutions in the following form:

co— 1 2 20. 0
Ey = ne‘r(acp t)+ivVT2+k2zp ;

x-p—t)+ivVTEFkZx-pt
HozaeT(rp )iV T2+ zp

with (Ey, Hp) satisfies

VXEQ*Z‘]{ZHOZO iIlQ,
(3.3.3)

V x Hy+ikEy=0 in Q.

For the application on the reconstruction, we need to use two different types CGO solutions:

1. For the penetrable case, we choose a L p, a L p* and b = Z with f = i such that n = O(1)

9
and 6 = O(7) for all 7> 1..

2. For the impenetrable case, we choose b L p, b L p* and a = v/2p* such that n = O(7) and
0 =0() for all 7 > 1..

Indicator function for the Maxwell system
Recall that Ap : v x E|pq — v X H|gq is the impedance map for the Maxwell system, then we

can define the indicator function in the following.

Definition 3.7. For p € S?, 7 > 0 and t > 0, we define the indicator function

Ip(’T, t) =ikt /89(V X Eo) . ((AD — A@)(]/ X Eo) X u)dS7

where Ej is the CGO solution of the Maxwell system given above.

Similarly, we can define the support function

ho(p) i= sup - p,
xeD

then we have the following result.
Theorem 3.8. Let p € S%.  For the penetrable (or impenetrable) obstacle case, we have the

following characterization of hp(p).

lim, o0 [I,(7,t)] = 0 when t > hp(p),
liminf, o |I,(7,hp(p))| > 0,

lim, o0 |1,(7,t)| = 0 when t < hp(p).
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The theorem shows that we can reconstruct the convex hull of the unknown obstacle D from
the impedance map Ap, combining with CGO solutions and the indicator function, we can give a

reconstruction algorithm of D.

3.4 Proof of the Theorem 3.3

3.4.1 Penetrable Case

We give key points of proof for the penetrable case of theorem 4.3. For more details, we refer
readers to [27] First, we give the proof for the penetrable case. Recall that the model of the
penetrable problem is

VXxE—ikpyH =0 inQ,
Vx H+ikeE=0 inQ,

vxE=Ff on 0%},
and CGO solutions of () are

— p—t)+ivVTI+kZz pt
Eo_neT(acp )tivT2+k2x-p ,

Hy = fem(@p—D+iVTFRzp*

where 7 = O(1) and 6 = O(7) for all 7 > 1. Let E := E — Ey be the reflected solution, where E
satisfies (B.2.1) and Ey satisfies () E satisfies the (zero) boundary value problem

v x (ﬁv « B) = k2e(2)E = -V x (ﬁ _ 1)V x By + K(ea) = 1)Ey  in O,

vx E=0 on 0f2.

We state the following useful estimates without any proofs, all proofs can be found in [27].

Lemma 3.9. For 1 — u(x) > 0, we have

) > [ (= @)V Bofde = 12 [ |B@)Pde~ K [ (o) = DIEN@) P,

For p(x) — 1 > 0, we have

T (1, t) > / (1- L

- xE0|2dx—k2/ge<x)\E(x)|2dx+k?/D(e(x)—1)\E0(x)|2dx.

Similar to the elliptic case, there is no need to worry about the upper bound of the indicator

function 7711,(7,t). The difficulty is to estimates the lower order term E(z). In fact, we have the
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following key LP estimates.

Proposition 3.10. Suppose that Q is a C' domain and D € Q. Then there exists a constant

C > 0 independent ofE' and Ey such that we have

- 2/p
/ |B2dz < O (/ IV E0|p> +/ |Eo[2da),
Q D D

4
forallp € (5,2].

Remark 3.11. Note that there is no need to assume the regularity on D, we only need 0D is

Lipschitz.

In view of the lower bound, we need to introduce the sets D; s C D, Ds C D in the following.
Recall that hp(p) = sup,ep x - p and to = hp(p) = xo - p for some z¢g € OD. YVa € 0D N{z-p =
hp(p)} = K, define B(a,d) = {z € R3;|x — a] < §} (6 > 0). Note K C Upex B(,d) and K is

compact, so there exists ay,--- ,a,;, € K such that K C U;”ZlB(aj, 0). Thus, we define
D, s:=DnNB(aj,0) and Ds := U;”lej)(;.
It is easy to see that
/ e PT(hp(p)=2) gop — O(e™P°7) as 7 — o0,
D\Ds

where c is a positive constant. Let o; € K, by using rotation and translation, then we can assume
a; = 0 and the vector a; —xy = —x9 is parallel to e3 = (0,0, 1). Therefore, we consider the change

of coordinates near each o; as follows:
y =
ys = - p —to,

where © = (z1,22,23) = (¢/,23) and y = (y1,92,y3) = (', y3). Denote the parametrization of
0D near a; by 1;(y’), then we have the following estimates. Note that the oscillating-decaying

solutions are well-defined in D.

Lemma 3.12. For1 < g < oo, 7> 1, we have the following estimates.

1.

/ |Eo(z)|%dx < O ! Z// efq”j(y')dy/ _ 97_7167,157 4 Ceder
p = M i<s q
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m
/ |Eo|*de > CT7'> // e 2l W) gyl L
P =1 Mly'l<s 2

/ e*qflj(y')dy' _ gqule*quT + OrleacT
q

/|H0(ac)|qu < CT‘HZ/
D ly'|<d

j=1

m
/ C
/ |H0|2dl' Z CTZ// @7271.7'(9 )dy/ _ 77_67257'.
P j=1 Myl 2

4
Lemma 3.13. For7> 1 andp € (5,2], we have

H 2
” 0||L2(D) > O(TQ),

||E0||%2(D)

E|? )
o
HV X E0||L2(D)

Moreover, when t = hp(p), the following estimate holds

liminf/ 7|V x Eo|?dz > C.
D

T—>00

End the proof

For 1 — pu(xz) > C > 0, by Lemma 3.9, we have

—I,(7,t)

Y

T/Du —u(@)|V % E0|2d:1:—TC/Q|E(x)\2dac—TC/D|Eo(a:)|2dx

Y

Tc/ IV x Eo|2dz — Tc/ \B(2)[2dz — Tc/ | By () [2da.
D Q D

Using above lemmas, we have

—I,(7,t)

— 2 >(Cr 1—71_% — 2772 ,
[V x E0||2L2(D) =t J

and we get

o (7, hp(p))| = C > 0.

It is similar to the case u(z) —1> C > 0.
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3.4.2 Impenetrable Case

Recall that the mathematical model of the impenetrable case is

VxE—ikH=0 in\D,
VxH+ikE=0 inQ\D,

vxE=Ff on 012,

vxH=0 on 0D,

and CGO solutions of () are

o— i 2 2.0t
EO _ ner(w p—t)+ivVT2+k32z-p ,

Hy = eeT(x'p—t)+i\/T2+k2ac~pJ‘ )

where n = O(7) and 6 = O(1) for all 7> 1.
For the impenetrable case, the situation is quite different from the penetrable case. We start

by the following lemma.

Lemma 3.14. Assume (E,H) € (H(curl,Q\D))? satisfies

VxE—ikH=0 inQ\D,
VxH+ikE=0 inQ\D,

vxE=f on 011,

vx H=0 on 0D,

with f = v x Eglaq € TH™'/2(0Q). The the following identity holds

0 = = [V B KB~ [ (9 < B 4B s

/ﬂmequﬁmwmﬂM+/ ﬂvxﬁwﬁfﬁmewm
D o\D

and the inequality

_%5ﬁ¢p;éﬂvxﬂdwﬁ—ﬁu%@Wym—k{/ B (2)[2d,

o\D
whereE:E—Eo andﬁI:H—HO.

The remaining task is to estimate the lower order term H.In [27], the authors used the potential

theory to prove the following key estimate.
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4
Proposition 3.15. Let Q be a C' domain and D € Q be Lipschitz. Then for all p € (572] and

s € (0,1], we have
_|H(@)Pde < C{IV x Holl(py + I Holl 312y )
oD

where C' > 0 is independent of (E, fI) and (Eo, Hp).

Proof. (Sketch) Let (E°*, H®") be the solution of the exterior problem in the following

V x E®® —ikH®® =0 in R3\D
V x H® +ikE®® =0 in R3\D,

vx H* = —v x Hy on 0D,

ik|lz—y|
and (E*, H®) satisfies the Silver-Miiller radiation condition. Let ®(z,y) := —h, x
Tl —y

y € R3, then we can write £, H°® to be

He(z) V x /SD Py (2, y) f(y)dS(y),

1
E*(z) := —Vx H*(x), z € R3\0D,

where f is the density. We refer readers to [40, 41, 10, 11] for more details about the layer
potential theory for the Maxwell system. By properties of the layer potential potential theory and

4
for p € (572], we have
IH || 25y < Clllv X Hollzeap) + IV X HollLo(p) }-
Define € := E — E° and H := H — H®®, then (£,H) satisfies

VxE—ikH=0 inQ\D,
VxH+iké =0 in Q\D,

vXH=0 on 0D,

vXxE=—-vxFE* onodf

We apply the well-posedness theory for the Maxwell system, then we have

1Ml 2005y < Nl (eur,ond) < Clv X Ellg-1/2(00) < Cllv X E“ | 5-1/2(00)-
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Moreover, by E¢*(z) := —iv x H*(x), we can obtain
v x Bl g-1/2(00) < CllfllLropy, VP = 1.
From the above inequalities and the vector potential theories, we can obtain
11l 2005y < C{llv < HollZsopy + IV X Hollspy}

and use H = H — H*®" then we have
/Q\D |H(x)|*dz < C{llv x Hol|2uop) + IV X Holl7u(py )

4
for p € (g, 2]. Since p < 2, we use the Holder’s inequality and the trace theorem(see [(j]), then we

have for all s € (0, 1],
v x Hollzr(op) < Cl|Hollzr=(ap) < C||Hollgro+1/2(p),

which proves the result. O

Remark 3.16. The hardest part is to estimate H in Q\D in terms of some suitable norm of Hy
in D. Moreover, for the anisotropic Maxwell system, it is more complicated than the previous
proposition.

In order to prove the Theorem 4.3, we use similar arguments for the penetrable case as before.
We use the impenetrable-type CGO solutions, then we have the following estimates. Let I,(y") be

the functions described as before for j =1,2,--- ,m.

Lemma 3.17. For 1 < g < oo, 7> 1, we have the following estimates.

1.
m , C
/ |Ho(z)|dz < C 7_12// el gy — Com1—air | pmaer
b j=17/1y'[<é q
2.
/ |H0|2d£f = _1 // —27‘l y)dy C _1 —2(57’
b <8 2
3.
m . C
/ |V x Ho(x)|%dz < CTq_lZ// e~ W) gy — & a1p—adT | Crag—aer
b i—1 M y'|<6 q
j=1
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m

/ C
/ |V x Hy|*dz > OTZ// e 27y )dy' _ YT
b j=1"/1y'I<é 2

Similarly, we have the following estimates.

For 7 > 1, for p < 2, the following estimates hold:

| Hol2:
oL <00
IV x H0||2L2(D)

and
||v X HOH%F(D) < OTl_%.
[V x H0||2L2(D) B

Moreover, when ¢ = hp(p), the following estimate holds

1iminf/ 7|V x Ho|?dz > C.
D

T—>00

End the proof
Finally, we use the above estimates and similar method to obtain the lower bound of the

indicator function,

3.5 Enclosing unknown obstacles in the anisotropic media

In this chapter, we develop an enclosure-type reconstruction scheme to identify penetrable and
impenetrable obstacles in electromagnetic field with anisotropic medium in R3. The main difficulty
in treating this problem lies in the fact that there are so far no complex geometrical optics solutions
available for the Maxwell’s equation with anisotropic medium in R3. Instead, we derive and use
another type of special solutions called oscillating-decaying solutions. To justify this scheme, we
use Meyers’ LP estimate, for the Maxwell system, to compare the integrals coming from oscillating-

decaying solutions and those from the reflected solutions.

3.5.1 Problem descriptions and main results

Let Q be a bounded C*°-smooth domain in R? with connected complement R3\ Q and D be a
subset of Q with Lipschitz boundary. We are concerned with the electromagnetic wave propagation
in an anisotropic medium in R? with the electric permittivity € = (¢;;(z)) a 3 x 3 positive definite

matrix and e(z) = o(z) in Q\D. We also assume that e(z) = ¢y(z) —ep(z)xp(r) with ¢g € C=(Q)
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a positive definite 3 X 3 symmetric matrix and ep(x) is a positive 3 X 3 symmetric matrix and p a

smooth scalar function defined on €2 such that there exist p. > 0 and €, > 0 verifying
3
p(x) > pe>0and Y €;(2)€E; > eolé? VE€R?, Vo € Q. (3.5.1)
ij=1

If we denote by E and H the electric and the magnetic fields respectively, then the electromagnetic

wave propagation by a penetrable obstacle problem reads as

VxE—ikpH =0 inQ,
VxH+ikeE=0 in(Q, (3.5.2)

vxE=f on 0§,

with € = €9 — epXxp, and the one by the impenetrable obstacle as

Vx E—ikpH =0 in Q\D,
V x H+ikeE=0 in Q\D,

(3.5.3)
vxE=Ff on 01,

vxH=0 on 0D,

where v is the unit outer normal vector on QU dD and k > 0 is the wave number. In this paper,

we assume that k is not an eigenvalue for (553) and (553)

Impedance Map: We define the impedance map Ap : TH*%((‘?Q) —~TH 2 (092) by
AD(I/ X H‘ag) = (I/ X E|ag),

where TH=2(8Q) := {f € H"2(dQ)|v - f = 0} and x is the standard cross product in R3. We
denote by Ag the impedance map for the domain without an obstacle.

Consider the anisotropic Maxwell system

VxE—ikpH =0 inQ,
(3.5.4)

VxH+ikeE=0 inQ,

where g and e satisfy (B.5.1)). Inspired by [b1] and [48], our idea is to reduce () to an elliptic
systems and then use the results in [48] to construct oscillating-decaying type solutions to the
anisotropic Maxwell system. Precisely, we can decompose the equation () into two decoupled

strongly elliptic systems. The main difference between the construction of the oscillating-decaying
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solutions in [48] and ours is about the higher derivatives of oscillating-decaying solutions.

One of the main differences between the CGOs and the oscillating-decaying solutions is that,
roughly speaking, given a hyperplane, an oscillating decaying solution is oscillating very rapidly
along this plane and decaying exponentially in the direction transversely to the same plane.
Oscillating-decaying solutions are special solutions with the phase function having nonnegative
imaginary part. In addition, these oscillating decaying solutions are only defined on a half plane.
To use them as inputs for our detection algorithm, we need to extend them to the whole domain
Q). One way to do the extension is to use the Runge approximation property for the anisotropic
Maxwell’s equation. The Runge approximation property will help us to find a sequence of approx-
imated solutions which are defined on €, satisfy ( ) and their limit is the oscillating-decaying
solution. Note that it was first recognized by Lax [31] that the Runge approximation property is
a consequence of the weak unique continuation property. In [B3], the authors already proved the
unique continuation property and based on it we derive the Runge approximation property for the
anisotropic Maxwell’s equation.

To be more precise, let w be a unit vector in R3, denote Q;(w) = QN {x|r - w > t}, I4(w) =
QN{z|z-w = t} and set (Fy, Hy) to be the oscillating-decaying solution for the anisotropic Maxwell’s

equation in Q¢(w).

Support function: For p € S?, we define the support function of D by hp(p) = inf.ep - p.

When ¢t = hp(w), which means ¥;(w) touches 0D, we cannot apply the Runge approximation
property to (Ey, H;) in Q;(w). Therefore, we need to enlarge the domain Q;(w) such that the OD
solutions exist and the Runge approximation property works. Let n be a positive real number,
denote ;_,(w) and X;_,(w) and note that Q;_,(w) D QU (w) Vn > 0. We can find (E¢_,, Hi—y)
to be the OD solution in ;_,(w). By the Runge approximation property, there exists a sequence
of functions {(E, ¢, Hy¢)} satisfying the Maxwell system in (2 such that (E, ¢, H, ;) converges to
(By—y, Hy—p) as £ — oo in L*(€_,(w)) and in H(curl, D) by interior estimates since D € ;_, (w).
In addition we show that (E;_,,, H;_,) converges to (E;, H;) in H(curl, D) as n — 0. Then we can

define the indicator function as follows.
Indicator function: For p € S?, 7 > 0 and ¢ > 0 we define the indicator function

I,(7,t) ;= lim lim Ig’z(r, t),

n—0£—oc0
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where

I (r,t) = ikt /m(y x Hy¢) ((Ap — Ag)(v x Hy ¢) X 1)dS.

Goal: We want to characterize the convex hull of the obstacle D from the impedance map Ap.

The answer to this goal is the following theorem.

Theorem 3.18. Let p € S%. For the penetrable (or impenetrable) obstacle case, we have the

following characterization of hp(p).

lim, o0 [I,(7,t)] = 0 when t < hp(p),

liminf, o0 |1,(7, hp(p))| > 0,

To prove Theorem , for the penetrable obstacle case, we need an appropriate LP estimate
of the corresponding reflected solution. We follow the idea in [27] to prove a global L? estimate
for the curl of the solutions of the anisotropic Maxwell’s equation, for p near 2 and p < 2.

To prove Theorem , in the impenetrable obstacle case, we use layer potential arguments as in
[27] coupled with appropriate LP estimates. Precisely, first, we use the well-posedness for an exterior
isotropic Maxwell’s system with the Silver-Miiller radiation condition and, in particular, the layer
potential theory to find a suitable estimate for the solution of this exterior problem. Second, we
decompose the reflected solution into two functions, one satisfies the reflected Maxwell’s equation
with a zero boundary data, the other satisfies the original anisotropic Maxwell’s equation with
the same boundary conditions which come from the reflected equation. For the first decomposed
function, we use the LP estimates, and for the second function, we will use the well-posedness, in
L?, for the anisotropic Maxwell’s system. Combining these two steps, we derive the full estimate
for the reflected solution in the impenetrable obstacle case.

This paper is organized as follows. In the section 2, we give decompose the anisotropic Maxwell
system into two strongly elliptic systems. In section 3, we use the elliptic systems derived in the
section 2 to build the oscillating-decaying solutions for the Maxwell system. Then, we give the
Runge approximation for the anisotropic Maxwell equation in section 4. In section 5, we prove the
Theorem for both penetrable and impenetrable obstacle case. Finally, in the last section, as
an appendix, we provide some technical details which we postponed in the main text and recall
some useful estimates for solutions of the Maxwell system. Before closing this introduction, let us

mention that in the whole text whenever we use the word smooth it means C°°-smooth.
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3.6 A new reduction method: From the anisotropic Maxwell
system to the second order strongly elliptic system

Our goal is to construct the oscillating-decaying (OD) solution for the following anisotropic time-

harmonic Maxwell’s system

V x E =ikpH

V x H = —ikeE
(3.6.1)

div(eE) =0

div(pH) =0,

where F, H denote the electric and magnetic field intensity respectively, and p denotes the positive
scalar permeability, € denotes the permittivity, which is a real, symmetric, positive definite 3 x 3
matrix.

Inspired by [51], the first step of constructing OD solutions is to reduce () to a strongly
elliptic system. In fact, we reduce the anisotropic Maxwell’s system () to two separate strongly
elliptic equations (), while in [51] the isotropic Maxwell’s system is reduced to an elliptic (a
single Schrodinger) system with coupled zero-th order term. The following theorem is our reduction

result.

Theorem 3.19. We set E and H of the following forms

E = —%’alv x (0 YV x B)) — e}V x A)

. (3.6.2)
H= %M—lv (e 1(V x A)) — p~1(V x B)
with A, B satisfying the strongly elliptic systems
puVir(MAVA) =V x (e 1(V x A)) + k2uAd =0 ( )
, 3.6.3

eVir(MBVB) =V x (u™(V x B)) + k2B =0

where M4, M are introduced in Theorem , then E and H satisfy )

Remark 3.20. Theorem 2.1 shows that, if we can find solutions of (), then we can find solutions

of (3.6.1).

Proof. In this proof, we will show the process of the reduction. And the proof that the systems

() are strongly elliptic systems will be postponed to Theorem .
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As in [p1], we set the following two auxiliary functions which are similar to what they used:
i,
o= Ele(eE)

and

U= %div(,uH).

Note that ® and ¥ are actually zero by the Maxwell’s equation. We consider the following first-

order matrix differential operator P

0 div(e(-)) 0 0
-y 0 V x 0
p_ 1Y
0 -V x 0 Y
0 0 div(u()) 0
Note that P is a 8 x 8 matrix. Let
(0]
E
Y =
H
R

Then the problem () can be rewritten as follows:

PY = —ikVY,
where
1 0 0 O
0 e 0O
V =
00 p O
0 0 1

Thus, the Maxwell’s system () implies
(P +ikV)Y =0and & = ¥ = 0. (3.6.4)

It is easy to see that conversely () implies the Maxwell’s system, and hence they are equivalent.

The first idea of the reducing process is to construct a suitable @, which can make (P + sz)@
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a “good” second-order differential operator. Then, a solution X for the problem

(P+ikV)QX =0

will give rise to a solution ¥ = QVX for

(P +ikV)Y =0.

Moreover, if we find the solution X such that the first and the last component of Y
zero, then we obtain solutions for the Maxwell’s system.

We try the matrix differential operator @ = (@ — tkl, where

0 div(e(-)) 0 0
0— v 0 e (Vx() 0
0 —uNTx() 0V
0 0 div(u()) 0

o7

(3.6.5)

= @X are

(3.6.6)
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Then

(P +ikV)Q
= (P +ikV)(Q — ikI)

= PQ — ikP +ikVQ + k*V

div(eV) 0 0 0
0 Ly 0 0
0 0 Lo 0
0 0 0 div(uV)
0 —ikdiv(e(+)) 0 0
—iku vV 0 —ikVx 0
+
0 ikV x 0 —ike 'V
0 0 —ikdiv(u(-)) 0
0  ikdiv(e(")) 0 0
ikeV 0 ikV x 0
+
0 —ikVx 0 ik
0 0 ikdiv(p(-)) 0
B0 0 0
0 k% 0 0
_|_
0 0 k2 0
0 O 0 k?
div(eV) + k? 0 0 0
ik(e — p~ )V Ly + k3¢ 0 0
0 0 Lo+ k% ik(u—e M)V
0 0 0 div(uV) + k2

where

Ly

Ly

p Y (div(e(-)) = V x (VY x ()

eIV (div(p() = V x (e7H(V x (1))

(3.6.7)

(3.6.8)

A prominent feature of the above operator is that it decomposes the original eight-component
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system into two four-component systems. Precisely, Set

then () can be separated into two systems:

div(eVep) + k*p =0

Lie+ k*ce +ik(e — p= )V = 0.
and

div(uVy) 4+ k%) =0

Loh + E*uh + ik(p — e 1)V = 0.

Moreover,

Y =QX
[0 div(e(-)) 0 0 ]
BRI 0 SAESC) N B
0 —p NV x()) 0 v
[\ 0 0 div(p(+)) 0 |

div(ee) — ikp
Vo + e H(V x h) —ike
—u YV x e)+ Vi —ikh

div(ph) — ik

Therefore, the problem of finding the solutions X of

(P+ ikV)@X = 0 with the first and last component of QX being 0
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is equivalent to the problem of finding solutions of the following two separate systems:

div(ee) — ikp =0,
div(eVy) + k%o =0, (3.6.10)
p iV (div(ee)) = V x (u=1(V x e)) + k%ee + ik(e — u= 1)V = 0,

and

div(ph) — iky =0,
div(uVy) + k% = 0, (3.6.11)
etV (div(ph)) =V x (e71(V x h)) + k2ph + ik(p — e 1)V = 0.

Notice that if we set e in the following form

g

k(vw +e 1V x A)), (3.6.12)

e

then the first equation of () becomes the same as the second one. For the third equation, we
have
p 'V (div(ee)) — V x (™ H(V x €)) + k*ee + ik(e — p~ ")V
= _%;ﬂv (div(eVep)) + %V X (ul [V x (e(V x A))])
, , : Lo (2
—ikeVo —ik(V x A) + ikeVp — P V(kj gp)
— _%u—lv (div(eVey) + k*¢) + %V X (;fl [V x (e1(V x A))}) —ikV x A

=0+ %v X (u—l[v x (e7H(V x A))]) —ikV x A,

by the second equation of () Thus, by letting e be of the form (), the system ()

reduces to

div(vVe) + k?¢ =0,

V x (ul [V x (e71(V x A))] - kQA) =0. (3.6.13)

Similarly, by letting

h= 1 (V64 (Y % B))
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for some vector field B, we can reduce () to the following system:

div(uVe) + k* =0,

V x <51 [V x (u=1(V x B))] — /<:2B> _o. (3.6.14)

To resume, if we can find solutions ¢, A, and B of (B613ﬂ) and (B.G.MI), we can find solutions of

the problem () and therefore the original problem ()
Now let us focus on () and () The goal is to find special solutions (e.g. oscillating-
decaying solutions) of () and () The idea of doing that is to subtract zero terms of

the form V x (Vir(MAVA)) and V x (Vir(MPVB)) from the second equations of () and
() for some matrices M4, MP so that they become V x (£LAA) = 0 and V x (LEB) = 0
with £4 and £ being strongly elliptic operators. Precisely, we want to find suitable matrices M4

and ME such that
pVir(MAVA) =V x (e 1V x A)) + k*pA =0 (3.6.15)
and

eVir(MPVB) =V x (0! (V x B)) + k*¢B =0 (3.6.16)

1

are strongly elliptic systems. In fact, by letting M4 = mu~'I and MZ = mu~'e, we can show

that (13615) and (Bﬁld) are strong elliptic systems for arbitrary positive constant m. The proof
are given in Theorem . O

To prove Theorem , we start with the following computational lemma.

Lemma 3.21. Let M be a matriz-valued function with smooth entries and F be a vector field.

Then the i-th component of the vector V X (M(V X F)) is given by

(Vx (M(VxF)))i= Z Cijredjefr + Ri, (3.6.17)
ke

where

Cijie = 0jeMyi + 81 Myj — 6 Myi — 8¢ My + (8i00j — 0i650)tr(M),

and R; contains the lower order terms. Here, 6;; is the Kronecker delta, M;; is the ij-th entry of

M, and F = (f1, f2, f3)7.
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Proof. We prove it by direct computations. For any vectors a, b, letting ¢ = a x b, we have

Cm = E Emeraebr,
et

where a = (a1, az,a3)T, b = (b1,b2,b3)T, ¢ = (c1,c2, c3)T and g0 denotes the Levi-Civita symbol.

Therefore, we obtain the m-th component of V x F:

(V X F) = Zsmm@efk~
m g

Then, the n-th component of M(V x F) is

(M(V X F)) = Z MymEmenOe fi-

m, k4
Finally, taking the curl operator on the vector M (V x F), the i-th component of the resulted vector
is

<V X (M(V X F))) = Z E‘:ijnaj (Mnmsmikaffk)

o Gn,moke

= Z aijngmék((ajMnm)aéfk: +Mnm8]ffk)

jon,m.k,b

Thus
(V x (M(V x F))) = > Cijredjefr + Ri,
L N
where
Cijht = Y _ EijnEmek Mpm, Rii= > cijnemer(0;Mpum)00 fi-
m,n Jm,n, k0l
Since

dim  Oie Ok
EijnEmlk = (5]' (5]' (5]'
5nm 571( 6nk:

= Gim (060nk — 6n60jk) — Git (6jmbnk — OpmOjx) + Gik (FjmOne — Gnmbje),
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we can obtain

Cijre =Y (znm (3¢0nk — Onedjk) — Oit (jmbnk — OnmOjk)

+ 6ik (5jm6nf - 5nm5jﬁ)> Mnm
= (5j€Mki - 5jth) - 5i£Mkj + 51g5jktT(M) + JikMZj — (5ik5jgt7‘(M)

=80 Mp; + 61 My; — 856 Mo; — 850 Myj + (810058 — Oinlje ) tr(M).

O

Theorem 3.22. Assume that p is a smooth, positive scalar function and € is a symmetric, positive
definite matriz-valued function with smooth entries. The eigenvalues of € are denoted by A1 (), A2(x)

and A\3(x). Assume there exist positive constants pg, A, \ such that for all x € Q

0 < p(x) < po

0 <A< M(2) < dolz) < As(x) <A (3.6.18)

Then ) and ) are uniformly strongly elliptic by letting M = mpu~'T and MP =

mu~Le, for arbitrary positive constant m. Here I denotes the 3 x 3 identity matrix.

Proof. To see whether () and () are strongly elliptic, we only have to check the leading
order terms of (B.6.15) and (bﬁld) We divide this proof into two parts, Part A and Part B, to

deal with the equation () for A and the equation () for B respectively.
Part A. By Lemma ,

<thr(MAVA) —V x (e (V x A)))

%

= " 16i;0;(M{00AR) = > CiipeieAr — R

Jke jke
= (615 Miy — Cllie) D50 Ax + Y 1615(0; M) Ay — R}
Jkt jke
= Z C{L}kzangk + Z 1055 (6]Mﬁ€)agz4k — E?,
ke ke

where C’;;‘.ké = udi; Mj — Ci?’ke are the coeflicients of the leading order terms of () and

5%@ = 0j0(e i + Gin(€ ey — (€™ Nei — Sie(e™)uj + (8ie6jk — Ginje)tr(e™ ).

7
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Recall that () is called uniformly strongly elliptic in some domain € if there exists a

positive ¢g > 0 independent of x € € such that
Z C{?ke(x)aiakbjb[ > colal?|b)? (3.6.19)
ijke
for any a,b € R? and for all z € Q. Now
Z O{;‘kzaiakby‘be = Z (M%Mﬁg - égkz)aiakbjbe
ijkt ijkt

= u(a-b)(b" M*a)

-3 (5jz(€1)ki + 0in(e g — Ojrle e

— Sie(e ™ )iy + (Siedjn — 5ik5jg)tr(e_l)>aiakbjbg
~ i(a-b)(bT M)
- (IbPaTe ) + a7 — (a- b7 a)
(D)) +ar(ea- b~ el b
= tr(e ™) al?[bl? — [al2(b7e"1b) — [b2(aTe 1) — tr(e L)(a - b)?

+2(a-b)(b"e 'a) + pu(a-b)(b"M*a)

since € (and hence €71) is symmetric. Let S be the orthogonal matrix such that e = ST DS,
where D = diag(\i, Ao, A3). Thus et = STD71S. Also let M4 = STNAS. By letting
v = Sa/|al and w = Sb/|b|, it’s easy to see that () holds for all a,b € R iff

tr(e™!) — (WD 'w) — (WD) —tr(e ) (v - w)?

+2(v-w) (WD) + pu(v - w) (W NAv) > ¢

for all v,w € R3 such that |v| = |w| = 1. Note that tr(e™!) = tr(D1) = A7+ A5 + A5t

In summary, we find that () is uniformly strongly elliptic on £ iff

x€Q \ |v|=|w|=1

inf ( min  F(v, w)> >0, (3.6.20)

64 d0i:10.6342/NTU201600158



where

F(v,w)= (tr(Dl) — (W'D 'w) — (vI' D7) — tr(D7 1) (v - w)?
+2(v-w) (WTD_lv)) + (v - w) (W NAY)

= G(v,w) + pu(v-w)(w' Nv).
We will show that
G(v,w) > A\ (1 — (v-w)?) (3.6.21)

under the constraints |v| = |[w| = 1. Then, by choosing M4 = mu~'I for some positive

constant m, we also have N4 = mu~1'1, and

F(v,w) = G(v,w) +m(v-w)?
> A5 (1= (v w)?) +m(v-w)?

= )\51 + (m— )\gl)(v -w)2.

Now since 0 < (v-w)? < 1, if m > )\gl, we have F(v,w) > )\gl, while if m < )\51, we have
F(v,w) > A\3' + (m — A\3') = m. Remember that A\;'(z) > A~ on Q, we conclude that

F(v,w) > min(A~1,m) for all |v| =|w| =1 and all z € .

It remains to show () For this, note that

= > A <1—w —v? — (v w)? 4 2(v- wujwj) ZA 'K;.

7=1,2,3

We can prove K; > 0 as follows: Since (v-w) — vjwy = vaws + v3ws, by Schwarz inequality

we have

|(v-w) —vw| < \/vg—i—v%\/w%—i—w%: \/1—1)%\/1—10%.

Taking square, we obtain
2,2

(v-w)? = 2(v-w)viwy +viw? <1 -0} —w? 4 v3w?,

which means K7 > 0. Similarly K5, K3 > 0. As a consequence, since )\fl > A;l > )\gl, we
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have
G(v,w) 2 A3 ' (K1 + Ky + K3) = A5 (1= (v w)?),

which completes the proof of Part A.

Part B. For (), we have

(thr(MBVB) —Vx (pmH(V x B))>

i

= €;0;(Mf0Br) =Y CHy,0;By — RP (3.6.22)
jke Jjke

= (e;ME — CB) 0B+ € (0;M{)d By — RY,
ke ke

where

5519[ = jéﬂ_l(ski + 5ik/14_1(54j — jkﬂ_l(sei
— Gipp ™ s + (5iz5jk - 5ik5jg)t7‘(,u71[)

=pt (5i£5jk - 5ik5jz)~

Denote the coefficients of the leading order terms of () by CE w0 We have

Cﬁké = GijMﬁ — égké = GijMﬁf — /,fl (5i€6jk — (5,’14%@) .

1

By choosing M2 = mu~'e we obtain

Z(}'f;kea,—akbjbg =pu ! (m(aT’}’b)2 - ((a : b)2 - |a|2|b|2)>
ijke

for all a,b € R3. Remember that ¢ = STDS. Since we have assumed p~! > po for some
positive constant (g, by letting v = Sa/|a| and w = Sb/|b| for a,b # 0, we see to prove
cB

iik0@iarbibe > colal?|b|? for some constant cq > 0 is equivalent to prove

inf min H(v,w)>0, (3.6.23)

x€Q |v|=|w|=1

where H(v,w) = m(vI Dw)?+ (1—(v-w)?). Although () looks simpler than (B.6.20),
we fail to find a simple method as before to get a clear lower bound. Nevertheless, it is also

easy to see that () is true by continuity, as follows: If (v -w)? = 1, then v = £w, and

m(vI Dw)? = m(\v? + Xov3 + A303)? > mA3.
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By continuity, there exists ¢ > 0 such that for 0 < 1 — (v-w)? < & we have m(v! Dw)? >
mA2/2. Thus for 0 < 1 — (v-w)? < ¢ we have H(v,w) > m\?/2. While for 1 — (v-w)? > ¢,

H(v,w) > e. Thus under the constraints |v| = |w| = 1 we obtain
H(v,w) > min(m\3/2,¢) > min(mA?/2,¢),

where recall that A is the lower bound of A;(z) on Q. This completes the proof of Part B.
O

Remark 3.23. One can check that the C4 and CB satisfy CN';;‘M = é,ﬁij and 6’5,% = CNVE’M. And, by

1

choosing M4 = mu='T and MB = mpu~'e as above, the C4 and CP also satisfy such symmetry.

This additional property is useful in the next section.

3.7 Construction of oscillating-decaying solutions for the
anisotropic Maxwell system

In this section, we will use the reduction results in section 4.2 to construct oscillating-decaying
solutions of () From now on, we suppose that g > 0 is a C'°° scalar function and € is a 3 x 3
real positive definite matrix-valued smooth functions (i.e. every entry is a real C'*° function) and
E | H satisfy

VxFE—itkuH =0 in €,

VxH+ikeE=0 in Q.

In order to obtain the oscillating-decaying solutions of E and H, we have to construct the
oscillating-decaying solutions for A and B. We follow the proof in [4§] to construct the oscillating-
decaying solutions for A and B, but here we need to derive higher derivatives for A and B.

From [48], we borrow several notations as follows. Assume that @ C R3 is an open set with
smooth boundary and w € S? is given. Let nn € S? and ¢ € S? be chosen so that {7, (,w} forms an
orthonormal system of R3. We then denote 2’ = (z-n,z-(). Let t € R, Qp(w) = QN {z - w >t}

and Xi(w) = QN {x - w =t} be a non-empty open set.

3.7.1 Construction of the oscillating-decaying solutions A and B

In this subsection, we show how the scheme in [48] can be used to derive the oscillating-decaying
solutions A and B. Recall that I/ and H satisfy equation (), therefore we need to derive
estimates of the higher derivatives for A and B. Note that the main term of w;?t,b,t, N (resp.

wfmbyt’N’w) is Xt(x’)Qte”z‘fe_T(r'“_t)AtA(“”l)b (resp. Xt(x’)Qte”‘"”fe_T(I'“_t)AtB(zl)b), which can be
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directly differentiated term by term since it is a multiplication of smooth functions. So we can
calculate E and H directly. For convenience, we denote w = Wy, bt,Nw V¥ = Vb tiV,w(Z, T).
Without loss of generality, we can use the change of coordinates to assume ¢t = 0, w = (0,0, 1) and

n= (1’070)7 C - (0,170) Define

QA — e—i‘rm’-g’LA(eiv-z’-g’.)7 @‘; — e—i‘rm’-g’LB(ei‘rm’.E")

where ¢’ = (21, 22), £ = (&1, &) with |¢'| = 1 and L 4, L have been defined by (B.7.7) and (B.7.§).
In the following, we will give all the details for the higher derivatives of E and H.

In [48], the authors used the phase plane method to get a first order ODE system and we want

to decouple the equation in order to solve it by direct calculations. The method of construction
the oscillating-decaying solution is decomposed into several steps:
Step 1. As mentioned before, we set Q4 = e~ L (e E L), Qp = e~ [ (el € ) and
solve é\,/q'UA =0, @UB = 0. In the following calculations, we only need to consider @:WA =0
since /6—2;1) 5 = 0 will follow the same calculations. Let Q4 = C' A@:; be the operator which satisfies
the leading coefficient of 97 is 1 and the existence of C4 is given by the strong ellipticity of L4 and
we need to solve Qava = 0 (the same reason for the operator @; and Q). Now, We introduce
the concept of the order in the following manner. We consider 7,03 are of order 1, 01,0, are of
order 0 and x3 is of order —1.

Step 2. Use the Taylor expansion with respect to x3, we have

N-1

QA(xl7x3) = QA(.I‘/,O)++ !aév_lQA(x/aO)+R

T3
(N —1)
Qi+Qh++Q" +R

where ord(Qf‘L‘) = j and ord(R) = —N. Since we hope that Q4v4 = 0, we have

Qiva=—(QA+Qh+ +Q "+ Rjva:=f.

Step 3. Following the paper 48], we denote D3 = —id3, p = (£1,&2,0) and (a,b) = ({a,b);,)

for a = (a1, a2,a3) and b = (b1, ba, b3), where (a,b),;, = > Cﬁklajbl with Cf}kl being the leading

w1
coefficient of the second order strongly elliptic operator L 4. If we set W = , where
w2
w1 =vA
we = —77 1 (e, €3) gy—0 D304 — (€3,0),,_o VA
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and use f = —(Q% + QY + -+ QN + R)va, then W will satisfy

s 0
DsW = 7KAW +
T (es,e3) pym0 f

= (TK*+ K+ -+ K% +SW

where K4 is a matrix in depending of z3 which can be diagonlizable by the property of the
strong ellipticity of L4. Note that each K JA’S only involves the 2’ derivatives with ord(K ]A) =7,
ord(S) = —N — 1. It is worth to mention that with the help of such special W, then we can solve
the ODE system explicitly.

Step 4. Decompose K4 such that

— ~ K& 0
KA=Q'E'Q=| © |
0 K2

where spec(;(\ig) C Cy := {£ImA > 0} (the existence of KA and Q were showed in [4g]). If we
set W = Q~'W, then
DsW = (tKA+ Ko+ -+ K_n + S)W,

Step 5. If we write W = (I + 2340 + BOYWO with 4©, BO) being differential operators in

0y (their coefficients independent of x3), then

DsW©® = {7'?(\Z + (Ko — res A KA 4 72, KAA© — BO A
+KABO 1A L KTy 4.y O

= (TI’(\Z+I~(0+[/(\’_1+-~),V\[7(O)

where ord(l/(\’ _1) = —1 and the remainders are at most —2. We choose A(®) B to be suitable

operators and use the same calculations in [4§], then we will get

- Ko(1,1 0
7 - o(1,1) )
0 Ko(2,2)

to be a diagonal form (here we omit all the details).
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Step 6. Finally, following step 5, we can write

W = (42340 4+ 771 BOYT + 2240 4 7715, BO 4 r=20M)...

X (I +zYHTAN) 4 =1 N BIN) 4 =2, N=1 o))y (N)
with suitable A9, BU) and CY) for j =0,1,2,--- , N (C© = 0), then W) satisfies
DsWN) = {rKA + Ko+ -+ K_y + SyWW

with all f(_j are decoupled for 0 < j < N and ord(g) = —N — 1. If we omit the term S, we can

find an approximated solution of the form

N+1

(N (N
( )= Zv(*J)A

satisfying
D3\ = {rK4 + Ko(1,1) + -+ + K_n(1,1)}047

(N)

and each 0 A has to satisfy

DoY) = rictoly, 35 las=0 = xt(a")b,

Dy, = 7K 40, + RKo(1, 1)0lYy, 0N gm0 =0,
~(N N ~

D3U£J\; =7K ”(1\; 1A+Zj OK*J(l 1)o SJ)Av v( ) A|m3 =0 =0,

where ¢ (2') € C§°(R?) and b € C3. Thus, by solving this ODE system we can get the following

estimates:
a AN _B—j—
12502 (65 | L2y ) < er P71 (3.7.1)
5@
for 0 < j < N + 1. Moreover, if we set V(N) A , then it satisfies
0
ngN) — {7'2{\Z + Ko+ _~N}Va v
~ Xt(ai/)b
N
Vzg )|1’3:O = 9
0
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where

||R|\L2(Ri) <er VT2
U1
Step 7. Finally, if we define the function 4 = | ¢, [, with 9; being the jth component of the
U3

vector Q(I+x3A® +7-1BOY(T4+23AM 477103 B 47720 W)) . (T4l TLAN) 71N BIN) 4

T‘Qxév_lC(N))VéN) and set wa = exp(ita’ - £')v4, we will get that

wa = Qexplira’ - €) expliras KA(@))xu(')b + explira’ - €)1 (z,7)

= Qexp(ira’ - &) exp(—iras(— K (2)))xi ()b + T(z, 7)

and

waley=0 = exp(ita’ - ') (x:(z")Qb + Bo(a', 7),

where By(z',7) = l:‘(x’,O,T) is supported in supp(x:). Note that the function 4 comes from the
combination of @(f\;)A’s, for j = 1,2,--- ,N + 1. Now, we derive higher derivative estimates for
the oscillating-decaying solutions, back to see all the ﬁg)A’s separately. In fact, only need to see

f)(f\l[) 4 From the estimate (), we know that the estimate is independent of the derivative of a’

variables, all we need to concern is the d3 derivative. From the equation

D5o'"Y, = K4, + Ko(1,1)0(",) (3.7.2)

and the standard regularity theory of ODEs(ordinary differential equations), we know that 17(_1\1[) 4 €

C° if all the coefficients are smooth. Moreover, note that I~(+ independent of z3, then we can

differentiate () directly, to get

D2, = DafrKfoN), + Ko(1,1)88)]

= 7KA(D3N)) + (DaKo(1,1))08) + Ko(1,1) Dy
= (KN, + TEAK(L D)oY + (D3 Ko(1,1))8(",

+7Eo(1, )E A,

Thus, we can obtain that

~(N _ _
||$§ 5/%(”&?@“@(@) < er AT
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for all n < 2. Inductively, we have

feY ~(N _ B
||a?§(9z/8§’(v(_1?A)\\L2(R3+) < erBHn=3/2,

for all n € N. Similarly, for other 17(_1?[4 with 2 < 5 < N 4 1, we can get similar estimate in the

following:

~(N e
[ ﬁ,ag(vﬂj))A)||L2(Ri) < er—B-i=1/2

vn € NU{0}. Therefore, I" satisfies
||8§F||L2(Qs) < CT|a\—3/2€—‘r(s—t)>\

on Qg :={zg > s} NQ for s > 0 and V]a| € NU{0}. Note that since each f}(j}(’)A’S are smooth, we

can get the smoothness of R and
||3§RHL2(R1) < crlel=N=3/2
for all |a] € NU{0}. Furthermore, we have that
102(Qava) || 12y < erlI=N=1/2,
Step 8. Now let u =w +r = ¢™"¢'5 4+ r and r be the solution to the boundary value problem

: Dol ST .
Lar=—€"¢Qua in Qo

r=0 on 09

However, note that Qo = {3 > 0} NQ is not a smooth domain since 9Qy = ({z3 = 0}NQ)U({z3 >
0}N90N). Note that the oscillating-decaying solution exists in the half space, from the construction,
we know that the solution is independent of the domain 2. Let Qc Ri be a open bounded smooth
domain containing  with {z3 =0} NQ C 99, from the construction, it is easy to see the form of
oscillating-decaying solution does not depend on the domain €2, then we can extend r to be defined
on Q and call it 7(x). Here we can also extend v to be defined on Q, still denote v and all the

decaying estimates will hold since our estimates were considered in Ri, then we have

S ita! & 0
LT =—¢ £Qava inQ,

=0 on 99.

Note that all the coefficients are smooth, we apply a well-known elliptic regularity theorem (The-
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orem2.3, [12]), then we will get 7 € C*(Q) Vk (recall that 9Q € C*) and

7] o1 (srsy < cl|Qavall g sy

Hence [|077]|22(00) < 10572 < erlo=N+1/2 for all |a| < k, Vk € N. Similarly, we can
construct the oscillating decaying solution for Ly B = 0. Then we represent A and B to be two

oscillating-decaying solution in the following form:

A= w;?t,b,t,N,w + T;?t,b,t,N,w in Q(w),
A= ™ (2)Qu(a')b + 5;?“,5,1,71\1,@} on ¥ (w),
B = wft,b,t,N,w + Tﬁ,b,t,N,w in Q(w),

B= e {xu(a")Qu(x")b+ By, 1 p.nw} o0 Di(w),

where

A _ / irx-& ,—1(zw—t) AL (2’ A
th,b,t,N,w - Xt(x )Qte € ( )AL )b + ’yxt,b,t,N,w(x’T)’

B _ ! irx-€ ,—1(z-w—t)AZ (¢’ B
Wy b t,Nw = Xt(x )Qte et JAC + 7Xt,b,t,N,w(va)a

wﬁt,b7t7N7w and Vﬁ,b,t,N,w satisfy (B?ld) and (b711|)

3.7.2 Construct oscillating-decaying solutions for £ and H

We can construct oscillating-decaying solutions for £ and H in the following.

Theorem 3.24. Given {n,(,w} an orthonormal system of R?, 2’ = (v -n,z-() and t € R. We
set Q(w) = QN{z-w >t} and 3 (w) = QN {x-w = t}, then We can construct two types OD
solutions for the Mazwell system in Qi (w) which can be useful for penetrable and impenetrable

obstacles respectively. There exist two solutions of ) of the forms. The first one is

F— F}‘(gj)ei'rzéef'r(zwft)z‘lf(ﬂ?/)b + Fig,lb,t,N,w(z’ T)+ T;t’,lb,t,N,w(l'v ) in Q(w), (3.7.3)

H= Fj(x)eimfe_T(I'“—t)Af(w/)b + FQ;?M,N’W(:U, T) + T;?fb,t,N,w(% )  in Q(w),

where F}(z) = O(1), F%(x) = O(72) are some smooth functions and for |a| = j, j = 1,2, we have

” A,j

FXt,b,t,N,w(m’ 7-)||L2(Qt(w)) < C7—\o¢|—3/26—‘1'(5—75)aA7

(3.7.4)

Aj -
175008 0 (@ T 20 () < €T "N FL2,
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for some positive constants as and c. The second one has the form

E=G% (gc)e"”*&e_T(‘”‘“’_t)Ai3 Coy Fffb,t,N,w (z,7)+ r;f:lit,N,w (x,7) in Q(w),

(3.7.5)

H = Gh(a)emeée w070y L T2 (2,7) 4700, vo(@:7)  in Qulw),

where G (z) = O(1),G%(x) = O(72) are some smooth functions and for |a| = j, j = 1,2, we have

B,j _ r(s—
Hl—‘xf,,jb,t,N,w(x7T)||L2(Qt(w)) < erlol=3/20=7(s t)aB’

(3.7.6)

B,j i
170 o (T T L2 (0 () < TP TNFL2,

for some positive constants ap and c.

Proof. We want to find special solutions A, B € (C™(Q(w)\0X¢(w)) N CO(Q(w)))? with 7> 1

satisfying Dirichlet boundary problems

LA :=pVir(MAVA) =V x (e 1 (V x A) + k?uA =0 in Q(w) ( )
3.7.7

A= ei™e€ {Xt(x')Qt(a?’)b + B;?f,,t,b,N,w} on Y4 (w),

and

LB = eVir(MBVB) =V x (0" (V x B)) + k2B =0 in Q(w) 518)
3.7.8

B = im2¢ {Xt(x/)Qt(gj/)b + ﬂf,,,t,b,N,w} on Et(w),
where ¢ € S? lying in the span of {n,(} is chosen and fixed, y;(z') € C§°(R?) with supp(x:) C
¥ (w), Qi(2') is a nonzero smooth function and 0 # b € C* and N is some large nature number.

Moreover, 5>‘?t’b’t,N’w(x’, 7), ﬂfi’b}t’N,w (2, 7) are smooth functions supported in supp(y;) satisfying:

A — _
182, .8 Tllz2ey < €778 118y, v (T2 (ee) < o™

for some constant ¢ > 0. From now on, we use ¢ to denote a general positive constant whose value
may vary from line to line. As in [48], A, B satisfy second order strongly elliptic equations, then it
can be written as

_ _ A A

A= Axt,b,t,N,w - th,b,LN,w + rXt7b,t,N,w
_ _ ..B B

B = By, pt,New = Wy, bt Nw T T30 bt N w

with

- w— A :tl
wéf,,b,t,N,w = xe (@) Qe e TE AT Fft,b,t,zv,w(l’a 7)
(3.7.9)

B _ ! ite-& ,—1(z-w—t)AB (z’ B
Wye b t,Nw = Xt(x )Qte Sl MA@ D + FXub;t’N)W(x’ T)
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A B . .
and bt N Togebts N w satisfying

B

FENELR % vl (@) < erF N2, (3.7.10)

A
(7%, bt Nl R (@ ) < €T
where A#(-), AB(-) are smooth matrix functions with its real part ReA(z') > 0, ReAZ(z') > 0

and F;‘t,b’t,N’w, Fft,b,t,N,w are a smooth functions supported in supp(x;) satisfying

105TA | v ollz2@u ey < crlel=3/2e=T(e=Daa
e (3.7.11)

aT B al|=3/2 ,—T1(s—t)a
105TF, b1 nwllL2(@uw)) < er!@I=3/2emmom0es

for |a| € NU {0} and s > ¢, where aa,ap > 0 are some constants depending on A7*(2’) and
AB(z') respectively. We give details of the construction of A and B with the estimates ()
and (B.7.11).

We have derived the explicit representation of A and B. Recall that F and H are represented

in terms of A and B as follows

E= —ie_lv x (p~H(V x B)) —e 1V x A),
k (3.7.12)

H = %u*lv x (€Y (V x A)) — p=1(V x B).

Now, we can show that (E, H) satisfies (), () and we will use this form to prove The-
orem for the penetrable case. Similarly, we can show that (E, H) satisfies ()7 (B.7.9)
in order to prove Theorem for the impenetrable case. All we need to do is to differentiate
A and B term by term componentwisely. For the main terms of A and B, we can differentiate
Xt(x’)Qtei””'fe_T(””"”_t)AtA(’”/)b and y¢(2') Qe Se~m(@w =A% (@)} directly and it is easy to see

that

Vx A= Tﬁ(x)eirz-ée—f(r'w—t)AtA(z’)b +V x Fi,b,t,N,w(m’T) +V x T;?t,b,t,N,w

V x B =1Fp(2)e e @A 4V X TF | n (@ 7) 4V X v

where ﬂ(x) and FA};(QJ) are smooth matrix-valued functions and support in supp(x;(z’)). For
the penetrable obstacle case, we choose A = w;?hb’t’N)w + T;?t,b,tw,w to be the oscillating-decaying
solution satisfies Ly A = 0 and B = 0 (also satisfies Lg0 = 0) in Q;(w), then () will become

to

E=—-e1(VxA),

H= %uflv x (e"1(V x A)),
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which means

itz —r(mw—t) AA A, A,

E= F}! (x)e”dlc EemTlew=tAT ()} + FXt ,lb,t,N,w ('737 T) + TXt,lb,t,N,w (x’ 7-)7
it () AD A, A,

H = F2(z)ei™ e T(ew—t) A (=) 4 I‘be,mN’w (z,7) + Txt?b,t,Nw (z,7),

where F}(z), F%(x) are smooth functions consisting u(z), e(z), Q:(z"), A(2') and their curls (it
can be seen by directly calculation). Moreover, by suitable choice of b (for example, we can choose
b # 0 is not parallel to £), we will get Fj(z) = O(r) and F3(z) = O(r?). Moreover, F:;,lb,t,N,w
and Fffb,t’N’w satisfy () for |a| =1 and |«| = 2, respectively, r:t”lb’t’N’w and ri’}b’t’N’w satisfy
() for k =1 and k = 2, respectively. Similarly, for the impenetrable obstacle case, we choose

_ — B B ;
A=0and B=w_ ; n, T 7y btNw i 2(w), then

E = G2B (z)eiTI{e*T(m-wft)AtB(z’)b + Fffb,t,N,w (1}7 7-) + T;f:lit,N,w (1;’ 7—)7
. B ’
H= G}B(m)em—z.fe—r(m-w—t)flt @)y 4 Ff;,lb,t,N,w (z,7) + rft’,lb,t,N,w(x’ 7),

where GL(z) = O(7) and G%(z) = O(7?) and Ff;,jb,t,N,w satisfies () for |a] = j and rf{,’i’t,N’w

satisfies () for k = j. O

3.8 Proof of Theorem 3.13

Recall that we have constructed the oscillating-decaying (OD) solutions in the previous section and
note that OD solutions only exists on a half space. Similar to the anisotropic elliptic case, we need
to use the Runge approximation property for the anisotropic Maxwell system, which means that
we can find a sequence of solutions satisfying the anisotropic Maxwell system and approximates

to the OD solution on the unknown obstacle.

3.8.1 Runge approximation property: Maxwell version

We derive the Runge approximation property for the following anisotropic Maxwell equation

VxE—ikpH =0
in

)

V x H +ikeE =0

where p is a smooth scalar function defined on €2 and € is a 3 x 3 smooth positive definite matrix.

Recall that

3
w(x) > po > 0 and Z €5 (2)&€5 > €ol€]? VE € R,

ij=1
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If we set u = and
E

then we have

where I; means j x j identity matrix for j = 3,6.

(3.8.1)

(3.8.2)

Theorem 3.25. Let D and € be two open bounded domains with C™ boundary in R® with D € ().

If u € (H(curl, D))? satisfies
Lu=0in D.

Given any compact subset K C D and any € > 0, there exists U € (H(curl,2))? such that

LU =0 in 9,

and |U = ull g (eurt, i) < €, where ||l geurio) = (1 fl2) + leurlf| L2@))-

Proof. The proof is standard and it is based on weak unique continuation property for the anisotropic

Maxwell system L in () and the Hahn-Banach theorem. The unique continuation property of

the system L is proved in [B3]. For more details, how to derive the Runge approximation property

from the weak unique continuation, we refer readers to [31].

O

Now, we start to prove Theorem 3.13 by using the Runge approximation property and the OD

solutions to prove Theorem . We define B to be an open ball in R? such that {2 C B. Assume

that Q C R3 is an open Lipschitz domain with B C Q. Recall we have set w € S2 and {n,¢,w}

forms an orthonormal basis of R® and ty = inf,ep 2 - w = g - w, where 19 = xg(w) € dD. The

proof is divided in the following two cases: the penetrable case and the impenetrable case.

3.8.2 Penetrable Case

For the anisotropic Maxwell’s equation

V x E =ikpH
V x H = —ikeE
div(eE) =0

div(uH) =0,

7

(3.8.3)
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for any t <ty and i > 0 small enough, in section 3, we have constructed

itx-& —1(x-w—(t—n)) A (z’ Al Al

Ei_, = F}‘(:L‘)e”x Lo T(ww—(t—m) AL (=")p 4 FXt,b,t—n,N,w(m7 T)+ TX,,,b,hn,N,w(x’ T),
e (4 AA (2 A2 A2

Hy_, = F2(x)eim@ e (@w—(t=m)A @)} 4 Lt N (@ T) 705 N (@ T),s

to be the oscillating-decaying solutions satisfying () in B;_,(w) = BN{z|x-w > t—n}, where
Fi(z) = O(r) and F3(z) = O(7?). Moreover, ng}b7t_n7N7w and Fffb,t_n’N,w satisfy () for
|a] =1 and |a| = 2, respectively, ri’}bvt_mN’w and T;?[,lb,t—n,N,w satisfy () for k=1and k = 2,
respectively. Similarly, we have

By = Fi(z)elmete 7w 0A8 @y DL (1) 40 (7))

Xt,b,t,N,w

H, = Fi (g;)e”zfe*'r(x"”*t)AtA(f”')b + F::fb,t,N,w (x, T) + T;?fb,t,N,w (z’ 7—)’

so be the oscillating-decaying solutions satisfying () in Bi(w) = BN {zlz -w > t}, where

Al A2 . - o N . Al
Db ne and TU% v, satisty () for |a| = 1 and |a| = 2, respectively, bt Nw and

r;?t’lbt N, Satisfy () for kK = 1 and k = 2, respectively. In fact, from the construction the

oscillating-decaying solutions and the property of continuous dependence on parameters in ordinary

differential equations in section 3, it is not hard to see that for any 7,

Et—n — Et

H,_,, — H;

in H?(B;(w)) as n tends to 0.

Note that Q;(w) C B;_p(w) for all t < ty. By using the Runge approximation property, we can

see that there exists a sequence of functions (E, ¢, Hy¢), £ = 1,2, -, such that

En’g — Et,n
in H(curl, By(w)),

Hn’g — Ht,n

as £ — oo, where (E, ¢, H, ) satisfy () in Q for all n > 0,£ € N. Recall that the indicator

function I,(7,t) was defined by the formula:

I(7,t) := lim lim I9%(7,t),

n—04—o00

where

I (7 t) == ikT/ (v x Hye)- (Ap — Ag)(v x Hyy p) x v)dS.
G19)

p
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We prove the Theorem 1.1 for the penetrable obstacle case. For the anisotropic penetrable
obstacle problem
VxE—ikpH =0 in{,
VxH+ikeE=0 in(, (3:8.4)

vxH=f on 0§,

where k is not an eigenvalue of () Moreover, we assume p is a positive smooth scalar function,
€ = eo(x) — xpep(x), where ¢y is symmetric positive definite smooth matrix, ep(z) is a symmetric

1 z2z€eD
smooth matrix with detep(x) # 0 Ve € D and xp = . Moreover, we need € = €(x)

0 otherwise

is a positive definite matrix satisfying the uniform elliptic condition. Recall that when e(z) = ¢y(z),
we have constructed Ey and Hy which are oscillating-decaying solutions defined on the half space

for the anisotropic Maxwell’s equation

VxE—ikpH =0 in,
(3.8.5)

VxH+ikeE=0 inQ,

and {(Ey, Hy,¢)} are sequence of functions satisfying () defined on the whole Q. Therefore,
we can define the boundary data f,, = v x H,, on OS2 and solve (E, H) satisfies () Let

f[;:g = H — H,,; be the reflected solution, then f[;:g satisfies

V X (e7'V x Hp o) — K2uHy o = =V x ((e H(z) — €5 (x))V x H, ) in Q, 556)

VXImZOOHaQ.

Lemma 3.26. We have the following estimates

1.

—r it > /D[e(e*1 —eg Y)Yy 'V x Hyy ] - (V x H,yg)da — kz/ﬂu|fm|2dw.

Tﬁllg’e(T, t) > /

((661 - eil)V x Hy ) - (V x Hy p)dzx — k2/ ,u|]§;;g|2dx.
D Q

Proof. First, we need to prove the following identity

77*11;,7’4(7, t) = /Q (€' ="V x Hyyp) - (V x Hyg)dz

- / (e7'V x Hpy) - (V x Hy g)dx — k2/ (| Hy ol da. (3.8.7)
Q Q
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Multiplying H,; in the equation () and integrating by parts we have

/ (€'Y x Hyg) - (V x I, )da — K / p|Hy o de
Q Q

+ / (7' —eg )V x Hyp) - (V x Hy g)dx =0,
Q

/ ('Y x Hyg) - (V x I, )da — K / plHy o 2da

Q Q

— / (' — e )V x Hyyp) - (V x Hyg)dx (3.8.8)
Q

=- /Q((e_l — e )V x Hyy) - (V x H)dx. (3.8.9)
On the other hand, H(x) satisfies
V x (e Y2)V x H(z)) — K*uH(z) =0, (3.8.10)
then multiply by H, ;(z) in the equation () and integrating by parts we have

/((e—l — e )V x Hyy) - (Vx Hydr = / (e 'V xH) (vxHyy)ds
Q on

—/ (6g'V x Hyy)- (v x H)yds  (3.8.11)
o0
Thus, combine (), () and [, (v % Hy ) - (eg'V x H, ¢)ds is real, then we have

[V % o) (7 x Hyoyde = 42 [ |y

Q Q

— / (et —eg )V x Hyy) - (V x Hyp)da (3.8.12)
Q

:/ (vx Hyyg) (€'V x H)ds — / (vx H) (eg'V x Hy)ds
o9 o9

:/ (vx Hyyp) (e'V x H)ds —/ (vx Hyp) - (eg'V x Hyp)ds
o o0

Z[;Q(V X ng) . (6_1V X H)dS - ‘/69(V X Hn,f) ’ (GJIV X Hn,f)ds

:AQ(V X Hn’g) . [72]{E + Z'kEnyddS

=tk | (v x Hyy) [(Ap — Ag)(v x Hyyy) X v]ds
o0

=71 (3.8.13)
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Second, we show the following identity

/(eglv X Hoy) - (V x Hyp)de — k?/ plHy o 2da (3.8.14)
Q Q
+ / (e ' (z) — g (2))V x H) - (V x H)dx

Q

=— 7'_1[;”@.
Replacing H, ¢(x) by H(x) — Im(x) in the equation ()7 then we have
Vx (e =g )V x H) +V x (eglv X fm) — K2uH, = 0in Q. (3.8.15)

Multiplying I?n/l(x) in the equation () and using integration by parts we have

/Q (et = HV x H) - (Vxﬁ) dx

+/Q ('Y x Hye) - (V x Hye) do k2/9u ’I?,,}‘de =0, (3.8.16)

since v X anl = 0 on 0f2. Then we can write equation () to be

/Q<651V X [m) . (v Xﬁ) dx_kg/gu‘f{:é‘zdx
-l-/ ((5*1 _Eal)v « H)(V x H)dx
Q

:/Q (€7 =)V x H) - (V x Hy)da. (3.8.17)

Eliminating H(x) by E/[\,,/l(x) + H, (z) in () we have

/Q (eglv % ﬁ:l) . (V xﬁ) dx—kQ/Qp’m‘de
b < ) (9 i
= [ (@) = G @)V x Hy) - (7 x Ty

+ / (e M=) — g (x))V x Hy ) - (V x Hyg)dz (3.8.18)
Q

Again from () and by taking the complex conjugate, we can write

V X (e7'V x Hy ) — K2pHy o+ V x (e Y(z) — €5 ' (x))V x Hy () = 0. (3.8.19)
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Multiplying by Ifl;l/l(z) in the equation () and using integration by parts we have

/(e—lv X Hy) - (V x Hyyg)da — k?/ |y o P

Q Q

+ / (e (2) — e (2)V x Hg) - (V x Hyg)de = 0. (3.8.20)
Q

Then from the equations (B.8.1§), () and the first identity (), we can obtain

[0 % ) (5 Hys =12 [ gl s
Q Q
+ / ((671($) — eo_l(x))v x H)-(V x H)dx
Q
5@«*@—@%»Vx&@«VxE@m
—/(e—leﬁ).(va)dHH/ p| Hyy o|Pda
Q

=—7 ' (3.8.21)
Combine () with the formula

(681VXfm)'(vX@)+((6_1—651)VXH)-(V><F)
=((e'—eg )WV X H)-VxH+e"(Vx H)-(V x H)
—2Re{ey'Vx H-V xHy }+e 'V x Hyy -V xHyy

TNV X H) (VxH)—2Re{e'VxH -V xH,}+e'VxHe VxHe,

[e 2V><H—e2e 1(V><HM)}~{e*%VxH—e%egl(me)J

A (Vx )| - [ereg " (V x Hy) | + 61 x Hy ¥ x Ty

= [V H = A (V)| - [ 1V x H =g (V x Ty
+ (g " —€eg?) (V x Hyy) - (V x Hyy)
>[(I —eeq') eq 'V x Hy] - (V x Hyp)

Sle(e™ —eg ") reg 'V x Hy gl - (V x Hyp)

and note that

[V H= g (Vx Hy)| - [ 39 x H = ebeg? (Vx o) | 2 0.

Therefore, we get
P > /D[e(e_l e eV X Hy] - (V x Hyg)da — kQ/ plHy o Pda
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which finished the part 1 of Lemma 3.26. Finally, again from (), we have
P > /Q((egl N x Hyy) - (V x Hyg)da — k?/ﬂuﬁ;d?d:ﬁ.

O

Remark 3.27. The first inequality will be used when (6_1 — 661) is strictly positive definite, i.e.
E-(et = 60_1)5 > Al¢|? for all € € R? and for some A > 0;

and the second inequality will be used when (e; ' — e™1) is strictly positive definite, i.e.
€-(egt — e H)E > N¢J? for all € € R? and for some A > 0.

Now, our work is to estimate the lower order term H, ,.

3.8.2.1 Estimate of the lower order term E;g

Proposition 3.28. Assume 2 is a smooth domain and D € §2. Then there exist a positive constant
C and § > 0 such that
[Hy,ellL20) < CIIV X Hyell Lo (p)

42496

=1 9.
3’1+5}’ J

for every p € (max{

Proof. We follow the proof of the Proposition 3.2 in [27]. Fix [ € N and we set f := —(e~! —
o)V x Hyy), g = 0. Note that, e ! —e;' = e '(epxp)ey " is supported in D. Then the

reflected solution f{\,,/,g satisfies

V X (7' x Hy ) — K2uH, o = =V x (e Y(z) — €5 (2))V x H,) in Q,
(3.8.22)

fom:Oonaﬁ.

From the LP estimate for the Maxwell type system, if we consider the following problem

Vx(eWWxU)+eLlU=Vxf inQ,

max

vxU=0 on 0f),

. . . 1 _ . . .
has a unique solution in HyY(curl, ), where €.l is the maximum value among all eigenvalues of

the matrix e~!(z) in the region 2. Moreover, we have the estimate

ULy + IV x Ullzea)y < Cllfllze ) (3.8.23)
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246
for p € (L,Q] for some 6 > 0 which depends only on ). Now, we set 1I,,, = H; , — U, then

1+6
I, ; satisfies

V x (e7'V x I, 0) — K*pll, o = (k*u+ e )U in Q,
(3.8.24)

v x 1, ¢ =0 on 0N.

By the well-posedness of () in H(curl, ) for the anisotropic Maxwell’s equation (see Ap-
pendix), we have

||Hn,1Z

r29) + IV x Wy el z20) < CllU]r2(0) (3.8.25)

if k is not an eigenvalue. Moreover, for p < 2, it is to see that

ILyellze () + IV X Iy ol o) < ClIU| L2

Following the proof in the Proposition 3.2 in [27] again, we denote B2?(Q) to be the Sobolev-
Besov space, then we have U € B%?(Q) and the inclusion map B%?(€) — L2(Q) is continuous
for p € (%, 2]. Moreover, since V-U = 0 and v x U = 0 on 99 and use Lemma 3.5, we have the

estimate

1Ullz2 () < CllU I gr2(q) < CRIU o) + IV X UllLeo) } (3.8.26)

for p € (%,2]. Combining ()7 () and (), we obtain

ITLyell e ) + IV x 1L ell e ) < Cllfllzr ) (3.8.27)

for p € (max{%, %}, 2]. Since fm =1L, ,+ U, by using (BS?Q) and (B.8.27|), we have

[Hy.ellLe) + IV x Hyelle) < CllfllLr @) (3.8.28)
Since v x I/fn{l =0 on 092, we use the Lemma 3.5 again, then we can obtain

[ Hyell2) < CliHn.ell 2 g
p

< C{|[Hp.ell ooy + IV x Hyell oy + IV - Hye

|LP(Q)}. (3.8.29)

In addition, from ()7 it is easy tosee 0 =V - (u}m) =Vu-Hyo+pu(V- Im), then we have

HV.UHL‘X’(Q)

1y ll o) (3.8.30)
||M||L°o(9) ! @)

IV - Hyellpro) <
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Finally, use (B.S.Zﬂ), (B82d) and (B.8.3d), we will get

[ Hy el < C{llHpellor) + IV X Hyellpe)}

Cllifllzr

C|IV x Hyellr (D) (3.8.31)

IN

IN

O
Remark 3.29. In the reconstruction scheme, we need to take limsup,_, ., for () on both sides

and Hy_,, — H; in H(curl,Q(w)) as n — 0, then we have

lim lim sup || H, . < C|V x Hyl|tr(p)s
P e_)OOPH n,zllm(n)_ I tllz (D)

for p € (g

In view of the lower bound, we need to introduce the sets D; s C D, Ds C D in the following.

9.

Recall that hp(p) = infyepx - p and to = hp(p) = xo - p for some xg € ID. Ya € D N{z - p =
hp(p)} := K, define B(a,d) = {z € R3;|x —a| < §} (§ > 0). Note K C Upex B(a,6) and K is

compact, so there exists a1, -+, € K such that K C UL B(a;,6). Thus, we define
Djs = DN B(aj;,0) and Ds := UL, Dj 5.

It is easy to see that

I\, e PT(@ W) AL () pgy — O (empaT)

—pr(zw—to)AB (2’ —pat
Jonp, € TR0 bdr = Oe7reT)
where A} (2'), AP (2') are smooth matrix-valued functions with bounded entries and their real
part strictly greater than 0. so 3a > 0 such that ReA{; (z/) > a >0 and ReAf (2/) > a > 0. Let

aj € K, by rotation and translation, we may assume «; = 0 and the vector a; — g = —x is

parallel to e3 = (0,0, 1). Therefore, we consider the change of coordinates near each «; as follows:

/ /

y =z

ys =2z p—to,
where © = (r1,22,23) = (2/,23) and y = (y1,¥2,y3) = (v',y3). Denote the parametrization of
0D near «a; by 1;(y'), then we have the following estimates. Note that the oscillating-decaying
solutions are well-defined in D.
Lemma 3.30. For ¢ <2, 7> 1, we have the following estimates.
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m

/ |Ht(x)|qd.r < 7_2(1*12// e*aq‘rl dy +O( 2q—1 —anT)
b j=1"1y'[<é
+O(72e7197) 4+ O(1e™°T) + O (72N +9)
2.
/|Ht|2d$ > CTSZ// e=207Li (W) gy — 32007
b j=1"/1y'1<é
_Cre 2T _ O 2N+5
3.
/ ‘Et(l'”qdl’ < qulz// e*aquj(yl)dy/+O(qulefqa5'r)
b j=17/1v'[<é
+0(17e797) + O(771) + O(772N+3)
4.

/ |Et‘2dx > CTZ// e_2ale(y/)dy/ _ CTe—2a57'
P =M ly<s

—Crt—Cr2NH3,

where By and Hy are oscillating-decaying solutions for the penetrable case defined in Q(w).

Proof. The proof is via the representation of the oscillating-decaying solutions of (E;, H;). For

7> 1(1 < 72), we have

/D|Ht‘qu < CT2q/e qat(z-w— to)derC / |Fbeth|qu
+C / |TXt thw
< CT2q/ e—qar(a:»w—to)dx_’_CTQq/ e—qar(w-w—to)dx
B Dy D\D;
+CQ/D|F}4,B,7,;L|qu+Cq/D|T114,B,'y“u|qu
m é
< CTqu// dy'/ e~ 99T dyg + C'r2de 997
j=17/1v'[<é 1 (y")
+C||T%7 320y + Cllrie3 17
Xt,b,t,N,wll L2(D) Xt,b,t,N,wll L2(D)
<

m
Cr2a-1 Z // efaqflj(y/)dy/ _ 97—2‘171@*‘1“57
; ly’|<é q

j=1
+C721e7997 4 Cre™ T 4 Cr2N+5

86 doi:10.6342/NTU201600158



where c¢ is a positive constant and a depending only on a4, ap. For the lower bound of fD | Hy|%de,

we have
2 4 -2 ‘w—t A2 2
|H:|?de > Cr e~ 2ar(@w=to) g CIT3 b e N wll L2 @)
D D 0
A2 2
~Cllr b v wllzz (@, )
> CT4/ e 20m(@w=to) gy Cre°T — O 2NH5,
Ds
m
> O3 Z // e—Qale(y/)dy/ _ O3 2007
=1 y'I<é
—Cre=caT _ CT72N+5
It is similar to prove the remaining case, so we omit the proof. O

Lemma 3.31. We have the following estimate

A

> 0(1?), 7> 1.
IEl72(py )

Proof. Since 0D is Lipschitz, we have [;(y’) < C|y’|. Therefore we have the following estimate

CT3 Z // e*Qa‘rl_,» (y')dy/ > OTS Z ﬂ 672a7'\y'\
j=171y'[<é j=171y'I<é
> CTZ// 672“|y/|dy’
j=1 y'|<Té
= O(7).

Then we use Lemma 3.30 to get

1 . Ce—2a57'+CT—26—2CT+C7;—2N+2
o ) Z;nzl .[f|y’\<5 207l (y )dy'
= T 1 O0(e=2%9T) L O(Te=°T)+O(r 2V +2)
Z;n;1 j].|y/‘<§ o—2aTl; (y’)dy/

= O(r?) (if 7> 1).

[Hell 72
| £t

I220)

Lemma 3.32. Ift = hp(p), then for some positive constant C, we have

liminf/ 7|V x Hy|*dx > C.
D

T—0Q
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Proof. Since [;(y") < C|y'|, we have

/ IV x Hy(2)[2dz > c/ \By(2) 2 da
D D
> Or Z ﬂ e*Qa‘rl_,»(y')dy/ _ 07,672a57'
j=1 ly’| <o
—COr~ ' — N3
> Or Z // 672ar\y'\dy/ - 07'6720‘67—
j=1 ly’|<o
—Cr~ ' — 2Nt
> Crlr2 Z // efza‘yl‘dy'] — Cre 207

j=1 |y’ |<T8
—Cr L — O (as 7> 1).

Therefore, we have

liminf/ 7|V x Hy|*dz > C.
D

T—00

O
Lemma 3.33. For p € (max{3, %},2]. we have the following
| Ho el
lim lim sup % <cr'th (T>1).
=0 y o Hv X HtHLQ(D)
Proof. From the Proposition 3.28, we have
. . e < .
lim hzrigp | Hyellz2(0) < ClIV x Hil|Lr (D)
Then it is easy to see the conclusion. O

Remark 3.34. Recall that the sequence {H, (} converges to Hy,, in H(curl, K) as £ — oo for all

compact subset D € K € 2 and Hyy,, — Hy in H?(Qy(w)) as n — 0, so we have

IV < Hyollee(py = IV X Hil|Lr(py and || Hy

|2(p) = [[Htll2(D)

as £ — oo, n — 0.
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3.8.2.2 End of the proof of Theorem 1.1 for the penetrable case

First, we prove the case ¢t < hp(p). From (), we have

7’7’71[:}’4(7’, t) = /Q (e ="V x Hyyp) - (V x Hyg)dz

7/(671VXHZ7/£)~(VXH:;@)CZI7]€2/ plHy o ?de.  (3.8.32)
Q Q

Note that (Eﬁg,H:g) satisfies
V X By —ikpH, =0 in Q,
V x Hy g+ ikyE, ;= ik(eo — €)Eyy inQ,

and rewrite it as

V x (e7'V x Ep ) — k*vEy s = k(€ — €0) Ey . (3.8.33)

Thus, we can use the same argument from the Remark 5.4 again to (), it is easy to see
1En,ellzz@) < CllEnellL2(p)-
In addition, we use the Maxwell’s equation and € — ¢g = —epxp, then we have

/(alv X Hy) - (V x Hyg)da — /(—ikem +ik(co — ) Eyy)) - (V x Hy o)da
Q Q

IN

c / B o[2da + C / \B, o2 da (3.8.34)
Q D

C/ |En7g‘2dz.
D

Thus, from (), Proposition 3.28, Lemma 3.30 and ()7 we can obtain

IN

1
= A GO TIE (1 %]

%I(curl,D) + ||H77’Z ”%—I(curl,D) :

From taking ¢ — co and n — 0, we have

1 o /
|*Ip(7', t)| < |7_ Z // e*2a7’lj(y )dy/ + O(T2672a67—)
T j=17/1v'[<é

+0(7%e7297) + O(773) + O(7 72N +3)

IN

o+ 0(726*2“57)

+O(726_2‘”) + 0(7_3) + O(T_2N+3).
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In particular, we get

1
limsup |=1,(7,t)| = 0.
T

T—00

Second, we prove the case t = hp(p).
Case 1. £- (71 —¢51)€ > Al¢]? for all € € R? for some A > 0.

From the inequality in Lemma 3.26, we have

it > /D[e(e— o) gV x Hy ) - (V x H, g)da — k2/9u|ﬁn}|2dx
2 [ s
Q
> C/ IV % Hyo2dw — || Hyol|32(0)-
D

By using the definition I,(7,t) := lim, o limy_, I;’Z(T, t), {H;} converges to H; in H(curl, K)

for all compact subset D € K € Q as £ — oo, n — 0, we have

—I (.t i
L}) > C7|1—Climlimsup ””—LZ)(;Z)
||v > HtHL2(D) =0y 00 Hv x Ht”LQ(D)

> COr(1- CTP%)

Hence, using Lemma 3.32 we deduce that for 7 > 1,
[o(7,hp(p))| = C >0

which finishes the proof.
Case 2. & (75" — 7~ 1)€E > A[¢]? for all € € R? for some A > 0.

Similarly, using the inequality in Lemma 3.26, we have

7_1[;”6(7', t) > /

(' = €YV x Hye) - (V x Hy)da — k?/ | Hy oz,
D Q

Then use the same argument as in Case 1 we can finish the proof.

3.8.3 Impenetrable Case

We give the proof of the second part of Theorem 1.1, since it is the hardest part. The other cases are
easy since we have proved it in the penetrable case. In addition, the upper bound is easy because of
the well-posedness and the LP estimate for the indicator function, but the lower bound is not easy
to see. In the following proof, we will use the layer potential properties for the exterior isotropic
Maxwell’s equation (with the Silver-Miiller radiation condition) and the perturbation argument

from the anisotropic Maxwell’s equation compared with the isotropic case. In the impenetrable
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case, we have chosen the oscillating-decaying solution as the following form
E, =G (w)eim{e—f(acw—t)Af =y + I‘fﬁ’,zb,t,N,w (z,7) + r;ff’t?N)w (2, 7),

S 4\ AB B B
H, = GlB(x)ez‘rz Se T(z-w—t)A; (x’)b + FX;,lb,t,N,w(x’ 7-) + TX;,lb,t,N,w(x’ 7'),

where Gk (z) = O(7) and G%(x) = O(7?) and Fi”jb’t’N’w satisfies () for |a| = j and rf;i),t,N,w
satisfies () for k =j.

We start by the following lemma.

Lemma 3.35. Assume that p is a smooth scalar function and 7y is a matriz-valued function. Let

(E,H) € H(curl; Q\D) x H(curl; Q\D) be a solution of the problem

VxE—ikpH=0 inQ\D,

VXxH+ieE=0 in Q\D,
(3.8.35)
vxE=f on 082,

vxH=0 on 0D,

with f € THY/2(0Q). If we put f, 0 = vx E, ¢ with {E, ,} is obtained by the Runge approzimation

property. Then we have the identity

1
—-Im) = —/ {IV % By o(@)* = K| By o (2) "}
D

- Q\D{IV X By o(2)]? — k?|Eyo(2)* Yz

/D {1V % Hy ()] — K3 Hy ()}

+ [ AV x Hyo(2)? — k2| Hypo(2)* Yo
Q\D

and the inequality
1 _
ey > / {1V Hy()? — K2 Hy o)} — B2 / R
T D OQ\D

where E:,Tg =F—-E,,; and I;T;g = H — H, ¢ are described in section 5.

Proof. Use the integration by parts and the boundary condition, we have

/ e_l(VxE)~(V><m)—k%E-ﬁdm:—(/ —/ Yik(v x H) - Ey dS = 0.
Q\D oo Jop
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Adding this to

mt = /a Q(” x By ) - (—ikH +ikH, )dS

/\ WV x By) - (VX E) 4 KB, ) - Bdu
Q\D

+/ Y X By o? — K2 (uEy ) - By eda +/ (v x Eyyg) - (—ikH)dS
Q oD

due to the zero boundary condition on 0D we have the last term is vanishing. O

From the above estimate, it only need to control the lower order term fQ\D |I§:¢(x)|2daz

3.8.3.1 Estimate of the lower order term Hj;z

Proposition 3.36. Let Q be a C' domain, D € Q be Lipschitz. Then there exists a positive

constant C' independent of (En’g,j{j;g) and (E, ¢, Hy o) such that

/Q V@) < OO x Fy el + el

for all p and s such that max{2 —0,4/3} <p <2 and 0 < s <1 with § > 0.

Proof. Step 1. Before proving the Proposition 3.36, we consider the anisotropic Maxwell’s equa-

tion in Q as follows:

V X Ep g —ikpty =0 in Q,
V X Hy ¢ +ikeE,, =0 in Q, (3.8.36)
VX Eyg = fy0 € TH Y/2(09) on 09,

where E; , and H, , are solutions of the anisotropic Maxwell’s equation. Since E;/,f =LE-LE,,,

H,,=H- H,,, we have

V X By —ikpH, ;=0 in Q\D,

V X Hyo+ikyEy¢ =0 in Q\D,
(3.8.37)

VXE";TZZO on 01},

VXImZ—Z/Xng on 0D.
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Step 2. Let (E¢%, H¢%) be the solution of the following well posed exterior Maxwell’s problem

BN
V x Ef% —ikHY =0 in R3\D,
V x H +ikESY, =0 in R3\D,
" "’ (3.8.38)
vx HpYy = —v x Hy,y on 0D,
BN, HyY satisfiy the Silver-Miller radiation condition.

We can represent these solutions E;Q and H;?”Z by the following layer potentials

“(n) = Vx /6 D) )ds(),

1
() = —%V x Hy%(z), = € R*\0D,

ciklz—yl

where @ (x,y) = , ,y € R3, z # y, is the fundamental solution of the Helmholtz

e —y
equation and f is the density. Now, we follow the arguments in section 2.1 of [27] and use the

same argument for the isotropic Maxwell’s equation ()7 then we have

5% e vpy < C{llv X Hyellropy + IV < Hye

|LP D }a
) (3.8.39)

I H % L2\ by < CLlv x Hyf

rr@p) T IV X Hyellzo(py }s

4 N
for p € (5,2]. Moreover, if we define &, ¢ = Ey — E;%, Hye = Hy o — Hy%, then &, o and Hy

satisfy the following Maxwell’s equation

V x Epp — ikpHye = ik(1— p)HS  in Q\D,

V X Hyo+ ikeEy o = ik(y — I3)ESS,  in Q\D,
! ! " (3.8.40)

vXHye=0 on 012,

vXEyp=—VX E on 0D.

Step 3. Now we decompose &, = 57% + 53,@ and Hy = 7—[,1]’5 + H%,e: where (5%’4, 7—[}7’4) satisfies

the following zero boundary Maxwell’s equation

V x &, —ikpHy = ik(L - w)Hg%  in Q\D,
V X M), +ikeE) , = ik(e — L)EL,  in Q\D, (3.8.41)

v X 57%’4 =v X ’H}M =0 on O(Q\D),
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and (53)5,7{727’5) satisfies

V x 8314 — iku?—[fﬂ =0 in Q\D,
V x H2 , +ikyE2, = in Q\D,
e e (3.8.42)
v XHfM =0 on 0f),
v X 572]7[ =-—vx EY on 0D.

First, we deal with the equation () by using the LP estimate in Q\D. Note that (5%757 7—[,1774)

satisfies (), then we have

V x (e71V x Eﬁ)e) - k‘Q’ySs’e =ikV x [(p=! - DH ) +ik(y — I3)EpY,  in Q\D,
v X Sé’z =0 on 9(Q\D),
and

Vx (e 'V x U} o) — k2 uH, , = ikV x [(Is — e ) EL] +ik(1 — p)HEY,  in Q\D,

v X 7—[}71 = on O(Q\D).

Now, if we use the same method in the proof of the Proposition 3.28, we will obtain

1€ dllonpy + IV X & dllonpy < CUH N o) + 1B L2005y}

(3.8.43)
11y ol Lo by + IV X H] olle@n) < CUES | Le@vny + IHS ] L2005y
4
for any 3<P < 2. If we combine () and () together, we have
1Hy oll o ny < C{Ilv X Hyellzoop) + IV X Hyell Lo () }- (3.8.44)

For (53’4, 7-[727’@), we apply the L?-theory for the anisotropic Maxwell’s equation, we get

117 ol 25y < NE2 el ereurtonpy < Cllv X E2 il gr-1/200) < Cllv X Ef%llg-1/2(50)-

Moreover, following the proof in the Lemma 2.3 of [27], we have
v x E%lla-12000) < Cllfllrop), VP > 1,
and

115, ell 22 apy < CLllv X Hy el ooy + IV X Hyell 2o (p) (3.8.45)
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4
for all p € (g, 2]. Recall that H, , = H}M + ’H?M, by using (B844I) and (|3.8.4d), then we have

[#0.¢]

r2\p) < C{llv x Hyellropy + IV X Hyollze(py } (3.8.46)

4 _
for all p € (5,2]. Combining (), () and Hy¢ = Hy o+ HY, we get

IN

| i)

[Hon.ell 2\ py + 1H 3%l L2 0\ D)
O\D

IN

C{llv x Hn,fH%P(BD) + IV x Hye

|20 ()} (3.8.47)

4
for all p € (5,2]. Finally, for s > 0 and p < 2 we have H*(0D) C L*(0D) C LP(dD), then we
reduce that

lv < Hy ellLrop)y < C|Hyel

rrD) < CllHy el ms(op)-

Note that the trace map from H*t'/2(D) — H*(9D) is bounded for all 0 < s < 1. So the estimate

() will become
/Q\D |Hn,l(x)|2d$ < C{”HW,EH?LISH/?(D) + [V x Hn,fH%p(D)}»

4
forallpG(g,Q] and 0 < s < 1. O

Remark 3.37. Now, if we take ¢/ — oco and € — 0, we will get

Jim lim sup /Q\D | Hye (@) 2z < CUUHE a2y + IV X Hillew i

=0 500

where H; is the oscillating-decaying solution defined on € (w).
We have the following lemmas for the oscillating-decaying solutions in the same way as we did

in section 5, so we omit the proofs.

Lemma 3.38. For1 < g < oo, 7> 1, we have the following estimates.

1.

/\Ht(m)|qu < qulz// e~ (W) gyl 4 O (79 Lem4a5T)
D

j=1 ly’|<o

+O(7%e7997) 4+ O(T_l) + O(T_2N+3)
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/|Ht‘2d$ > // 72a'rl i )dy Cre™ 2a6T
D ly’|<éd

—CT —2N+3

3.
/ |V x Hy(z)|%dz < 72‘1*12// el W) gy! 1 O (724~ 1g—aadT)
D =17 Iy'1<é
+0(7%e797) £ O(1e™ ") + O(772N+5)
4.

/ IV x Hy(z)*dz > CT // —2a7l(¥) gy!  Op3e—2a0T
b ly \<5

—CT@ cT C —2N+5

Lemma 3.39. We have the following estimate

A

—_— < 0(7_2), T> 1.
|V x Ht”%Z(D)

For p < 2, we have the following estimate

”V X Ht”%r)(D)

||V><Ht 2

<Cr' r r> 1
||LP(D)

Lemma 3.40. Ift = hp(p),then for some positive constant C, we have

liminf [ 7|V x Hy|?dz > C.
D

T—00

3.8.3.2 End of the proof of Theorem 1.1 for the impenetrable case

By using the same argument in the penetrable case, it is easy to see that

1
hmsup| I(m,t)| =0

T—00

for t > hp(p). Recall that from Lemma 3.35, we have

1 N
— I 1) > / {IV % Hyo(2)[* — k?|Hy,e()|* }dz — kQ/ | Hy (@) }da.
T D Q\D
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By using Proposition 3.32, we deduce

1
— ) 2 /D {IV x Hyo(@)? = K| Hy (@)Y — CUH w12y + IV % HilB (),

IHel[%.
H>/2(D) ,for 0 < s < 1. Set

IV x H|7

4
where 0 < s < 1 and - < p < 2. We want to estimate
3 12(D)

r = s+ 1/2, then we need to estimate

IH el ()
[V x Ht||2L2(D)

13
for r € (5, 5] Using the interpolation inequality, we have

| Hillize oy < CUHA 7 1Hellpys 0 < 7 < 1.

By the Young’s inequality ab < 5*“% NUp L % =1, we obtain

2 o~ 2 8" 2
[Hellzrrpy < C ||Ht||L2(D)+?HHtHH1(D)

o
< C [{(1—7~)5—(1—”* + 76" M HollZz(py + 16" ||VHt|\2L2(D)}. (3.8.49)

Recall that H; = G} (a:)eim'fe_T(”w_t)A?(‘”/)b—i—Fft’)lb’tyN’w (x,7) +rft’)1b’t7N’w (z,7) is a smooth func-

tion with GL(z) = O(7) and Ff:,lb,t,N,w satisfies () for |a| =1 and Tft)lb,t,N,w satisfies ()
OH, 8GlBeiTw-Ee—T(w-w—t)A? b

= +
(9l‘j 833]‘

for k = 1. If we can differentiate H; componentwisely, we will get
B,1 B,1
aFXt7b7t7Naw arXtybﬂf,NWJ

aéﬂj E)xj

and

| PNA
8xj

2,
” g,By’Y)H HL2
.
2t /
A,B,v,
|—==2E 2 py < er

Ox;

32(p) < C7t fp o270 0da,

(D) < 6771/26757'.

—N+3/2
Then by using the same method as before, it is easy to see that

3
OH;
IVHIp) = Y1530
j=1

IN

crt / e 2@P=dy + erle 2T 4 or2NH3,
D
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For t = hp(p), we have

||VHt||%2(D) < 07'4/ e 20@Pr=ho(P)) gy 4 crlem 20T 4 2N H3
D
< 07'4(/ +/ )efQG(I'pth(p))dx—|—c7’716727(s*t)“
Ds D\Ds
Ler—2N+3
m s
< crt Z// dy'/ e~ 20TYs g 4 Crte 20T
j=1""1v'[<é Li(y")
Ler—le20T | op—2N+3
< 07'3 Z // 6*20«7'1]' (y/)dy/ _ 07_36720,67-
j=1"/1v'[<é
+O73e7200T 4 orleT20m 4 o T2NH3, (3.8.50)

From Lemma 3.38 and ()7 we have

IV H. |7
# <C. (3.8.51)
[V x HtHL2(D)

Combining Lemma 3.38, (B84d) and (B85]J) we obtain

||Ht||%{r D —(1—p)"t 1 HHtHQH D
o By, = Ol e e
o IVH||Z:py

[V x Ht”%z(p)
< C{1=r)5 7 406" YOG + O

We now choose p € (%, 2), combining (5.8.45), (ES4§) and (5851) we have

1 (N4
SO Wl e I < Hilg,
T~ o 2 —c —C2 —c3
[V % Ht||2L2(D) [V x HtH%Z(D) IV x Ht”%z(p) [V x HtH%Z(D)

C—c{(l- 7”)5_(1_”71 + réTil}O(T_Q) —Orm gt

v

v

-1 1
C —cord” 1, 3 <r<l 7>1.
Hence from Lemma 3.40, we have

liminf|I,(7, hp(p))| > ¢ > 0.
T—00

3.8.4 Reconstruction algorithm

1. Give w € 5% and choose 1,(, & € S? so that {n,(,&} forms a basis of R? and ¢ lies in the

span of 1 and (;
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. Choose a starting ¢ such that Q C {z-w > t};

. Construct the oscillating-decaying solutions for the anisotropic Maxwell system from the

reduction strongly elliptic system;

. Define a suitable indicator function I,(7,t) and the support function hp(p) = infyep @ - p;
. If I,(7,t) = 0 as 7 — oo, then choose t' > t and repeat (iv), (v), (vi);

I I (7, t') -+ 0, then t/ =ty = hp(p);

. Varying p € S? and repeat previous steps again, we can determine the convex hull of D.
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Chapter 4

Strong unique continuation for a
residual stress system with (GGevrey

coeflicients

We consider the problem of the strong unique continuation for an elasticity system with general
residual stress. Due to the known counterexamples, we assume the coefficients of the elasticity
system are in the Gevrey class of appropriate indices. The main tools are Carleman estimates for
product of two second order elliptic operators.

First, we give some properties of the strong unique continuation property (SUCP) for the second

order elliptic operators with Gevrey coefficients.

4.1 SUCP for the elliptic equations

Let A;jj(2)0z,, be a second order uniformly elliptic differential operator and A;;(z) satisfies V€ €
R™,
NEP? < Aij(2)&€; < A€, (4.1.1)

for some 0 < A < A. Recall that we have the following scalar second order elliptic inequalities

|3 A (@), ul < Cllul + Vul} (41.2)

i,j=1

have the SUCP if the coefficients A% (x) are real, Lipschitz continuous and satisfy () If u
satisfies ({.1.9) and u satisfies

sup r_N||u||Lz(B7,(O)) < 00
r<é
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for all N, then u vanishes near 0.

For higher order elliptic differential equation, we consider the following product form A(x) :=
Ap - -+ Ap (using the Einstein convention), where all A,’s satisfy (), which are uniformly elliptic
operators such that

Apu = Afj(:zr)a2 u

xTixry; "

We assume that all coefficients are in the Gevrey class G° (we will define in the later section) and

Ja > 0 such that the eigenvalues p; < g < --- <y, of Afj(x) satisfy

n =l (4.1.3)

H1

uniformly in x and ¢. The following is the main result about the SUCP for the higher order product

elliptic equation.

Proposition 4.1. Let G* be the Geuvrey class of order s. Let Ag(x) € G* satisfy ) for all
{=1,2--- N and o > 0 satisfying ) at x = xg for some xog € ). Moreover, if s > 0
satisfies

1
s<1+ —,
@
then SUCP holds at x = xg for the following differential equation
Au=AyN---Aju= Z a,@aﬁu
EINES
provided that all ag € G°.

In order to prove the Proposition, we use the Carleman estimates for the second order elliptic

equation. Recall that for the second order elliptic equation
Av = Z a’m (Aij ($>8jv),
)

with A;;(z) € G°, we have the following Carleman estimates holds

2
D || ORI DI | L < el e A 2, (4.1.4)
j=0
where ¢ is independent of v. For detailed proof, we refer readers to [0]. Then we can iterate
the above estimates to higher order elliptic equation, which has the product form A = Ay --- A3

with each A,’s are second order elliptic operators. In Proposition 4.1, we can observe that the

N
derivative order of the right hand side do not exceed F}J . The reason is that we have used the
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iteration argument from the original Carleman estimates for the second order elliptic equations.
Since the highest power of 7 in left hand side of () is 73/2 after iteration N times, the number

N
of derivative cannot be bigger than 37

4.2 Basic properties for the Gevrey class

First, we give the definition of the Gevrey class.
Definition 4.2. We say that f € C°°(Q) belongs to the Gevrey class of order s, denote it as
G*(9), if there exist constants ¢, A and multiindices 5 such that

187 f| < cAlP18)1* in Q.

To simplify the notation, from now on, we use G* to denote G*(Q).
Note that the Gevrey class contains the following properties:

1. Gevrey regularity: If u is a solution of an elliptic equation with Gevrey coefficients G*, then

u also lies in the Gevrey class G*.
2. |u| < ce”1*I"" near x = xq for some zq € Q and u € G* will imply u vanishes near = = z.

In the following, we list basic properties for the Gevrey class which will be used in the following

sections.

Lemma 4.3. Let U be a bounded open set and suppose that 0 € U, s > 1 and f € G*(U) satisfies
o’ f(0)=0

for all multiindices 5. Let s — 1 < p, then

7|x|*1/f’

[f(z)] <e

near x = 0.

Lemma 4.4. We have
e 1™ e go(R?)

provided 1 4+ p = s.

Lemma 4.5. Let

P(z,D)u=finU
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be an elliptic differential system with coefficients and right had side in the Gevrey class G*(U).
Then u € G*(V) for all bounded V € U.

Proof. See [{], Proposition 2.13, we know that the Gevrey class are good classes of elliptic regularity.

O

4.3 SUCP for the residual stress system with Gevrey coef-
ficients

Our main result is to prove the strong unique continuation property (SUCP) for the isotropic
elasticity system with residual stress under appropriate conditions. We formulate the mathematical
problem in the following.

Let € be a connected open domain in R? and consider the time-harmonic elasticity system
V.o +rK?pu=0in Q, (4.3.1)

where o = (0y;)7 ,_; is the stress tensor field, x € C is the frequency and p = p(z) > 0 denotes
the density of the medium. The vector field u(x) = (u;(z))3_; is the displacement vector. Suppose

that the stress tensor is given by

o(z) =T(x)+ (Vu)T(z) + Nz)(trE)I + 2u(z)E,

Vu+ Vu' e . .
where E(z) = — s the infinitesimal strain and A(x), u(x) are the Lamé parameters. The

second-rank tensor T'(z) = (t;;(x))?

7 j=1 s the residual stress and satisfies

tij(x) =tj;(x), Vi,j =1,2,3 and € Q

and

V-T=>Y 0jt;;=0inQ, Vi=1,2,3.
J

If we define the elastic tensor C' = (Cijk1)} ; ;=1 With
Cijkr = Aij0r + (05k050 + 0ju0it) + tj10ik,

then () is equivalent to
V- (CVu) + k*pu =0 in Q.
We concern the SUCP for (), ie., if u € HE (Q) satisfies () and wu(x) vanishes to
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infinite order at a point xg € 2, then v must vanish identically in Q. Without loss of generality,

we assume zg = 0.

Historical notes

A Dbrief history of the results on the (strong) unique continuation for ( ) is in the following. In
[60], Nakamura and Wang proved the unique continuation property for () under the condition
max; ; ||[tij]loo is small and T'(z), A(z), p(xz) € W2 and p(x) € W', In [36], Lin proved the
SUCP for ({.3.1) under the assumptions that 7'(0) = 0, max; ; ||¢i;]|oc is small, A(x), u(z) and p(x)
are in C2. In addition, in [63], Uhlmann and Wang proved unique continuation principle for (4.3.1))
under the conditions T'(x), A(z), u(z) € W2, p(z) € W1 and general residual stress.

Motivated by [63], we want to prove the SUCP for () with arbitrary residual stress. In this
paper, we will give a reduction algorithm to transform () into a special fourth order elliptic
system. The main difficulty is that when T'(0) # 0, the leading terms of () will not be the
Laplacian at zero, so we cannot use a perturbation argument to derive suitable Carleman estimates
in order to obtain the SUCP. In [4], Alinhac and Baouendi proved the SUCP for any fourth order
operator with smooth coefficients verifying P = QQ2Q1 + R, where @Q;’s are second order elliptic
operators with Q;(0,D) = —A for i = 1,2. Moreover, in [32], Le Borgne proved the SUCP for
fourth order differential inequality with @Q;’s are Lipschitz continuous and Q;(0,D) = —A for
i = 1,2. In [B6], Lin introduced v = V - v and w = V x u to transform () into a second
order differential system, but the system is weakly-coupled, i.e., the principal part of the second
order derivatives are not diagonal. Moreover, Lin also introduced a fourth order elliptic system
P = AQ; with Q;’s are second order elliptic operators with @;(0,D) = A for ¢ = 1,2 and give
another approach to derive the SUCP. For more details, we refer readers to [36].

In this note, our transformation will reduce () into a fourth order principally diagonal
elliptic system with the same leading coefficients. The key observation is that the leading terms
of the fourth order elliptic system are the same. Notice that principally diagonal strongly elliptic
systems allow the application of Carleman estimates for scalar operators since these estimates are
flexible with respect to perturbations by lower order terms. Therefore, it is possible to derive
suitable Carleman estimates for the fourth order elliptic system.

In general, the SUCP doe not hold even the coefficients are smooth, Alinhac gave a counterex-
ample in [3]. Thus, we consider all the coefficients in the Gevrey class and we will use the Carleman
estimates proved in [J] for the scalar higher order elliptic equations in order to prove the SUCP
for the new fourth order strongly elliptic system.

We assume all the coefficients T'(z), A(x), u(z) and p(x) lie in the Gevrey class G*. We are

interested in the SUCP for (4.3.1)) with Gevery coefficients, which means if u satisfies ({.3.1]) and
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u is flat at the origin in the sense that
sup 7N [lull L2 (0, < 00 (4.3.2)
r<g

for all N, then u vanishes near the origin. If « is smooth, the condition ({.3.2) is equivalent to all
partial derivatives of u vanishing at 0.

The SUCP for the second order elliptic equations in the Gevrey class were studied in many
literature [{7, 8, 9, B4]. In 1981, Lerner [34] considered a second order elliptic operator L in R? with
simple characteristics and the coefficients in the Gevery class of order s. Lerner proved that if s is
smaller than a quantity depending on the principal symbol of I5(0, R?), then L has the SUCP near
0. In [§], the authors extended Lerner’s result to RY, which means the SUCP holds for a second
order elliptic operator L in RY with the Gevrey order s smaller than a quantity depending on the
principal symbol of I5(0, RY).

Recall that the strongly elliptic condition is given as: there exists ¢y > 0 such that for all
vectors € = (§)3_,,

Zaij(x)fifj > col€?, Vr € Q.
1j

In this paper, we assume P; and P, are two strongly elliptic operators, where

Pi(z,D) = Y aj(2)07,, =Y (ubjk +t;x)d2 ., (4.3.3)
jk jk

Py(x,D) = Y a(2)07 ., = (AN +21)6% + ;)02 ,, (4.3.4)
gk gk

with aj,(z) = p(@)djk + tjr(z) and a5, (x) = (M) + 2u(2))d;1 + tjx(x). Further, there exists

co > 0 such that for any & = (£,)3_; € R?

doaj @& = D tinbi&k + plél* = colél? (4.3.5)
Jk jk
Z aZp(2)&& = Z tin€i&r + N+ 2) €7 > col€? (4.3.6)
jk jk

for all z € Q, note that (aﬁk(x))?7k=1 is a symmetric matrix for £ =1, 2.
We also assume that there exists a constant a > 0 such that the eigenvalues )\f{ < )\g < )\g of

(aﬁk(O)) satisfying

A5 — A

o>
0
Al

(4.3.7)

and

1
s<1+= (4.3.8)
«
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for £ =1,2.
The following theorem derives the SUCP for () when all the coefficients lie in the Gevrey

class G*.

Theorem 4.6. Let the residual stress (t;;(z))?

i j—1, the Lamé parameters \(z), p(x) and the

density of the medium p(x) be in the Gevrey class G*(Q) with s satisfying ) Then for all
€ H? .(Q;R?) solving ) and for all N >0

/ lu|?dz = O(RN) as R — 0,
R<|e|<2R

then u is identically zero in Q.

This paper is organized as follows. In section 2, we will reduce () into a fourth order
principally diagonal elliptic system. We use the ideas in [36] and give more detailed transformations.
In section 3, we will use the property of the strongly elliptic system in the Gevrey class, then we
can get the asymptotic behavior of u near 0. In section 4, we state the SUCP for the fourth order

elliptic system and prove the theorem by using the Carleman estimates.

4.4 Reduction to a fourth order strongly elliptic system

In this section, we want to transform (4.3.1)) into a principally diagonal fourth order strongly elliptic

system. As the calculation in [36]. Let
Ru =V - (VuT) (4.4.1)

with Ru = ((Ru)1, (Ru)2, (Ru)s), where (Ru); =}, tjkajzkui, 1=1,2,3.
As in Section 2, we set U = (u, v, w), where v = V-u, w = V x u and u satisfies () From
(), (), let P; and P be two elliptic operators

Pi(z,D) = R+ pA,

Py(z,D) = R+ (A+2u)A,
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then (u,v,w) satisfies

Pl(x,D)u = A171(u,v)—|—A170(u,v), (442)
Py(z, D)o = =Y V(tj) hu (4.4.3)
7k

+As1(u,v,w) + Az o(u, v, w),
Pz, D)w = =) V(tj)x du (4.4.4)
ik

—|—A3,1(u, v, w) + A3,2(u7 v, w)’

where Ay ., are m-th order differential operators. For more details, we refer reader to [36].

Notice that u € H2 (£;R3) satisfies (1.4.9) and v = V -u € H}

loc

() and Vv € L2 (Q), then

loc

the right hand side of () lies in L?

loc

(Q). Therefore, we use the standard elliptic higher order
regularity theory for (4.4.9) (see Theorem 2.2 in [[13]) and the strongly elliptic property, then we
have u € H} (Q;R3). Iterate the procedures, we obtain u € HF (;R?) Vk € N (which implies
v,w € HE () Vk € N).

Let P(z, D) be the principal part of the system to get
P(z,D)U = (Py(x, D)u, Py(x, D)v, P (z, D)w)?,

where U := (u,v,w)! : Q@ — R7. Component-wise, we have

(P(x,D)U); = plu;+ Y tjdpui, i=1,2,3
jk
(Px,D)U); = (A+2m)Av+ Y tdv, i=4
jk
(P(.T, D)U), = ,UA’LUZ‘_4 + Z tjkﬁjzkwi_4 1=25,6,7.
Jjk

Now, let us take the second order elliptic operator Ps(x, D) on (f.4.9), we get

PQPl(,T,D)’LL = Pz(l‘?D)[AlJ(u,?)) + Al,o(u,v)] (445)

3
= Z B m(u,v),
m=0

where Bj ,,, is an m-th order differential operator. Similarly, we can take P;(z, D) on () and
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Py(x,D) on (), then we obtain

PyPy(z, D)v (4.4.6)
= Pi(x,D)( ZV (i) Jku + Pi(z,D)(Az1(u, v, w) + Az o(u, v,w))
3
= —Pi(z,D)(Y_ V(tje) - OFw) + Y Bam(u,v,w),
Jk m=0

and

= Py(x, D)( Z V(tk) ku) + Po(z, D) (A(u,v,w) + As 2 (u,v,w))
= —Py(2,D)(>_ V() x Ofu) + Z Bs  (u, v, w).
Jk m=0
Now, if we interchange P;, P» on (), and use

P,P, = PP, — [P P,

where [Py, P;] is the commutator of two second order elliptic operators, then [Py, Ps] is a third

order differential operator. Thus, () becomes

PyPy(z, D)o = —Pi(x, D)) V(tx)- Oul (4.4.8)
ik

where E;; is an m-th order differential operator and

3
Z B (u, v, w) Z By m (u,v,w) — [P1, P3](z, D)v.
m=0
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Now, combine (|44d), (|447|) and (|44§) together, we have

U 0
PP@D) | v | = =| PieD), Vit - o4 (4.49)
w Po(x, D)[3_ 1, V(tje) x aj?ku]
s By (u,v)
+2 | Bam(u,v,w)
m=0

Bs i (u, v, w)

Now, for P, o V(tig) - 0%.u) in m , recall that Py (x, D) = R+ uA and Ru = V- (VuT),
ik J Jk

then we have

(z, D)[ Zv k) - %] = Zv ik) - O5u) + uA | V(te) - Ou). (4.4.10)

J
Jk

For the second term of ()7 by using the vector identity Au = V(V-u) -V xVxu = Vo—V xw,

it is easy to see

ZV Jk) Jku
—Zv (tji) - 0% (Au) + Az 3(u) + Az (u)
_Zv k) 0% (Vo — V x w) + Ag3(u) + Ago(u)

= Bgyg(u7 v, U}) + AQ’Q(U),

where Z;;L and Eg\y/n are m-th order differential operators and

nguvw ZV k) Vv—wa)+A23()
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For the first term of (), we have

ZV ]k ]ku
- thmaZm Zv Jk jku )

= V() 1D tem 03 0%ul + Ca3(u) + Caz(u)

Im

—ZV i) 0> tem07,u) + Daa(u) + Daa(u)

m

= " V(t;r) - Ru+ Daz(u) + Dy (u),
jk

and use ()7 we have Ru = —pAu + Aq 1, (u,v) + A1 0(u,v), we have

ZV k) jku

- ZV k) - O (—pAu+ Ar 1 (u,v) + Ay o(u, v)) + Dag(u) + Do o(u)
3
_Zv k) OB (—pu(Vo =V x w)) + Y Baz(u,v)
m=0

= Z &?(U,’U,W)
m=0

where 6’;;, l/);;“ E’;:L and 1/5’;; are m-th order differential operators. From the above calculation

and (), we have

3
PyPy(z, D)= By m(u,v,w), (4.4.11)

m=0

where .EQ:L are m-th order differential operators. Similarly, for Py (Z ik V(tk) X afku), it is easy

too see that

A V(tr) x 0%u) = Az 3(u,v,w) + As 2(u),

where Zg:; is an m-th order differential operator. Similarly, for R(>_;, V(t;x) X 8J2ku), component-
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wise, we have

R(O>_ V(tjk) x Ou)
Jk i

- Ztemaﬁm Zv Jk )

m

=" (V) % tem0Z,0%u)i + By s(u) + Bsa(u)

tm gk

—Z tji) X O3 (D tem O )i) + Cap(u) + C2(u)

m

= Z 92, Ru); + D3 3(u) + D3 2(u)

and use () again, we obtain

R(O>_ V(tje) x Ou)
ik

B

3
=" (Vi) x 3 -u(Vo =V xw)]), + > Esm(u,v)
13 m=0

3
= Z F3,m(u7 v, ’LU),
m=0

where B3 m, C3 m, D3.m, Esm and F3 ., are m-th order differential operators.

Therefore, we transform the equation () into

PP (z, D)w = Z @(u,v,w), (4.4.12)

where E/371 are m-th order differential operators. From (|4.4.1]J), (|4.4.1ﬂ) and (|44Q), we can obtain

—

U X By (u, v, w)
PyPy(z,D) | v = Z m(u,v,w) ;
m=0 —
w Es m(u,v,w)

with E‘g; are m-th order differential operators, or equivalently,

3
PPU =Y En(U), (4.4.13)

m=0

with E; = (@n,@,@)t is an m-th order differential operator and U = (u,v,w)?, which

means this fourth-order differential equation has the same leading term P, P; and all coefficients of
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() lie in G*. Moreover, use the elliptic regularity for () with Gevrey coefficients, then
U € G* by Proposition 2.13 in [5].

4.5 The asymptotic behavior of u near 0

As in Section 2, we set U = (u,v,w)!, where v = V-u and w = V x u. If we can prove that U
solves () and satisfies the SUCP, then u solves () and fulfills the SUCP. In the following

lemma, we describe the asymptotic behavior of u near 0. Recall that if u € HZ _(€;R?), then
u € C*(Q) by the standard elliptic regularity. Thus, Vk € N, we can consider u € H, lkoc(Q; R3) for

arbitrary k € N in the following results.

Theorem 4.7. [36] Let u be a solution to ) and for all N >0
/ lu|?dz = O(RN) as R — 0.
R<|z|<2R
Then for |B] < 2, we have
/ |RPIDPu|?d2z = O(RN) as R — 0.
R< x| <2R

Proof. The lemma was proved by the Corollary 17.1.4 in Hérmander [15]. By using the Theorem

4.7, we will get the following Corollary. O

Corollary 4.8. Let U = (u,v,w)! withv =V -u and w =V x u. Then for || <1, VN > 0, we
have

/ |DPU2dz = O(RN) as R — 0. (4.5.1)
R<|z|<2R
In fact, we can get higher derivatives for || > 2 in the Corollary 3.2.

Lemma 4.9. [19] If U satisfies a fourth order strongly elliptic system )

and U satisfies VN > 0,
/ \U]2dz = O(RY) as R — 0.
R<|z|<2R

Then it follows that if | 5| < 4 that

/ IRIPI DAU2dz = O(RN) as R — 0. (4.5.2)
R<|z|<2R
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Proof. Since U satisfies (1.4.13), a fourth order strongly elliptic system, by using the Corollary
17.1.4 in [15], we can obtain ({.5.2). ]

Remark 4.10. In the section 3 of [36], the author proved () holding for |5] < 2. From Lemma
4.9 and the coefficients of P are in the Gevrey class G°, we have U € G* and

/ |DPU|2dz = O(RN) as R — 0,
lz]<R

for |8] < 4 and VN > 0.

4.6 Proof of the main theorem

In this section, we want to prove Theorem 1.1. If U = (u,v,w)! satisfies () and the SUCP,
then the SUCP holds for u, where u fulfills ([£.3.1).

4.6.1 SUCP for U

In the following theorem, we will prove the SUCP for U.

Theorem 4.11. Suppose that the second order elliptic operators P, satisfies ), ),

) and ) for £ =1,2. a > 0 satisfies ) at x = 0 and s satisfies ) Let

P = PPy be a fourth order elliptic operator. Then the SUCP holds for the elliptic system

PU =Y agd’U (4.6.1)
181<3

provided the coefficients of Py are in the Gevery class G*.

Proof. The proof follows from [g] and section 1. To prove Theorem 4.1, there are two steps. First,
Gevrey regularity of the elliptic system implies the solution U of () is in the Gevrey class G*

(see Proposition 2.13 in [§]). Use the vanishing order assumption and U € G*, we have
U] S e, (4.6.2)

near x = 0 and for some constant v > 0. Second, we can show that () implies U vanishes near
0 by using appropriate Carleman estimates. In addition, since U vanishes near 0, by the results in

63|, we have U = 0 in €. O
[63],

Remark 4.12. We give the Carleman estimates which were used in the proof of Theorem 4.1 in the

following section.
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4.6.2 Carleman Estimates

We are going to derive the Carleman estimates with the weight e1*I”" for the fourth order elliptic
operator P = P, P in this section. The following Carleman estimates for the scalar case has been
proven in [8] and [9]. Similar to the scalar elliptic equation, we can derive the following Carleman

estimate for the special elliptic system.

Proposition 4.13. Let Py(z, D) = 3, a?k(x)afk be a principally diagonal second order elliptic
operator where afk(m) eGs satz’sﬁes(14.3.j), (143/,4), (1435‘) and ) fort=1,2. a > 0 satisfies
) at x = 0 and s satisfies ) Then there exist 79 > 0 and rqg > 0 such that for T > 1

and for all V € C°°((B,,\{0});R"), £ = 1,2, the following inequality holds:

7'/ |D? (|| 271" V|2 da +T3/\x|_4_30‘627‘”‘7QV|2daz
< / |71 (P V) P .
Proof. Since Py is the principally diagonal second order elliptic operator for £ = 1, 2, we can directly

follow the consequences in [J] and use the proof in [§]. For more details and classical results, we

refer readers to [[14, p9]. O

By using the integration by parts, we can get a stronger inequality in the following. For more

details, we refer readers to [J] and section 3, then we have

2
ZT372]’/62T|x|’“|x|a|z|2(j72)(1+a)‘Djv|2dl,
=0

< / 271l PV 2,

with Py satisfying all the assumptions in Proposition 4.2 for £ = 1,2. Note that the right hand
side of () and () involve second order derivatives of u, we cannot apply the Carleman
estimates for the second order differential systems directly to get the SUCP for U. Since we have
transformed () into a special fourth order elliptic system with the same leading operator, see

(), then we can derive the Carleman estimates for the operator P = P, P;.

Corollary 4.14. [9] Let

A= ap(@)d:,,
ik

be a second order strongly elliptic operator with a;; in the Gevrey class G°. Suppose a > 0 satisfying
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) at © = 0. Then there exists 1o such that for all |s|, k <v and T > 79

k+2
S / |20 | 2527 1el | DIV 2ty (4.63)
j=0

k
SO0 [ e~ D V) P

j=0
Proof. See [9] and section 3. We can use the induction hypothesis to prove the Corollary 4.3. O

For the fourth order elliptic operator PU = P, P,U is the product of two second order elliptic
operators which satisfies (), where U = (u,v,w)" and Py(z, D)U = >, aﬁk(x)(??kU. Recall
that afk € G*® and a > 0 satisfying () uniformly in x and for ¢ = 1,2, then we have the

following key estimates.

Proposition 4.15. We have the following Carleman estimates
4
27_672] / ‘$|7876a|1’|2j(1+a)627|x| O|DJV|2d’JJ < C/GQT‘Il & ‘PV|2d’l}
j=0
Proof. Apply the Corollary 4.2 iteratively, then we have

4
ZTG—Zj/‘$|_8—6a|x|2j(1+a)€27|x\7“|Djv|2dx (4.6.4)

=0

2
§ZT3_2]‘/|x|—4—3a|x|j(1+a)e27—|$ra|Dj(P1V)|2d$

Jj=9

~

< /eQT\zl’“\(nglvn?dx - /e2flf|*“|PV\2dx,

where the first inequality is obtained by () withk =2,s=—4— ga and the second inequality
is obtained by () with k =0, s = —2(1 4+ «). For more details, we refer reader to see [9]. O

Now, we want to prove the SUCP for ({.3.1). Here we prove the theorem 2.2.
Proof of Theorem 4.1: The operator P = P, P; is strongly elliptic in the Gevrey class G*, then U

is also in the Gevrey class G*°. Therefore, we have the vanishing of infinite order implies that
u S el

for some v > a. Let x € C§°(R?) be such that y = 1 for |z| < R and x =0 for |z| > 2R (R > 0 is
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small enough). Then we can apply () to the function xU, which means

4
cy THW/ 2| @B1=6)(1+a) 2 2rlsl =) DAY |24y (4.6:5)
18=0 lol<R

< /627|I‘7G|PU\2dx

< / ¢71el ™" | PU Pdz + / e27lel ™ | () 2
lz|<R |z|>R
3 ——
<[ eI B [ PGP
|z|<R m—0 |z|>R

by using the reduction elliptic system ()
If 7 is large and R is sufficiently small, then () implies

4
oy TMIB'/ || GIB1=0) A+ a)=2,27121™%) DT 2y (4.6.6)
18=0 ol <R

< / 27l | Py 2,
|z|>R

for some constant C' > 0. Notice that e™l*I™" > e™™" for |z| < Rand e7/*I"™" <™ for |z| > R.

Therefore, we can use () to obtain

4
¢y 76—2|ﬁ|/ (2|@1B1=6)(140) =2 ATy 24,
181=0 |zl <R

< /lxbRP(xU)IQ-

Let 7 — o0, we get U = 0 in {|z| < R} for R small, which implies v = 0 in {|z| < R}. Furthermore,

by using the unique continuation principal in [63], we can obtain w = 0 in 2, then we are done.
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Chapter 5

Future work

5.1 Fundamental solutions for the anisotropic Maxwell sys-
tem

The last chapter of this thesis is going to list out related opening problems. We list some future
works which related to this thesis in the following. In the above chapters, we have already men-
tioned the enclosure-type method for the anisotropic medium. We gave reconstruction algorithms
for both anisotropic elliptic equation (Chapter 2) and anisotropic Maxwell system (Chapter 3).
Recall that for the enclosure-type method, we have two tools: One is to define a suitable indicator
function and the other is to construct appropriate special solutions for the mathematical model.
In Chapter 2 and 3, we have constructed oscillating-decaying (OD) solutions for both anisotropic
elliptic equation and anisotropic Maxwell system. The drawback of this special type solutions is
that we need to use the Runge approximation property to find a sequence of solutions defined on the
whole domain and to satisfy the same equation which approximates to OD solutions. It looks like
the Runge approximation property used in the thesis is not constructive. If we can make the proof
in a constructive way, then this may be useful if one tries to implement the method numerically.
The Runge approximation has a constructive version. Indeed, we can use the density property of
the single layer operator between appropriate Sobolev spaces (as L2-spaces) and the well-posedness
of the forward problem. This argument can be used as soon as we have the corresponding fun-
damental solution and the unique continuation property of the Maxwell model. If ¢ and p are
isotropic, this is of course possible. In the anisotropic cases, we need the construction of the
fundamental solution (and justify its type of singularities) in addition to the unique continuation
property. We could not find these properties in the literature, so we need to do more construc-
tive work for the fundamental solutions. One of our future work is to construct the fundamental

solutions for the anistropic Maxwell system.
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5.2 More L? estimates for the anisotropic Maxwell system

For the anisotropic Maxwell system in Chapter 3, we only consider the electric permittivity to be
allowed to have the jump and the anisotropy and the magnetic permeability pu is a scalar function.
It is known that the same method would work when the role of the two parameters exchange.
Recall that we have defined the impedance map as Ap : v X H|gg — v X Flgg and we can allow
€ to be anisotropic and to have jump discontinuity. If we exchange ¢ and u, we need to use the
other impedance map 1% :v X Elgg — v X H|pq. Indeed, we needed to assume that the other
coefficients are smooth. The technique is due to the type of LP estimates we are using. Then, we
are able to remove these assumptions by using the Layer potential techniques. and we could test
this idea for the scalar divergence form PDE model and it works. Hence, we do hope that this idea

can go smoothly to Maxwell as well. We are working on it.

5.3 Strong unique continuation for the general second order
elliptic system

In many literature, we know the strong unique continuation property (SUCP) holds for the scalar
elliptic equation case. However, for more general elliptic system, we do not know much about the
result. In Chapter 4, we gave a very special method to derive the SUCP for the residual stress
system with Gevrey coefficients. We use the “product” of two elliptic operators to derive the
SUCP for this system. Our future work is try to use similar method to derive more SUCP for
more general elliptic system with Gevrey coefficients. In [§], the authors derived the SUCP for the
second order elliptic operator P(x, D) with complex coefficients. We want to generalize their ideas

to second order elliptic system without any assumptions.
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