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ABSTRACT. We develop an enclosure-type reconstruction scheme to identify
penetrable obstacles in acoustic waves with anisotropic medium in R3. The
main difficulty of treating this problem lies in the fact that there are no complex
geometrical optics solutions available for the acoustic equation with anisotropic
medium in R3. Instead, we will use another type of special solutions called
oscillating-decaying solutions. Even though that oscillating-decaying solutions
are defined only on the half space, we are able to give necessary boundary inputs
by the Runge approximation property. Moreover, since we are considering
a Helmholtz-type equation, we turn to Meyers’ LP estimate to compare the
integrals coming from oscillating-decaying solutions and those from reflected
solutions.

1. Introduction. In the study of inverse problems, we are interested in the special
type of solutions for elliptic equations or systems which play an essential role since
the pioneer work of Caldéron. Sylvester and Uhlmann [13] introduced complex
geometrical optics (CGO) solutions to solve the inverse boundary value problems
of the conductivity equation. Based on CGO solutions, Ikehata proposed the so
called enclosure method to reconstruct the impenetrable obstacle, for more details,
see [2, 3, 4]. There are many results concerning this reconstruction algorithm, such
as [9, 15]. The researchers constructed CGO-solutions with polynomial-type phase
function of the Helmholtz equation Au + k?u = 0 or the elliptic system with the
Laplacian as the principal part.

When the medium is anisotropic, we need to consider more general elliptic equa-
tions, such as anisotropic scalar elliptic equation in a bounded domain £ C R3,

V- (A%(2)Vu) + k*u = 0, (1.1)
where A°(z) = (af;(x)), af;(x) = a%;(x), and we assume the uniform ellipticity con-

dition, that is, for all £ = (£1,&s,---&,) € R, A0|¢J% < > a?j(ac)fifj < AY|¢)? and
z € Q. In two dimensional case, we can transform (1.1) to an isotropic equation by
using isothermal coordinates, then we can apply the CGO-solutions for this case,
which can be found in [14]. When Q C R3, we cannot directly transform (1.1) to
an isotropic equation as we do in R?, thus we need to use the oscillating-decaying
solutions in our reconstruction algorithm. In [10], the author introduced oscillating-
decaying solutions for the conductivity equation V- (y(z)Vu) = 0 with the isotropic
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conductivity.

We make the following assumptions.

1. Let © C R3 be a bounded C*°-smooth domain and assume that D is an
unknown obstacle with Lipschitz boundary such that D € Q C R? with an
inhomogeneous index of refraction subset of a larger domain 2.

2. Let A(z) = (ai;(z)) and A°(z) = (a;(x)) be symmetric matrices with a;;(x) =
ag;(z)+ai;(x)x p, where each af;(x) is bounded C*°-smooth, Az) = (ai;(z)) €
L>(D) is regarded as a perturbation in the unknown obstacle D and A(z)¢ -
€ > N¢|? for any € € R? and 2 € D with some A > 0. Further A(z) satisfies
ME]2 < A(z)E - € < A|€]? for some constants 0 < X < A.

Now, let £ > 0 and consider the steady state anisotropic acoustic wave equation
with Dirichlet boundary condition

V- (A(@)Vu) + k*u=0 inQ (1.2)
u=f on 0N). '
For the unperturbed case, we have
V- (A%x)Vug) + k?ug =0 in Q (13)
ug = f on 0N). '

In this paper, we assume that k2 is not a Dirichlet eigenvalue of the operator
—~V - (AVe) and —V - (A°Ve) in Q. Tt is known that for any f € HY?(9Q),
there exists a unique solution u to (1.2). We define the Dirichlet-to-Neumann map
Ap : HY?(0Q) — H~/2(9%) in the anisotropic case as the following.

Definition 1.1. Apf := AVu-v = Zf_jzl aij05u - v; and Ay f = AVuy v =
Z?,j:l a%ajuo - v;, where v = (v1, 2, 3) is a unit outer normal on 9.

Inverse problem: Identify the location and the convex hull of D from the
DN-map Ap.

The domain D can also be considered as an inclusion embedded in 2. The aim
of this work is to give a reconstruction algorithm for this problem. Note that the
information on the medium parameter A(z) = (a;j(x)) inside D is not known a
priori.

The main tool in our reconstruction method is the oscillating-decaying solutions
for the second order anisotropic elliptic differential equations. We use the results
from the paper [11] to construct the oscillating-decaying solution. In section 2, we
will construct the oscillating-decaying solutions for anisotropic elliptic equations.
Note that even if k = 0, which means the equation is V - (A(x)Vu) = 0, we do
not know of any CGO-type solutions. Roughly speaking, given a hyperplane, an
oscillating-decaying solution is oscillating very rapidly along this plane and decaying
exponentially in the direction transverse to the same plane. Oscillating-decaying
solutions are special solutions with the imaginary part of the phase function non-
negative. Note that the domain of the oscillating-decaying solutions is not over the
whole 2, so we need to extend such solutions to the whole domain. Fortunately, the
Runge approximation property provides us a good approach to extend this special
solution in Section 3.

In Tkehata’s work, the CGO-solutions are used to define the indicator function
(see [4] for the definition). In order to use the oscillating-decaying solutions to the
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inverse problem of identifying an inclusion, we employ the Runge approximation
property to redefine the indicator function. It was Lax [5] that first recognized the
Runge approximation property is a consequence of the weak unique continuation
property. In our case, it is clear that the anisotropic elliptic equation has the weak
unique continuation property if the leading part is Lipschitz continuous. Finally,
the main theorem and reconstruction algorithm will be presented in Section 4. We
remark that the reconstruction algorithm in this paper is weaker than the standard
enclosure method for instance, in the sense that our method does not explain what
happens to the indicator function after the probing hyperplane has met the obstacle.
The results in Section 4 only imply that the indicator function is zero when the
hyperplane has not touched the obstacle, and becomes nonzero at the touching
point.

2. Construction of oscillating-decaying solutions. In this section, we follow
the paper [11] to construct the oscillating-decaying solution in the anisotropic el-
liptic equations. In our case, since we only consider a scalar elliptic equation, its
construction is simpler than that in [11]. Consider the anisotropic Helmholtz type
equation

V - (A(z)Vu) + k*u = 0 in Q. (2.1)
Note that the oscillating-decaying solutions of

V- (A(z)Vu) =0in Q

will have the same form as the equation (2.1), which means the lower order term k?u
will not affect the representation of the oscillating-decaying solutions, the following
are the construction details. Now, we assume that the domain €2 is an open, bounded
smooth domain in R? and the coefficients A(z) = (a;;(x)) is a symmetric 3x 3 matrix
satisfying uniformly elliptic condition, which means Zf’ =1 @ij (2)&&5 > cl€)?, VE =
(&1,&2,&3) € R? for some ¢ > 0.

Assume that

A(z) = (aij(z)) € BX(R®) = {f € C®(R®) : 0°f € L™(R®), Va € Z }

is the anisotropic coefficients. Note that A(xz) € B> already implies that A is
Lipschitz continuous and the Lipschitz continuity property of A(z) will apply the
weak unique continuation property of (2.1) (see [1] for example).

We give several notations as follows. Assume that 2 C R? is an open set with
smooth boundary and w € S? is given. Let n € §% and ¢ € S? be chosen so that
{n,¢,w} forms an orthonormal system of R3. We then denote 2’ = (z -1,z (). Let
teR, Qw)=0Nn{z -w>t}and Iy (w) = Q2N {z-w =t} be a non-empty open
set. We consider a scalar function wuy, ¢, nw(2, 7) = u(z,7) € C°(Q(w)\X¢(w)) N

C°(Q(w)) with 7> 1 satisfying:

{LAu =V (A(2)Vu) + k*u =0 in () (2.2)

u =T (a)Qu(a )b+ By, rpnw}  on Ti(w),

where ¢ € S? laying in the span of 1 and ¢ and fixed x(2') € C§°(R?) with
supp(xt) C B¢(w), Q¢(2') is a nonzero smooth function and 0 # b € C3. Moreover,
Bys.b,t,Nw(2',T) is a smooth function supported in supp(x;) satisfying:

[1Bxe bt N (- Tl L2 2y < e



4 YI-HSUAN LIN

for some constant ¢ > 0. From now on, we use ¢,¢’ and their capitals to denote
general positive constants whose values may vary from line to line. As in the paper
[11], Uy, b,¢,Nw can be written as

Uy b,t,Nyw = Wy b,t,Nw + Ty ,b,t,Now
with
/ iTe-& —7(z-w—t)As(x’
Wyy,b,t,Nw = Xt(CU )Qte”a: 56 T(@w—t)Ay( )b + Vxt,b,t,N,w (lL’, T) (23)

and 7y,b.¢,N,w satisfying

17306, N ol H1 (@0 () < er—N-1/2) (2.4)

where A;(-) € B®(R?) is a complex function with its real part ReA;(z’) > 0, and
Vxe.b,t,N,w 18 @ smooth function supported in supp(x:) satisfying

102V bt N | 2200 () < eI 732 (57 0a (2.5)

for |a] <1 and s > t, where a > 0 is some constant depending on A;(z’). Without
loss of generality, we consider the special case where t = 0, w = ez = (0,0,1) and
choose n = (1,0,0), ¢ = (0,1,0). The general case can be obtained from this special
case by change of coordinates. Define L = Ly and M- = e~ ¢' [ (e €".) where
' = (x1,22) and & = (&,&) with |¢'| = 1, then M is a differential operator. To
be precise, by using a;; = a;;, we calculate M to be given by

M = =7 ap&&+2m Y an(ig)d; + Y ajd;o,

jl jl jl
+> (0a)(i7&) + > (85a5)0) + K
jl 4l

= - Z aj&;& + 27 Z az1(i€1)03 + a330303

jl 1

+27 Z ajl(lfl)aj-i- Z ajlajal

J#3:1 J#3,1#3
+ Z(ajajl)(hfl) + Z(éjaﬂ)al iy
gl 5l

with &3 = 0. Now, we want to solve
My = 0,

which is equivalent to Mv = 0, where M = a§31]\7 . Now, we use the same idea in
[11], define (e, f) = Zij aije; fj, where e = (e1,e2,e3), f = (f1, f2, f3) and denote
(e, f)o = (e, f) |es=0. Let P be a differential operator, and we define the order of
P, denoted by ord(P), in the following sense:

HP(e_TxSA(w/)(p(x/))‘lLZ(Ri_) < CTo7-d(P)—1/2,

where R} = {3 > 0}, A(z') is a smooth complex function with its real part greater
than 0 and p(2’) € C§°(R?). In this sense, similar to [11], we can see that 7, 93 are
of order 1, 91, J2 are of order 0 and z3 is of order -1.

Now according to this order, the principal part My (order 2) of M is:

My = —{D3 +27 (e3,e3)y ' {e3,p)o D3 + 7% {ez,e3)5 (0, P)o}
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with D3 = —id3 and p = (£1,&2,0). Note that the principal part Ms does not
involve the lower order term k2-, so we can follow all the constructions in the same
procedures as in [11] and we omit details.

3. Tools and estimates. In this section, we introduce the Runge approximation
property and a very useful elliptic estimate: Meyers LP-estimates.

3.1. Runge approximation property.

Definition 3.1. [5] Let L be a second order elliptic operator, solutions of an equa-
tion Lu = 0 are said to have the Runge approximation property if, whenever K
and Q are two simply connected domains with K C €, any solution in K can be
approximated uniformly in compact subsets of K by a sequence of solutions in €.

There are many applications for Runge approximation property in inverse prob-
lems. Similar results for some elliptic operators can be found in [5], [6]. The
following theorem is a classical result for Runge approximation property for second
order elliptic equations.

Theorem 3.2. (Runge approzimation property) Let Ly = V - (A%(2)V-) + k% be
a second order elliptic differential operator with A°(x) to be Lipschitz. Assume
that k2 is not a Dirichlet eigenvalue of —V - (A°(x)V:) in Q. Let O and Q be two
open bounded domains with smooth boundary in R3 such that O € Q and Q\O s
connected.
Let ug € HY(O) satisfy

L()U() =0 in O.
Then for any compact subset K C O and any € > 0, there exists U € H(Q)
satisfying

LQU =01n Q,
such that

luo = Ullm(x) < e

Proof. The proof is standard and it is based on the weak unique continuation prop-
erty for the anisotropic second order elliptic operator Ly and the Hahn-Banach
theorem. For more details, how to derive the Runge approximation property from
the weak unique continuation, we refer readers to [5] O

3.2. Elliptic estimates and some identities. We need some estimates for solu-
tions to some Dirichlet problems which will be used in next section. Recall that, for
f € HY2(09), let u and ug be solutions to the Dirichlet problems (1.2) and (1.3),
respectively. Note that a;;(z) = af;(x) + aj;(x)xp and we set w = u — ug, then w
satisfies the Dirichlet problem

{v- (A(z)Vw) + k2w = =V - ((Axp)Vue) in Q

3.1
w=20 on 0f) (3-1)

where A(x) = (a;;(z)), A%(x) = (af;(x)) and A(z) = (a;;(z)). Then in the following
lemmas, we give some estimates for w.

Lemma 3.3. There exists a positive constant C independent of w such that we
have

wllz2@) < ClIVwllLe o)
6
forg <p<L2ifn=3.
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Proof. The proof follows from [12] by Freidrich’s inequality, see [7] p.258 and use a
standard elliptic regularity. O

Lemma 3.4. There exists € € (0,1), depending only on Q, A%(x) = (af;(x)) and
A(z) = (ay;(x)) such that

IVwl|lzr )y < Clluollwir(p)

6
formax{2—e,g}<p§2ifn:3.

Proof. The proof also follows from [12]. Set f := —(Axp)Vug. Let wy be a solution
of

V. (A(z)Vwy) =V - f inQ, (3.2)
wy =0 on 0f. '
The following LP-estimate of wg, known as Meyers estimate, follows from [8],
[VwollLr oy < CllfllLr o) (3.3)

6
for p € (max{2 — e, 5}’2]’ where € € (0,1) depends on ©, A%(z) = (ay;(z)) and
A(x) = (ai;(x)). We set W := w — wy, then since w = wy + W, we have

[Vwl ey < [[Vwollze) + VW Le(0)- (3.4)

Moreover, W satisfies

V- (A@@)VW) + kW = —k?wo  in Q, (3.5)
W =0 on 0N). '
By the standard elliptic regularity, we have
Wz < Cllwollz2(q)-
Thus, we get for p < 2,
[VWlLr) < CIIVW|2(0) < Cl[W][a1(q) < Cllwollr2)- (3.6)
By Sobolev embedding theorem, we get
lwollz2() < Cllwollwrr@) (3.7)

for p > g if n = 3. Use Poincaré’s inequality in L spaces (wplaq = 0), we have
[wollz2(@) < Cl[Vwol|Lr () (3.8)
for p > g if n = 3. Combining (3.3) with (3.4), (3.6) and (3.8), we can obtain
[Vwllze@) < Cllflle@) < Clluollwre(p)
formax{2—6,2}<p§2ifn:3. O

Recall the Dirichlet-to-Neumann map which we have defined in Section 1: Ap f :=
AVu-v and Agf := A°Vug - v, where v = (1, 1, 1/3) is a unit outer normal on 9.
We next prove some useful identities.

Lemma 3.5. [,,(Ap — Ag)ffdo = Re [, AVug - Vudz.
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Proof. 1t is clear that
/ (AVu) -vpdo = /V - (AVup)dz
20 Q
= / (V- (AVu)p + AVu - Vy)dzx
Q
= sz/ updx Jr/ AVu - Vdr
Q Q
for any ¢ € H*(2). Since u = ug = f on 052, the left hand side of the identity has

the same value whether we take ¢ = u or ¢ = ug, and it is equal to fBQ Apffdo.
Hence we have

/a Apffio

—kQ/utTodx—i—/ AVu - Vugdz
Q Q

= —k;2/ |u|2dx+/AVu-de.
Q Q

The right hand side of the above identity is real. Hence, by taking the real part,
we have

/ Apffdo = *kQRe/ uzTOd:c+Re/ AVu - Vugdx
B Q Q

and
/ Ao ffdo = —kQRe/ wlipdx + Re/ A'Vu - Vugdz.
89 Q Q

Therefore, we have

/ (Ap — Ay)f fdo
o0

Re/ (A — A"YVu - Vugdz (3.9)
Q

= Re/ gVu-Vuodx.
D
O

The estimates in the following lemma play an important role in our reconstruction
algorithm.

Lemma 3.6. We have the following identities:
/ (Ap — Ag)ffdo = —/ AVw-de—f—lf/ |w|*dx (3.10)
o9 Q Q

+/ ZVUO - Vupdz,
D

/ (Ap — Ag)ffdo = /AOVw-Wd:c—kQ/ |w|?dz (3.11)
29 Q Q
+ / AVu- Vads.
D
In particular, we have

(Ap — Ag)ffdo < /8/ |w|2d:1c+C/ Vg |*de, (3.12)
o

(Ap — Ag)ffdo > c/ |Vuo|?dx — k2/ |w|?dz, (3.13)
0N
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where C' > 0 is a constant depending on g(z) and c is a constant depending on

A, A° and A.
Proof. Multiplying the identity
V - (A(x)Vw) + k*w + V - (AxpVug) = 0

by w and integrating over (), we get
0 = / V- (AVw)ade + [ V- (AxpVuo)wds + k2/ |2z
Q Q Q
= —/ AVw - Vwdx —|—/ (AVw - v)wdo — / AxpVug - Vwdz
Q a0 Q
—|—/ (AxpVug - V)wd0+k2/ |w|?dx
o0 Q
= 7/ AVw - Vwdz f/ AVug - Vwdz + k2/ |w|*dx
Q D Q
= 7/ AVw - Vwdzx f/ AVug - Vudz + kz/ |w|?da
Q D Q
+/ /~1Vuo - Vugdz,
D
and use (3.9) we can obtain

/ (Ap — Np)ffdo = —/ AVw - Vwdx +/ AVug - Vugda + k2/ |w|?dz.
o0 Q D Q
Similarly, multiplying the identity

V- (AxpVu) +V - (A°Vw) + k2w = 0

by w and integrating over €2, we get

0 = / V- (AXDVu)u’)dx—i—/ V. (AOVw)wdx+k2/ |w|*dx
Q Q Q

—/ AVu - Vwdz — AOVw-%dx—l—kQ/ lw|*dx
D Q

Q

—/ gVu-WdaH—/ AVu - Vugdz + kz/ |w|*dx
D D Q
—/ A'Vw - Vwdz,
Q
and use (3.9) again, we can obtain

/ (AD—A@)ffdaz/AOVw-Wdac—kz/ |w\2dm+/ AVu - Vudz.
o9 Q Q D

For the remaining part, (3.12) is an easy consequence of (3.10)

/ (Ap — Ag)f fdo
o

IN

k2/ |w\2dm+/ AVug - Vugdz
Q D

= k2/|w\2dm+0/ | Vg |*de,
Q D

since A € L®(D).



RECONSTRUCTION OF PENETRABLE OBSTACLES IN ANISOTROPIC MEDIA 9

Finally, for the lower bound, we use

AV - Vw + AxpVu-Vu = AVu-Vu —2ReA’Vu - Vug + A°Vug - Vug

A(Vu — (A)TA%Wu) - (Vu — (A) 1A%V ug)

+(A” = (A%)(4)7H(A%)) Vo - Vg

(A% = (A" (A)H(A%))Vuo - Vug

| Vuol?,

since A(Vu—(A)~'A°Vug)-(Vu — (A)~1A%Vug) > 0 and note that A°—(A%)(A)~1(A") =
AY(A)7HA - AY%) = A°(A)~LAxp is a positive definite matrix by our previous as-
sumptions in section 1. O

AVARAYS

Applying Lemma 3.3 to (3.12),

| (80 = 80)fFdo < Clusliy o (3.14)
By (3.13) and the Meyers LP estimate ||w||r2(q) < Clluollw1.»(p), we have
/ (Ap — Ag)ffdo > c/ Va0 2z — clluollZ 1.0 (3.15)
09 D

4. Detecting the convex hull of the unknown obstacle.

4.1. Main theorem. Recall that we have constructed the oscillating-decaying so-
lutions in section 2, and note that this solution can not be defined on the whole
domain, that is, the oscillating-decaying solutions uy, s+ n,w(z, T) only defined on
Qi (w) € Q. Nevertheless, with the help of the Runge approximation property, we
can only determine the convex hull of the unknown obstacle D byAp f for infinitely
many f. B

We define B to be an open ball in R such that Q C B. Assume that Q C R?
is an open smooth domain with B C Q. As in the section 2, set w € S% and
{n,¢,w} forms an orthonormal basis of R3. Suppose tg = infeepr-w = 30 - W,
where z¢p = 29(w) € dD. For any t < tg and € > 0 small enough, we can construct

Une obi—eNw = Xi—e(@)Qie(a))eT ST Twem =N AcleNp 4y 4 N
+rXt_g,b,tfe,N,w
to be the oscillating-decaying solution for V-(A%(2)V-)+k?- in B;_.(w) = BN{z-w >
t—e}, where x;—.(z') € C§°(R?) and b € C. Note that in section 2, we have assumed
the leading coefficient A°(z) € B> (R?). Similarly, we have the oscillating-decaying
solution
Ut N0 (@, T) = X (@) Qe ™ 87T OO Ly N (,7) H Tyt N

for Lo in By(w). In fact, for any 7, uy, . pt—e Nw(@,T) = Uy, pt,Nw(@, T) in an
appropriate sense as € — 0. For details, we refer readers to consult all the details
and results in [11], and we list consequences in the following.

Xtié(x/)Qtie(x/)eirx{e—T(mw—(t—e))At,e(w')b — e (x/)QteiTw{e—‘r(a:‘w—t)At(:E/)b
in H2(B;(w)) as € tends to 0,

Vxt—ebt—e,Nw = Vxebit,Nw
in H?(B;(w)) as € tends to 0, and finally,

Txt—esbt—6,Nyw 7 Txy,b,t,N,w
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in H!'(B;(w)) as € tends to 0.

Obviously, B;_.(w) is a convex set and Q;(w) C Bi_(w) for all t < t;. By
using the Runge approximation property, we can see that there exists a sequence
of functions . ;, 7 = 1,2,---, such that

Ue,j = Uy, bt—e,Nyw 11l Hl(Qt(w))a

where . ; € Hl(()) satisfy Laotie; = 0 in Q for all €,7. Define the indicator
function I(7, x¢,b,t,w) by the formula:

I(7,xt,b,t,w) = lim lim (Ap — A@)fe,jfjd-da,

e=0j5—00 [50

where fc ; = U j|oq-
Now the characterization of the convex hull of D is based on the following theo-
rem:

Theorem 4.1. (1) Ift < to, then for any x; € C§°(R?) and b € C?, we have
limsup |[I(7, x¢,b,t,w)| = 0.

T—>00
(2) If t = to, then for any xi, € C§°(R?) with x} = (z¢-n,x0-() being an interior
point of supp(xt,) and 0 # b € C, we have

lim inf |I(7, xt,, 0, to,w)| > 0.
T—00
Proof. First of all, note that we have a sequence of functions {a. ;} satisfies the

equation V - (A°Vu) + k%u = 0in Q, as in the beginning of the section 3, let
We j = U — TUe 5, then w, ; satisfies the Dirichlet problem

V- (A(x)Vwe ;) + kwe; = -V - (AxpVi.;) i,
We,j =0 on 0f).

So we can apply (3.14) directly, which means

/8 (Ao = A foTogdo < Clie

where the last inequality obtained by the Holder’s inequality.
By the Runge approximation property we have

2 . ~
71 (py With fe; = te jloa,

liej = Uy, bi—e.Nw i H' (By(w))
as j — oo and we know that the obstacle D C B;(w), so we have
||ﬂ’€,j - uXt,ﬁb,tfe,Nﬁu”Hl(D) -0

as j — oo for all € > 0. Moreover, we know that uy, _pt—cNw = Ux,,bt,Nw aS
e — 0 in H'(B;(w)), which implies

[te.j = uxe b.t.Nwll Y (D) = O
as € — 0, j — 0o. Now by the definition of I(7, x¢,b,t,w), we have
I(7,xt, b, t,w) < Clluy, b.o.8wl 7 ()

Now if t < to, we substitute uy, p.t,Nw = Wy, bt Nw F Txy,bit, Now With Wy, bt N0
being described by (2.3) into

I(T7 Xtvbvtaw) < C(/ |Uxt7b,t,N7w|2dl‘ +/ |VUXt7b7t,N7w|2d$)
D D
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and use estimates (2.4), (2.5) to obtain that
|I(T7 Xt b7 t7 UJ)| S CT_QN_I

which finishes
limsup |I(7, x¢, b, t,w)| = 0.

T—r 00

For the second part, as inequality (4.1), we use (3.15), then the similar argument
follows. It is easy to get

I(7, xt,b,t,w) > C/ ‘VuXt,b’LN:w'de - C””me’t,]\’,w”%/[/lvP(Dy (41)
D

6
For p € (max{2 — ¢, 5}7 2]. For the remaining part, we need some extra estimates

in the following section. O

4.2. End of the proof of Theorem 4.1. For further estimate of the lower bound,
we need to introduce the sets D; s C D, Ds C D as follows. Recall that hp(w) =
infrepz-w and tg = hp(w) = zo - w for some xg € 9D. For any a € 9D N
{z-w = hp(w)} = K, define B(a,d) = {z € R |z —a|] < §} (§ > 0). Note
K C UserxB(a,d) and K is compact, so there exists aq,---,a,, € K such that
K cUxB(a;,6). Thus, we define

Dj75 =DnN B(ij,(s) and D§ = U}ﬂ:1Dj,6~

It is easy to see that

/ e—pT(w-w—to)Ato(w')bCkC — O(e—pa57)7
D\Ds

because Ay, (z') € B®(R?) is bounded and its real part strictly greater than 0, so
there exists a > 0 such that ReA;, (z’) > a > 0 on D\Ds. Let o; € K, by rotation
and translation, we may assume «; = 0 and the vector a; — g = —x¢ is parallel
to e3 = (0,0,1). Therefore, we consider the change of coordinates near each «; as

follows:
y/ — x/
Ys = w— t07

where # = (21,22,23) = (¢/,23) and y = (y1,52,93) = (¥, y3). Denote the
parametrization of 9D near «; by I;(y’), then we have the following estimates.

Lemma 4.2. For q < 2, we have

m
/ |Unry bto,Nw|PdT < ert Z // e~ W dy! 4 O(r7Le90T)
D ly'|<é

+0(e™ 1) + O(773) + O(T_QN_l), (4.2)

j=1

m

/|uxt0,b,t0,N,w|2dx > CTflz//H 672a‘rlj(y')dy/_|_O(7_71672a6'r)
D

=17 1y'I<8

+0(173) + O(T_QN_l), (4.3)
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/ Vi btonwl®de < Cri7t Y0 // e~ dy’ 4 O(r~ e )
D j=1"/1y'I<é
+0(e™ 1) + O(r Y + O(r 2N =1, (4.4)
and
/ |VuXt0,b7t07N7w|2d3: > CTZ// e 207l ) gy + O(r~ e 20am)
D =17 Iy'I<8
+O(r Y +Oo(r—2 1), (4.5)

Proof. We follow the argument in [12]. We only prove (4.2) and (4.3) and the proof
of (4.4) and (4.5) are similar arguments.
For (4.2):

/ [Unry bito, Nw|da < C/ e_q”(w_t")dequ/ Vg bsto, Nyw | d
D D D
+Cq/ ‘TXto,b,to,N,w|qd33
D
< C e—qa7(w~w—t0)dx+ C e—qtm—(acw—to)daj
Ds D\Dé
2 2
+O/ [Vxe brto, Ny d$+0/ |7x00 sbrto, N |~
D D
m 5
< CZ// dy’/ e~ 1TV Jyg + Cle™ 9907
j=17/1y'1<é Ly
2 2
+C¥xg bsto, N w220y + CllTxey boto, Nl 7 (D)
<

m
CT—I Z // e_aquj(yl)dy/ o 97_1€_qa6T
; ly’|<8 q

j=1
+Ce—qa5‘r + 07_3 +CT_2N_1

note that D C 4, (w), which proves (4.1).
For (4.3):

/ |ty brto Nl 2T > C/ e’zm(ﬂw*to)dfvfCH’Yxm,b,to,N,w||%2(Q,,0(w))
D
_O||TXt07b7t07N:W||?{1(Qto(w))
> C/ 7211‘1'(:E-A417t0)d:17 CT7 —Cr —2N-1

— // —2atl;(y )dy C —16—2(167—
ly |<5

O F—2N-1
O

Recall that we have (4.1), the lower bound of I(7, x¢,, b, o, w), S0 we want to com-
pare the order (in 7) of Huxto,b to,NwllL2(D)s [Vixey bito, N wllL2(D)s [Uxey bito, NwllLr (D)
and [V, b,to,n,0l Lr (D)
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6
Lemma 4.3. For max{2 — e, 5} < p < 2, we have the estimates as follows:

Vg bito,Nwll 22y S o2 [%xg .b,t0, Nyw

b

2
‘LP(D) > C’Tl_%
Huxm,b,to,Nw”QL?(D) Huxm,b7to,N7w||2L2(D) B

and

||vuxt0,b,t0,N,wH%p(D) > 07_37%
||uXt0abat07N7W||%2(D) B
for > 1.

Proof. The idea of the proof comes from [12], but here we still need to deal with
the Yy, b,t0,Nw a0 T, b, Nw i D C (w). Note that if 9D is Lipschitz, in our
parametrization [;(y’), we have [;(y’) < C|y'|. Hence,

Z// 6_2a7lj(y/)dy/ CZ/ e—2ac‘r|y’\dy/
j=1"1y'1<8 j=17/1y'[<é

Y

m
> CT‘IZ/ e 2 lay
j=1 ly'|<Td
= o)
For simplicity, we denote ug := Uy ,byto, N w in the following calculations. Using
Lemma 4.2, we obtain
[ [Vug|?da
Ip luo|?da

. 7_2;_71:1 ff|y’|<6 e—2arlj(y')dy/ + O(T—le—Qaér) + O(T—l) + O(T—QN—l)
2 ST 2 e 0 dy £ O(r e ) + 07 %) + O(7 2N 1)
(T72672a(57)+o(7_—2)+0(7_—2N—2)
Z_;nzl ff\y’\<5 e—2a-rlj(y/)dy/
O(e—2®7)10(r—2)10(r—2V)
Z;’Ll j].\y/\<5 6_2(1’1—1]. ("‘//)dy/

1+ 9

cr?

Y

1+

— 0
as 7 > 1, where
—2_—2adéT -2 —2N-2
lim O(r%e )+ O(r )+ O(r )

m ’ = O
T—00 Ej:l ff|y/|<<5 672‘“1] (y )dy/

and —2ad -2 —2N
lim O(e Y+ Ot %)+ O(r )

500 Z;n=1 ff\y’\<5 e—2a7l (") dyy!

2
Now, by using the Holder’s inequality with the exponent ¢ = — > 1, we have

p
3 // Py < O(3 // e=20750') g\ %
j=17/1v'[<é j=17/1v'[<é

Hence we use Lemma 4.2 again, we have

([p luolPdx)?
Ip luo|?dz

=0.
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2

- m —patl;(y’ 2 *g—aT —2aTt
B T p(zjzlmy’|<5e patli (W) dy' Ve 4+ O(17 7 e=2997) + O(e~207)
T T s e 20 dy + O(r e 2097) + O(7 %) + O(7 2N 1)

4N —

O(r %) +0(r+)
1 Z;n:1 ffly’|<5 e=207L( ) dy’ + O(71e2057) 4 O(7-3) + O(7—2N-1)

+

m —2atl;(y’ —2a67 —2ar,_ 2
Zj:lffly’lde 2078 () dy’ 4 O(e™2%07) + O(e= 24T 17)

S CT_%+1 ™m —2a7l;(y") , —2adT ) ON
Sy Jlyes € 2@ dy’ + O(e=2457) 1 O(r2) + O(7—2N)
+ O(T_%)ﬁ»o('r#)
71 Z;n:l fflu’|<6 e=207L; (W) dy! + O(7—1e—2097) 4 O(7-3) + O(r—2N-1)
| | QL) 40( T 8)10(r $) 40t 7 )
B 7%+1 Z;r;l jj.|y/‘<5 e—Qale(y )dy/
= T 1+ 0(6—20,(57)+O(T—2)+O(T—2N)
Z;";l ff|y’\<§ e—Zarl]‘(y )dy’
= O(T_%-H)
as 7> 1 and

([ |Vuo[Pda)7
fD |u0|2d:c

-1)2 m —patl;i(y’ 2 —27117' —2art
+ 1)p(zj:1ff‘y,‘<6e P l;(y)dy/)p +O(t7re 2a6 )+ O(e 2 )
T s € 2Oy + O 1e297) £ 0(r—9) + O(r 27 )

+C O(r 1) +0(r v )
1 Z;nzl ff\y'\<5 e2a7L; (W) dy! + O(7—1e—2097) 4 O(7-3) + O(r—2N-1)

a2 ZTZl ff|y’|<§ e*Zale(y')dy/ +O(7_71672a6'r) +O(672a77_%—1)
T Z;nzl ff‘y/Ké e 207 (W) dy’ + O(e=2997) + O(772) + O(7—2N)

o Ot~ H + O(T%j:;;)

+O(rH)+0(r )

< C

—1_-—2adéT —2aT 21 —1 —4N
O(t e )+O(e TP )+O(r~)4+O0(r P )
" “2arl. (4’
Z;nZI ﬂ\y/\<5 e—2a7l;(y )dy’
O(e=2497)4+O(7-2)4+0(7—2N)
T —2aTl; 7/
Z;n:1 ﬂ\y'\<5 o207l (y )dy’

1+

IN
Q
2
w
k1N

1+

as 7> 1. By (4.1) and above estimates, we have

I(Ta Xt b7 tv w)

5 crl—Cri7r —Cr®
||uXt;b’t,N’W||L2(D)

Cr?

Y
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for 7> 1. On the other hand, for ||uy, b N L2(D), We have

m
P =1 y'I<é

+O(r7%) + O(r 2N 7

> 07—12// e 20 ldy 4 O(7 7 e 9907
=1 y'[<é
+0(r7%) +0(r 2N
>

m
COr—? Z //| s e_2a‘y/‘dy' + O(r ™ tem999m)
j=1 y’ <T

+O(r™3 +Oo(r 2N
= O(r7?%).
Therefore, we have
I(7, X4, b, hp (W), ) > OT2[|uy, b, 8wl F2(py = C >0
for 7 > 1. O

In view of Theorem 4.1 and Lemma 4.2, we can give an algorithm for recon-
structing the convex hull of an inclusion D by the Dirichlet-to-Neumann map Ap
as long as A(z) and D satisfy the described conditions.

Reconstruction algorithm.

1. Give w € S? and choose 7, (, & € S? so that {n,(,¢} forms a basis of R® and
¢ lies in the span of n and (;

2. Choose a starting ¢ such that Q C {z-w > t};

3. Choose a ball B such that the center of B lies on {z - w = s} for some s < ¢
and Q C B;(w) and take 0 £ b € C;

4. Choose y; € C§°(R?) such that x; > 0 in X;(w) and x; = 0 on 9%, (w);

5. Construct the oscillating-decaying solution wy, _pi—e Nw I Bi—e(w) with
Xt—e = X¢ and the approximation sequence . ; in (N);

6. Compute the indicator function I(7, x¢, b, t,w) which is determined by bound-
ary measurements;

7. If I(7, x¢,b,t,w) — 0 as 7 — oo, then choose ¢’ > t and repeat steps 4, 5, 6;

8. If I(7, xt, b, t,w) - 0 for some x¢, then ¢ = inf{¢ : I(7, x¢,b,t,w) - 0}. Note
that finding this ¢’ requires an uncountable number of measurements, so the
algorithm can not be realized on a computer;

9. Varying w € S? and repeat 1 to 8, we can determine the convex hull of D.

Acknowledgement. Y.-H. Lin would like to thank Ms. Irene Cheng to improve
the English write up of this article.
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