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Abstract. We develop an enclosure-type reconstruction scheme to identify

penetrable obstacles in acoustic waves with anisotropic medium in R3. The
main difficulty of treating this problem lies in the fact that there are no complex

geometrical optics solutions available for the acoustic equation with anisotropic
medium in R3. Instead, we will use another type of special solutions called

oscillating-decaying solutions. Even though that oscillating-decaying solutions

are defined only on the half space, we are able to give necessary boundary inputs
by the Runge approximation property. Moreover, since we are considering

a Helmholtz-type equation, we turn to Meyers’ Lp estimate to compare the

integrals coming from oscillating-decaying solutions and those from reflected
solutions.

1. Introduction. In the study of inverse problems, we are interested in the special
type of solutions for elliptic equations or systems which play an essential role since
the pioneer work of Caldéron. Sylvester and Uhlmann [13] introduced complex
geometrical optics (CGO) solutions to solve the inverse boundary value problems
of the conductivity equation. Based on CGO solutions, Ikehata proposed the so
called enclosure method to reconstruct the impenetrable obstacle, for more details,
see [2, 3, 4]. There are many results concerning this reconstruction algorithm, such
as [9, 15]. The researchers constructed CGO-solutions with polynomial-type phase
function of the Helmholtz equation ∆u + k2u = 0 or the elliptic system with the
Laplacian as the principal part.

When the medium is anisotropic, we need to consider more general elliptic equa-
tions, such as anisotropic scalar elliptic equation in a bounded domain Ω ⊂ R3,

∇ · (A0(x)∇u) + k2u = 0, (1.1)

where A0(x) = (a0
ij(x)), a0

ij(x) = a0
ji(x), and we assume the uniform ellipticity con-

dition, that is, for all ξ = (ξ1, ξ2, · · · ξn) ∈ Rn, λ0|ξ|2 ≤
∑
i,j a

0
ij(x)ξiξj ≤ Λ0|ξ|2 and

x ∈ Ω. In two dimensional case, we can transform (1.1) to an isotropic equation by
using isothermal coordinates, then we can apply the CGO-solutions for this case,
which can be found in [14]. When Ω ⊂ R3, we cannot directly transform (1.1) to
an isotropic equation as we do in R2, thus we need to use the oscillating-decaying
solutions in our reconstruction algorithm. In [10], the author introduced oscillating-
decaying solutions for the conductivity equation ∇·(γ(x)∇u) = 0 with the isotropic
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conductivity.

We make the following assumptions.

1. Let Ω ⊂ R3 be a bounded C∞-smooth domain and assume that D is an
unknown obstacle with Lipschitz boundary such that D b Ω ⊂ R3 with an
inhomogeneous index of refraction subset of a larger domain Ω.

2. LetA(x) = (aij(x)) andA0(x) = (a0
ij(x)) be symmetric matrices with aij(x) =

a0
ij(x)+ãij(x)χD, where each a0

ij(x) is bounded C∞-smooth, Ã(x) = (ãij(x)) ∈
L∞(D) is regarded as a perturbation in the unknown obstacle D and Ã(x)ξ ·
ξ ≥ λ̃|ξ|2 for any ξ ∈ R3 and x ∈ D with some λ̃ > 0. Further A(x) satisfies
λ|ξ|2 ≤ A(x)ξ · ξ ≤ Λ|ξ|2 for some constants 0 < λ ≤ Λ.

Now, let k > 0 and consider the steady state anisotropic acoustic wave equation
with Dirichlet boundary condition{

∇ · (A(x)∇u) + k2u = 0 in Ω

u = f on ∂Ω.
(1.2)

For the unperturbed case, we have{
∇ · (A0(x)∇u0) + k2u0 = 0 in Ω

u0 = f on ∂Ω.
(1.3)

In this paper, we assume that k2 is not a Dirichlet eigenvalue of the operator
−∇ · (A∇•) and −∇ · (A0∇•) in Ω. It is known that for any f ∈ H1/2(∂Ω),
there exists a unique solution u to (1.2). We define the Dirichlet-to-Neumann map
ΛD : H1/2(∂Ω)→ H−1/2(∂Ω) in the anisotropic case as the following.

Definition 1.1. ΛDf := A∇u · ν =
∑3
i,j=1 aij∂ju · νi and Λ∅f := A0∇u0 · ν =∑3

i,j=1 a
0
ij∂ju0 · νi, where ν = (ν1, ν2, ν3) is a unit outer normal on ∂Ω.

Inverse problem: Identify the location and the convex hull of D from the
DN-map ΛD.

The domain D can also be considered as an inclusion embedded in Ω. The aim
of this work is to give a reconstruction algorithm for this problem. Note that the

information on the medium parameter Ã(x) = (ãij(x)) inside D is not known a
priori.

The main tool in our reconstruction method is the oscillating-decaying solutions
for the second order anisotropic elliptic differential equations. We use the results
from the paper [11] to construct the oscillating-decaying solution. In section 2, we
will construct the oscillating-decaying solutions for anisotropic elliptic equations.
Note that even if k = 0, which means the equation is ∇ · (A(x)∇u) = 0, we do
not know of any CGO-type solutions. Roughly speaking, given a hyperplane, an
oscillating-decaying solution is oscillating very rapidly along this plane and decaying
exponentially in the direction transverse to the same plane. Oscillating-decaying
solutions are special solutions with the imaginary part of the phase function non-
negative. Note that the domain of the oscillating-decaying solutions is not over the
whole Ω, so we need to extend such solutions to the whole domain. Fortunately, the
Runge approximation property provides us a good approach to extend this special
solution in Section 3.

In Ikehata’s work, the CGO-solutions are used to define the indicator function
(see [4] for the definition). In order to use the oscillating-decaying solutions to the
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inverse problem of identifying an inclusion, we employ the Runge approximation
property to redefine the indicator function. It was Lax [5] that first recognized the
Runge approximation property is a consequence of the weak unique continuation
property. In our case, it is clear that the anisotropic elliptic equation has the weak
unique continuation property if the leading part is Lipschitz continuous. Finally,
the main theorem and reconstruction algorithm will be presented in Section 4. We
remark that the reconstruction algorithm in this paper is weaker than the standard
enclosure method for instance, in the sense that our method does not explain what
happens to the indicator function after the probing hyperplane has met the obstacle.
The results in Section 4 only imply that the indicator function is zero when the
hyperplane has not touched the obstacle, and becomes nonzero at the touching
point.

2. Construction of oscillating-decaying solutions. In this section, we follow
the paper [11] to construct the oscillating-decaying solution in the anisotropic el-
liptic equations. In our case, since we only consider a scalar elliptic equation, its
construction is simpler than that in [11]. Consider the anisotropic Helmholtz type
equation

∇ · (A(x)∇u) + k2u = 0 in Ω. (2.1)

Note that the oscillating-decaying solutions of

∇ · (A(x)∇u) = 0 in Ω

will have the same form as the equation (2.1), which means the lower order term k2u
will not affect the representation of the oscillating-decaying solutions, the following
are the construction details. Now, we assume that the domain Ω is an open, bounded
smooth domain in R3 and the coefficients A(x) = (aij(x)) is a symmetric 3×3 matrix

satisfying uniformly elliptic condition, which means
∑3
i,j=1 aij(x)ξiξj ≥ c|ξ|2, ∀ξ =

(ξ1, ξ2, ξ3) ∈ R3 for some c > 0.
Assume that

A(x) = (aij(x)) ∈ B∞(R3) = {f ∈ C∞(R3) : ∂αf ∈ L∞(R3), ∀α ∈ Z3
+}

is the anisotropic coefficients. Note that A(x) ∈ B∞ already implies that A is
Lipschitz continuous and the Lipschitz continuity property of A(x) will apply the
weak unique continuation property of (2.1) (see [1] for example).

We give several notations as follows. Assume that Ω ⊂ R3 is an open set with
smooth boundary and ω ∈ S2 is given. Let η ∈ S2 and ζ ∈ S2 be chosen so that
{η, ζ, ω} forms an orthonormal system of R3. We then denote x′ = (x · η, x · ζ). Let
t ∈ R, Ωt(ω) = Ω ∩ {x · ω > t} and Σt(ω) = Ω ∩ {x · ω = t} be a non-empty open

set. We consider a scalar function uχt,b,t,N,ω(x, τ) := u(x, τ) ∈ C∞(Ωt(ω)\Σt(ω))∩
C0(Ωt(ω)) with τ � 1 satisfying:{

LAu = ∇ · (A(x)∇u) + k2u = 0 in Ωt(ω)

u = eiτx·ξ{χt(x′)Qt(x′)b+ βχt,t,b,N,ω} on Σt(ω),
(2.2)

where ξ ∈ S2 laying in the span of η and ζ and fixed χt(x
′) ∈ C∞0 (R2) with

supp(χt) ⊂ Σt(ω), Qt(x
′) is a nonzero smooth function and 0 6= b ∈ C3. Moreover,

βχt,b,t,N,ω(x′, τ) is a smooth function supported in supp(χt) satisfying:

‖βχt,b,t,N,ω(·, τ)‖L2(R2) ≤ cτ−1
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for some constant c > 0. From now on, we use c, c′ and their capitals to denote
general positive constants whose values may vary from line to line. As in the paper
[11], uχt,b,t,N,ω can be written as

uχt,b,t,N,ω = wχt,b,t,N,ω + rχt,b,t,N,ω

with

wχt,b,t,N,ω = χt(x
′)Qte

iτx·ξe−τ(x·ω−t)At(x′)b+ γχt,b,t,N,ω(x, τ) (2.3)

and rχtb,t,N,ω satisfying

‖rχt,b,t,N,ω‖H1(Ωt(ω)) ≤ cτ−N−1/2, (2.4)

where At(·) ∈ B∞(R2) is a complex function with its real part ReAt(x
′) > 0, and

γχt,b,t,N,ω is a smooth function supported in supp(χt) satisfying

‖∂αx γχt,b,t,N,ω‖L2(Ωs(ω)) ≤ cτ |α|−3/2e−τ(s−t)a (2.5)

for |α| ≤ 1 and s ≥ t, where a > 0 is some constant depending on At(x
′). Without

loss of generality, we consider the special case where t = 0, ω = e3 = (0, 0, 1) and
choose η = (1, 0, 0), ζ = (0, 1, 0). The general case can be obtained from this special

case by change of coordinates. Define L = LA and M̃ · = e−iτx
′·ξ′L(eiτx

′·ξ′ ·), where

x′ = (x1, x2) and ξ′ = (ξ1, ξ2) with |ξ′| = 1, then M̃ is a differential operator. To

be precise, by using ajl = alj , we calculate M̃ to be given by

M̃ = −τ2
∑
jl

ajlξjξl + 2τ
∑
jl

ajl(iξl)∂j +
∑
jl

ajl∂j∂l

+
∑
jl

(∂jajl)(iτξl) +
∑
jl

(∂jajl)∂l + k2

= −τ2
∑
jl

ajlξjξl + 2τ
∑
l

a3l(iξl)∂3 + a33∂3∂3

+2τ
∑
j 6=3,l

ajl(iξl)∂j +
∑

j 6=3,l 6=3

ajl∂j∂l

+
∑
jl

(∂jajl)(iτξl) +
∑
jl

(∂jajl)∂l + k2

with ξ3 = 0. Now, we want to solve

M̃v = 0,

which is equivalent to Mv = 0, where M = a−1
33 M̃ . Now, we use the same idea in

[11], define 〈e, f〉 =
∑
ij aijeifj , where e = (e1, e2, e3), f = (f1, f2, f3) and denote

〈e, f〉0 = 〈e, f〉 |x3=0. Let P be a differential operator, and we define the order of
P , denoted by ord(P ), in the following sense:

‖P (e−τx3A(x′)ϕ(x′))‖L2(R3
+) ≤ cτord(P )−1/2,

where R3
+ = {x3 > 0}, A(x′) is a smooth complex function with its real part greater

than 0 and ϕ(x′) ∈ C∞0 (R2). In this sense, similar to [11], we can see that τ , ∂3 are
of order 1, ∂1, ∂2 are of order 0 and x3 is of order -1.

Now according to this order, the principal part M2 (order 2) of M is:

M2 = −{D2
3 + 2τ 〈e3, e3〉−1

0 〈e3, ρ〉0D3 + τ2 〈e3, e3〉−1
0 〈ρ, ρ〉0}
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with D3 = −i∂3 and ρ = (ξ1, ξ2, 0). Note that the principal part M2 does not
involve the lower order term k2·, so we can follow all the constructions in the same
procedures as in [11] and we omit details.

3. Tools and estimates. In this section, we introduce the Runge approximation
property and a very useful elliptic estimate: Meyers Lp-estimates.

3.1. Runge approximation property.

Definition 3.1. [5] Let L be a second order elliptic operator, solutions of an equa-
tion Lu = 0 are said to have the Runge approximation property if, whenever K
and Ω are two simply connected domains with K ⊂ Ω, any solution in K can be
approximated uniformly in compact subsets of K by a sequence of solutions in Ω.

There are many applications for Runge approximation property in inverse prob-
lems. Similar results for some elliptic operators can be found in [5], [6]. The
following theorem is a classical result for Runge approximation property for second
order elliptic equations.

Theorem 3.2. (Runge approximation property) Let L0· = ∇ · (A0(x)∇·) + k2· be
a second order elliptic differential operator with A0(x) to be Lipschitz. Assume
that k2 is not a Dirichlet eigenvalue of −∇ · (A0(x)∇·) in Ω. Let O and Ω be two
open bounded domains with smooth boundary in R3 such that O b Ω and Ω\O is
connected.

Let u0 ∈ H1(O) satisfy
L0u0 = 0 in O.

Then for any compact subset K ⊂ O and any ε > 0, there exists U ∈ H1(Ω)
satisfying

L0U = 0 in Ω,

such that
‖u0 − U‖H1(K) ≤ ε.

Proof. The proof is standard and it is based on the weak unique continuation prop-
erty for the anisotropic second order elliptic operator L0 and the Hahn-Banach
theorem. For more details, how to derive the Runge approximation property from
the weak unique continuation, we refer readers to [5]

3.2. Elliptic estimates and some identities. We need some estimates for solu-
tions to some Dirichlet problems which will be used in next section. Recall that, for
f ∈ H1/2(∂Ω), let u and u0 be solutions to the Dirichlet problems (1.2) and (1.3),
respectively. Note that aij(x) = a0

ij(x) + ãij(x)χD and we set w = u− u0, then w
satisfies the Dirichlet problem{

∇ · (A(x)∇w) + k2w = −∇ · ((ÃχD)∇u0) in Ω

w = 0 on ∂Ω
(3.1)

where A(x) = (aij(x)), A0(x) = (a0
ij(x)) and Ã(x) = (ãij(x)). Then in the following

lemmas, we give some estimates for w.

Lemma 3.3. There exists a positive constant C independent of w such that we
have

‖w‖L2(Ω) ≤ C‖∇w‖Lp(Ω)

for
6

5
≤ p ≤ 2 if n = 3.



6 YI-HSUAN LIN

Proof. The proof follows from [12] by Freidrich’s inequality, see [7] p.258 and use a
standard elliptic regularity.

Lemma 3.4. There exists ε ∈ (0, 1), depending only on Ω, A0(x) = (a0
ij(x)) and

Ã(x) = (ãij(x)) such that

‖∇w‖Lp(Ω) ≤ C‖u0‖W 1,p(D)

for max{2− ε, 6

5
} < p ≤ 2 if n = 3.

Proof. The proof also follows from [12]. Set f := −(ÃχD)∇u0. Let w0 be a solution
of {

∇ · (A(x)∇w0) = ∇ · f in Ω,

w0 = 0 on ∂Ω.
(3.2)

The following Lp-estimate of w0, known as Meyers estimate, follows from [8],

‖∇w0‖Lp(Ω) ≤ C‖f‖Lp(Ω) (3.3)

for p ∈ (max{2 − ε, 6

5
}, 2], where ε ∈ (0, 1) depends on Ω, A0(x) = (a0

ij(x)) and

Ã(x) = (ãij(x)). We set W := w − w0, then since w = w0 +W , we have

‖∇w‖Lp(Ω) ≤ ‖∇w0‖Lp(Ω) + ‖∇W‖Lp(Ω). (3.4)

Moreover, W satisfies{
∇ · (A(x)∇W ) + k2W = −k2w0 in Ω,

W = 0 on ∂Ω.
(3.5)

By the standard elliptic regularity, we have

‖W‖H1(Ω) ≤ C‖w0‖L2(Ω).

Thus, we get for p ≤ 2,

‖∇W‖Lp(Ω) ≤ C‖∇W‖L2(Ω) ≤ C‖W‖H1(Ω) ≤ C‖w0‖L2(Ω). (3.6)

By Sobolev embedding theorem, we get

‖w0‖L2(Ω) ≤ C‖w0‖W 1,p(Ω) (3.7)

for p ≥ 6

5
if n = 3. Use Poincaré’s inequality in Lp spaces (w0|∂Ω = 0), we have

‖w0‖L2(Ω) ≤ C‖∇w0‖Lp(Ω) (3.8)

for p ≥ 6

5
if n = 3. Combining (3.3) with (3.4), (3.6) and (3.8), we can obtain

‖∇w‖Lp(Ω) ≤ C‖f‖Lp(Ω) ≤ C‖u0‖W 1,p(D)

for max{2− ε, 6

5
} < p ≤ 2 if n = 3.

Recall the Dirichlet-to-Neumann map which we have defined in Section 1: ΛDf :=
A∇u · ν and Λ∅f := A0∇u0 · ν, where ν = (ν1, ν2, ν3) is a unit outer normal on ∂Ω.

We next prove some useful identities.

Lemma 3.5.
´
∂Ω

(ΛD − Λ∅)ff̄dσ = Re
´
D
Ã∇u0 · ∇udx.
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Proof. It is clear thatˆ
∂Ω

(A∇u) · νϕ̄dσ =

ˆ
Ω

∇ · (A∇uϕ̄)dx

=

ˆ
Ω

(∇ · (A∇u)ϕ̄+A∇u · ∇ϕ)dx

= −k2

ˆ
Ω

uϕ̄dx+

ˆ
Ω

A∇u · ∇ϕdx

for any ϕ ∈ H1(Ω). Since u = u0 = f on ∂Ω, the left hand side of the identity has
the same value whether we take ϕ = u or ϕ = u0, and it is equal to

´
∂Ω

ΛDff̄dσ.
Hence we have ˆ

∂Ω

ΛDff̄dσ = −k2

ˆ
Ω

uu0dx+

ˆ
Ω

A∇u · ∇u0dx

= −k2

ˆ
Ω

|u|2dx+

ˆ
Ω

A∇u · ∇udx.

The right hand side of the above identity is real. Hence, by taking the real part,
we have ˆ

∂Ω

ΛDff̄dσ = −k2Re

ˆ
Ω

uu0dx+ Re

ˆ
Ω

A∇u · ∇u0dx

and ˆ
∂Ω

Λ∅ff̄dσ = −k2Re

ˆ
Ω

uu0dx+ Re

ˆ
Ω

A0∇u · ∇u0dx.

Therefore, we haveˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = Re

ˆ
Ω

(A−A0)∇u · ∇u0dx (3.9)

= Re

ˆ
D

Ã∇u · ∇u0dx.

The estimates in the following lemma play an important role in our reconstruction
algorithm.

Lemma 3.6. We have the following identities:ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = −
ˆ

Ω

A∇w · ∇wdx+ k2

ˆ
Ω

|w|2dx (3.10)

+

ˆ
D

Ã∇u0 · ∇u0dx,

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ =

ˆ
Ω

A0∇w · ∇wdx− k2

ˆ
Ω

|w|2dx (3.11)

+

ˆ
D

Ã∇u · ∇udx.

In particular, we haveˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ k2

ˆ
Ω

|w|2dx+ C

ˆ
D

|∇u0|2dx, (3.12)

ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≥ c
ˆ
D

|∇u0|2dx− k2

ˆ
Ω

|w|2dx, (3.13)
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where C > 0 is a constant depending on Ã(x) and c is a constant depending on

A,A0 and Ã.

Proof. Multiplying the identity

∇ · (A(x)∇w) + k2w +∇ · (ÃχD∇u0) = 0

by w̄ and integrating over Ω, we get

0 =

ˆ
Ω

∇ · (A∇w)w̄dx+

ˆ
Ω

∇ · (ÃχD∇u0)w̄dx+ k2

ˆ
Ω

|w|2dx

= −
ˆ

Ω

A∇w · ∇wdx+

ˆ
∂Ω

(A∇w · ν)w̄dσ −
ˆ

Ω

ÃχD∇u0 · ∇wdx

+

ˆ
∂Ω

(ÃχD∇u0 · ν)w̄dσ + k2

ˆ
Ω

|w|2dx

= −
ˆ

Ω

A∇w · ∇wdx−
ˆ
D

Ã∇u0 · ∇wdx+ k2

ˆ
Ω

|w|2dx

= −
ˆ

Ω

A∇w · ∇wdx−
ˆ
D

Ã∇u0 · ∇udx+ k2

ˆ
Ω

|w|2dx

+

ˆ
D

Ã∇u0 · ∇u0dx,

and use (3.9) we can obtainˆ
∂Ω

(ΛD − Λ∅)ff̄dσ = −
ˆ

Ω

A∇w · ∇wdx+

ˆ
D

Ã∇u0 · ∇u0dx+ k2

ˆ
Ω

|w|2dx.

Similarly, multiplying the identity

∇ · (ÃχD∇u) +∇ · (A0∇w) + k2w = 0

by w̄ and integrating over Ω, we get

0 =

ˆ
Ω

∇ · (ÃχD∇u)w̄dx+

ˆ
Ω

∇ · (A0∇w)w̄dx+ k2

ˆ
Ω

|w|2dx

= −
ˆ
D

Ã∇u · ∇wdx−
ˆ

Ω

A0∇w · ∇wdx+ k2

ˆ
Ω

|w|2dx

= −
ˆ
D

Ã∇u · ∇udx+

ˆ
D

Ã∇u · ∇u0dx+ k2

ˆ
Ω

|w|2dx

−
ˆ

Ω

A0∇w · ∇wdx,

and use (3.9) again, we can obtainˆ
∂Ω

(ΛD − Λ∅)ff̄dσ =

ˆ
Ω

A0∇w · ∇wdx− k2

ˆ
Ω

|w|2dx+

ˆ
D

Ã∇u · ∇udx.

For the remaining part, (3.12) is an easy consequence of (3.10)ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ k2

ˆ
Ω

|w|2dx+

ˆ
D

Ã∇u0 · ∇u0dx

= k2

ˆ
Ω

|w|2dx+ C

ˆ
D

|∇u0|2dx,

since Ã ∈ L∞(D).
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Finally, for the lower bound, we use

A0∇w · ∇w + ÃχD∇u · ∇u = A∇u · ∇u− 2ReA0∇u · ∇u0 +A0∇u0 · ∇u0

= A(∇u− (A)−1A0∇u0) · (∇u− (A)−1A0∇u0)

+(A0 − (A0)(A)−1(A0))∇u0 · ∇u0

≥ (A0 − (A0)(A)−1(A0))∇u0 · ∇u0

≥ c|∇u0|2,

sinceA(∇u−(A)−1A0∇u0)·(∇u− (A)−1A0∇u0) ≥ 0 and note thatA0−(A0)(A)−1(A0) =

A0(A)−1(A− A0) = A0(A)−1ÃχD is a positive definite matrix by our previous as-
sumptions in section 1.

Applying Lemma 3.3 to (3.12),ˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≤ C‖u0‖2W 1,2(D). (3.14)

By (3.13) and the Meyers Lp estimate ‖w‖L2(Ω) ≤ C‖u0‖W 1,p(D), we haveˆ
∂Ω

(ΛD − Λ∅)ff̄dσ ≥ c
ˆ
D

|∇u0|2dx− c‖u0‖2W 1,p(D). (3.15)

4. Detecting the convex hull of the unknown obstacle.

4.1. Main theorem. Recall that we have constructed the oscillating-decaying so-
lutions in section 2, and note that this solution can not be defined on the whole
domain, that is, the oscillating-decaying solutions uχt,b,t,N,ω(x, τ) only defined on
Ωt(ω) ( Ω. Nevertheless, with the help of the Runge approximation property, we
can only determine the convex hull of the unknown obstacle D byΛDf for infinitely
many f .

We define B to be an open ball in R3 such that Ω ⊂ B. Assume that Ω̃ ⊂ R3

is an open smooth domain with B ⊂ Ω̃. As in the section 2, set ω ∈ S2 and
{η, ζ, ω} forms an orthonormal basis of R3. Suppose t0 = infx∈D x · ω = x0 · ω,
where x0 = x0(ω) ∈ ∂D. For any t ≤ t0 and ε > 0 small enough, we can construct

uχt−ε,b,t−ε,N,ω = χt−ε(x
′)Qt−ε(x

′)eiτx·ξe−τ(x·ω−(t−ε))At−ε(x′)b+ γχt−ε,b,t−ε,N,ω

+rχt−ε,b,t−ε,N,ω

to be the oscillating-decaying solution for∇·(A0(x)∇·)+k2· inBt−ε(ω) = B∩{x·ω >
t−ε}, where χt−ε(x

′) ∈ C∞0 (R2) and b ∈ C. Note that in section 2, we have assumed
the leading coefficient A0(x) ∈ B∞(R3). Similarly, we have the oscillating-decaying
solution

uχt,b,t,N,ω(x, τ) = χt(x
′)Qte

iτx·ξe−τ(x·ω−t)At(x′)b+ γχt,b,t,N,ω(x, τ) + rχt,b,t,N,ω

for LA0 in Bt(ω). In fact, for any τ , uχt−ε,b,t−ε,N,ω(x, τ) → uχt,b,t,N,ω(x, τ) in an
appropriate sense as ε → 0. For details, we refer readers to consult all the details
and results in [11], and we list consequences in the following.

χt−ε(x
′)Qt−ε(x

′)eiτx·ξe−τ(x·ω−(t−ε))At−ε(x′)b→ χt(x
′)Qte

iτx·ξe−τ(x·ω−t)At(x′)b

in H2(Bt(ω)) as ε tends to 0,

γχt−ε,b,t−ε,N,ω → γχt,b,t,N,ω

in H2(Bt(ω)) as ε tends to 0, and finally,

rχt−ε,b,t−ε,N,ω → rχt,b,t,N,ω
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in H1(Bt(ω)) as ε tends to 0.

Obviously, Bt−ε(ω) is a convex set and Ωt(ω) ⊂ Bt−ε(ω) for all t ≤ t0. By
using the Runge approximation property, we can see that there exists a sequence
of functions ũε,j , j = 1, 2, · · · , such that

ũε,j → uχt−ε,b,t−ε,N,ω in H1(Ωt(ω)),

where ũε,j ∈ H1(Ω̃) satisfy LA0 ũε,j = 0 in Ω̃ for all ε, j. Define the indicator
function I(τ, χt, b, t, ω) by the formula:

I(τ, χt, b, t, ω) = lim
ε→0

lim
j→∞

ˆ
∂Ω

(ΛD − Λ∅)fε,jfε,jdσ,

where fε,j = ũε,j |∂Ω.
Now the characterization of the convex hull of D is based on the following theo-

rem:

Theorem 4.1. (1) If t < t0, then for any χt ∈ C∞0 (R2) and b ∈ C3, we have

lim sup
τ→∞

|I(τ, χt, b, t, ω)| = 0.

(2) If t = t0, then for any χt0 ∈ C∞0 (R2) with x′0 = (x0 ·η, x0 ·ζ) being an interior
point of supp(χt0) and 0 6= b ∈ C, we have

lim inf
τ→∞

|I(τ, χt0 , b, t0, ω)| > 0.

Proof. First of all, note that we have a sequence of functions {ũε,j} satisfies the
equation ∇ · (A0∇u) + k2u = 0 in Ω, as in the beginning of the section 3, let
wε,j = u− ũε,j , then wε,j satisfies the Dirichlet problem{

∇ · (A(x)∇wε,j) + k2wε,j = −∇ · (ÃχD∇ũε,j) in Ω,

wε,j = 0 on ∂Ω.

So we can apply (3.14) directly, which meansˆ
∂Ω

(ΛD − Λ∅)fε,jfε,jdσ ≤ C‖ũε,j‖2H1(D) with fε,j = ũε,j |∂Ω,

where the last inequality obtained by the Hölder’s inequality.
By the Runge approximation property we have

ũε,j → uχt−ε,b,t−ε,N,ω in H1(Bt(ω))

as j →∞ and we know that the obstacle D ⊂ Bt(ω), so we have

‖ũε,j − uχt−ε,b,t−ε,N,ω‖H1(D) → 0

as j → ∞ for all ε > 0. Moreover, we know that uχt−ε,b,t−ε,N,ω → uχt,b,t,N,ω as
ε→ 0 in H1(Bt(ω)), which implies

‖ũε,j − uχt,b,t,N,ω‖H1(D) → 0

as ε→ 0, j →∞. Now by the definition of I(τ, χt, b, t, ω), we have

I(τ, χt, b, t, ω) ≤ C‖uχt,b,t,N,ω‖2H1(D).

Now if t < t0, we substitute uχt,b,t,N,ω = wχt,b,t,N,ω + rχt,b,t,N,ω with wχt,b,t,N,ω
being described by (2.3) into

I(τ, χt, b, t, ω) ≤ C(

ˆ
D

|uχt,b,t,N,ω|2dx+

ˆ
D

|∇uχt,b,t,N,ω|2dx)
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and use estimates (2.4), (2.5) to obtain that

|I(τ, χt, b, t, ω)| ≤ Cτ−2N−1

which finishes

lim sup
τ→∞

|I(τ, χt, b, t, ω)| = 0.

For the second part, as inequality (4.1), we use (3.15), then the similar argument
follows. It is easy to get

I(τ, χt, b, t, ω) ≥ c
ˆ
D

|∇uχt,b,t,N,ω|2dx− c‖uχt,b,t,N,ω‖2W 1,p(D), (4.1)

For p ∈ (max{2 − ε, 6

5
}, 2]. For the remaining part, we need some extra estimates

in the following section.

4.2. End of the proof of Theorem 4.1. For further estimate of the lower bound,
we need to introduce the sets Dj,δ ⊂ D, Dδ ⊂ D as follows. Recall that hD(ω) =
infx∈D x · ω and t0 = hD(ω) = x0 · ω for some x0 ∈ ∂D. For any α ∈ ∂D ∩
{x · ω = hD(ω)} := K, define B(α, δ) = {x ∈ R3; |x − α| < δ} (δ > 0). Note
K ⊂ ∪α∈KB(α, δ) and K is compact, so there exists α1, · · · , αm ∈ K such that
K ⊂ ∪mj=1B(αj , δ). Thus, we define

Dj,δ := D ∩B(αj , δ) and Dδ := ∪mj=1Dj,δ.

It is easy to see thatˆ
D\Dδ

e−pτ(x·ω−t0)At0 (x′)bdx = O(e−paδτ ),

because At0(x′) ∈ B∞(R2) is bounded and its real part strictly greater than 0, so
there exists a > 0 such that ReAt0(x′) ≥ a > 0 on D\Dδ. Let αj ∈ K, by rotation
and translation, we may assume αj = 0 and the vector αj − x0 = −x0 is parallel
to e3 = (0, 0, 1). Therefore, we consider the change of coordinates near each αj as
follows: {

y′ = x′

y3 = x · ω − t0,

where x = (x1, x2, x3) = (x′, x3) and y = (y1, y2, y3) = (y′, y3). Denote the
parametrization of ∂D near αj by lj(y

′), then we have the following estimates.

Lemma 4.2. For q ≤ 2, we have

ˆ
D

|uχt0 ,b,t0,N,ω|
qdx ≤ cτ−1

m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ +O(τ−1e−qaδτ )

+O(e−qaτ ) +O(τ−3) +O(τ−2N−1), (4.2)

ˆ
D

|uχt0 ,b,t0,N,ω|
2dx ≥ Cτ−1

m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−2aδτ )

+O(τ−3) +O(τ−2N−1), (4.3)
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ˆ
D

|∇uχt0 ,b,t0,N,ω|
qdx ≤ Cτ q−1

m∑
j=1

¨
|y′|<δ

e−qaτlj(y
′)dy′ +O(τ−1e−aqδτ )

+O(e−qaτ ) +O(τ−1) +O(τ−2N−1), (4.4)

and ˆ
D

|∇uχt0 ,b,t0,N,ω|
2dx ≥ Cτ

m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−2δaτ )

+O(τ−1) +O(τ−2N−1). (4.5)

Proof. We follow the argument in [12]. We only prove (4.2) and (4.3) and the proof
of (4.4) and (4.5) are similar arguments.

For (4.2):ˆ
D

|uχt0 ,b,t0,N,ω|
qdx ≤ C

ˆ
D

e−qaτ(x·ω−t0)dx+ Cq

ˆ
D

|γχt0 ,b,t0,N,ω|
qdx

+Cq

ˆ
D

|rχt0 ,b,t0,N,ω|
qdx

≤ C

ˆ
Dδ

e−qaτ(x·ω−t0)dx+ C

ˆ
D\Dδ

e−qaτ(x·ω−t0)dx

+C

ˆ
D

|γχt0 ,b,t0,N,ω|
2dx+ C

ˆ
D

|rχt0 ,b,t0,N,ω|
2dx

≤ C

m∑
j=1

¨
|y′|<δ

dy′
ˆ δ

lj(y′)

e−qaτy3dy3 + Ce−qaδτ

+C‖γχt0 ,b,t0,N,ω‖
2
L2(D) + C‖rχt0 ,b,t0,N,ω‖

2
H1(D)

≤ Cτ−1
m∑
j=1

¨
|y′|<δ

e−aqτlj(y
′)dy′ − C

q
τ−1e−qaδτ

+Ce−qaδτ + Cτ−3 + Cτ−2N−1

note that D ⊂ Ωt0(ω), which proves (4.1).
For (4.3):ˆ

D

|uχt0 ,b,t0,N,ω|
2dx ≥ C

ˆ
D

e−2aτ(x·ω−t0)dx− C‖γχt0 ,b,t0,N,ω‖
2
L2(Ωt0 (ω))

−C‖rχt0 ,b,t0,N,ω‖
2
H1(Ωt0 (ω))

≥ C

ˆ
Dδ

e−2aτ(x·ω−t0)dx− Cτ−3 − Cτ−2N−1

= Cτ−1
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ − C

2
τ−1e−2aδτ

−Cτ−3 − Cτ−2N−1.

Recall that we have (4.1), the lower bound of I(τ, χt0 , b, t0, ω), so we want to com-
pare the order (in τ) of ‖uχt0 ,b,t0,N,ω‖L2(D), ‖∇uχt0 ,b,t0,N,ω‖L2(D), ‖uχt0 ,b,t0,N,ω‖Lp(D)

and ‖∇uχt0 ,b,t0,N,ω‖Lp(D).
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Lemma 4.3. For max{2− ε, 6

5
} < p ≤ 2, we have the estimates as follows:

‖∇uχt0 ,b,t0,N,ω‖
2
L2(D)

‖uχt0 ,b,t0,N,ω‖
2
L2(D)

≥ Cτ2,
‖uχt0 ,b,t0,N,ω‖

2
Lp(D)

‖uχt0 ,b,t0,N,ω‖
2
L2(D)

≥ Cτ1− 2
p

and
‖∇uχt0 ,b,t0,N,ω‖

2
Lp(D)

‖uχt0 ,b,t0,N,ω‖
2
L2(D)

≥ Cτ3− 2
p

for τ � 1.

Proof. The idea of the proof comes from [12], but here we still need to deal with
the γχt0 ,b,t0,N,ω and rχt0 ,b,t0,N,ω in D ⊂ Ωt0(ω). Note that if ∂D is Lipschitz, in our

parametrization lj(y
′), we have lj(y

′) ≤ C|y′|. Hence,
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ ≥ C

m∑
j=1

¨
|y′|<δ

e−2acτ |y′|dy′

≥ Cτ−1
m∑
j=1

¨
|y′|<τδ

e−2|y′|dy′

= O(τ−1).

For simplicity, we denote u0 := uχt0 ,b,t0,N,ω in the following calculations. Using
Lemma 4.2, we obtain ´

D
|∇u0|2dx´
D
|u0|2dx

≥ C
τ
∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′ +O(τ−1e−2aδτ ) +O(τ−1) +O(τ−2N−1)

τ−1
∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

≥ Cτ2

1 + O(τ−2e−2aδτ )+O(τ−2)+O(τ−2N−2)∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′

1 + O(e−2aδτ )+O(τ−2)+O(τ−2N )∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′

= O(τ2)

as τ � 1, where

lim
τ→∞

O(τ−2e−2aδτ ) +O(τ−2) +O(τ−2N−2)∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′
= 0

and

lim
τ→∞

O(e−2aδτ ) +O(τ−2) +O(τ−2N )∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′
= 0.

Now, by using the Hölder’s inequality with the exponent q =
2

p
≥ 1, we have

m∑
j=1

¨
|y′|<δ

e−paτlj(y
′)dy′ ≤ C(

m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′)

p
2 .

Hence we use Lemma 4.2 again, we have

(
´
D
|u0|pdx)

2
p´

D
|u0|2dx
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≤ C
τ−

2
p (
∑m
j=1

˜
|y′|<δ e

−paτlj(y′)dy′)
2
p +O(τ−

2
p e−2aδτ ) +O(e−2aτ )

τ−1
∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

+
O(τ−

6
p ) +O(τ

−4N−2
p )

τ−1
∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

≤ Cτ−
2
p+1

∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′ +O(e−2aδτ ) +O(e−2aττ

2
p )∑m

j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(e−2aδτ ) +O(τ−2) +O(τ−2N )

+
O(τ−

4
p ) +O(τ

−4N
p )

τ−1
∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

= τ−
2
p+1

1 + O(e−2aδτ )+O(e−2aττ
2
p )+O(τ

− 4
p )+O(τ

−4N
p )∑m

j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′

1 + O(e−2aδτ )+O(τ−2)+O(τ−2N )∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′

= O(τ−
2
p+1)

as τ � 1 and

(
´
D
|∇u0|pdx)

2
p´

D
|u0|2dx

≤ C
τ (p−1) 2

p (
∑m
j=1

˜
|y′|<δ e

−paτlj(y′)dy′)
2
p +O(τ−

2
p e−2aδτ ) +O(e−2aτ )

τ−1
∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

+C
O(τ−

2
p ) +O(τ

−4N−2
p )

τ−1
∑m
j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(τ−1e−2aδτ ) +O(τ−3) +O(τ−2N−1)

≤ Cτ3− 2
p

∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′ +O(τ−1e−2aδτ ) +O(e−2aττ

2
p−1)∑m

j=1

˜
|y′|<δ e

−2aτlj(y′)dy′ +O(e−2aδτ ) +O(τ−2) +O(τ−2N )

+C
O(τ−1) +O(τ

−4N
p −1)

+O(τ−
2
p ) +O(τ

−4N−2
p )

≤ Cτ3− 2
p

1 + O(τ−1e−2aδτ )+O(e−2aττ
2
p
−1

)+O(τ−1)+O(τ
−4N
p
−1

)∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′

1 + O(e−2aδτ )+O(τ−2)+O(τ−2N )∑m
j=1

˜
|y′|<δ e

−2aτlj(y
′)dy′

= O(τ3− 2
p )

as τ � 1. By (4.1) and above estimates, we have

I(τ, χt, b, t, ω)

‖uχt,b,t,N,ω‖2L2(D)

≥ Cτ2 − Cτ1− 2
p − Cτ3− 2

p

≥ Cτ2
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for τ � 1. On the other hand, for ‖uχt,b,t,N,ω‖L2(D), we have

ˆ
D

|uχt,b,t,N,ω|2dx ≥ Cτ−1
m∑
j=1

¨
|y′|<δ

e−2aτlj(y
′)dy′ +O(τ−1e−qaδτ )

+O(τ−3) +O(τ−2N−1)

≥ Cτ−1
m∑
j=1

¨
|y′|<δ

e−2aτ |y′|dy′ +O(τ−1e−qaδτ )

+O(τ−3) +O(τ−2N−1)

≥ Cτ−2
m∑
j=1

¨
|y′|<τδ

e−2a|y′|dy′ +O(τ−1e−qaδτ )

+O(τ−3) +O(τ−2N−1)

= O(τ−2).

Therefore, we have

I(τ, χt, b, hD(ω), ω) ≥ Cτ2‖uχt,b,t,N,ω‖2L2(D) ≥ C > 0

for τ � 1.

In view of Theorem 4.1 and Lemma 4.2, we can give an algorithm for recon-
structing the convex hull of an inclusion D by the Dirichlet-to-Neumann map ΛD
as long as A(x) and D satisfy the described conditions.
Reconstruction algorithm.

1. Give ω ∈ S2 and choose η, ζ, ξ ∈ S2 so that {η, ζ, ξ} forms a basis of R3 and
ξ lies in the span of η and ζ;

2. Choose a starting t such that Ω ⊂ {x · ω ≥ t};
3. Choose a ball B such that the center of B lies on {x · ω = s} for some s < t

and Ω ⊂ Bt(ω) and take 0 6= b ∈ C;
4. Choose χt ∈ C∞0 (R2) such that χt > 0 in Σt(ω) and χt = 0 on ∂Σt(ω);
5. Construct the oscillating-decaying solution uχt−ε,b,t−ε,N,ω in Bt−ε(ω) with

χt−ε = χt and the approximation sequence ũε,j in Ω̃;
6. Compute the indicator function I(τ, χt, b, t, ω) which is determined by bound-

ary measurements;
7. If I(τ, χt, b, t, ω)→ 0 as τ →∞, then choose t′ > t and repeat steps 4, 5, 6;
8. If I(τ, χt, b, t, ω) 9 0 for some χt′ , then t′ = inf{t : I(τ, χt, b, t, ω) 9 0}. Note

that finding this t′ requires an uncountable number of measurements, so the
algorithm can not be realized on a computer;

9. Varying ω ∈ S2 and repeat 1 to 8, we can determine the convex hull of D.
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the English write up of this article.
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