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Abstract

In this paper, we introduce an inverse problem of a Schrödinger type
variable nonlocal elliptic operator (−∇ · (A(x)∇))s + q), for 0 < s < 1.
We determine the unknown bounded potential q from the exterior partial
measurements associated with the nonlocal Dirichlet-to-Neumann map
for any dimension n ≥ 2. Our results generalize the recent initiative
[18] of introducing and solving inverse problem for fractional Schrödinger
operator ((−∆)s + q) for 0 < s < 1. We also prove some regularity results
of the direct problem corresponding to the variable coefficients fractional
differential operator and the associated degenerate elliptic operator.
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1 Introduction

Let L be an elliptic partial differential operator. We consider an inverse problem
associated to the nonlocal fractional operator Ls with the power s ∈ (0, 1).
We introduce the corresponding Calderón problem of determining the unknown
bounded potentials q(x) from the exterior measurements on the Dirichlet-to-
Neumann (DN) map of the nonlocal Schrödinger equation (Ls + q)u = 0. It
intends to generalize the recent study on the Calderón problem for the fractional
Schrödinger equation [18]. The study of the nonlocal operators is currently an
active research area in mathematics and often covers vivid problems coming from
different fields including mathematical physics, finance, biology and geology. See
the references [4, 37] for subsequent discussions.

The study of inverse problems remains as a popular field in applied mathe-
matics since A.P. Calderón published his pioneering work “On an inverse bound-
ary value problem” [9] in 1980s. The problem proposed by Calderón is: “Is it
possible to determine the electrical conductivity of a medium by making voltage
and current measurements on its boundary?” For instance, let Ω ⊂ Rn be a
smooth domain and γ(x) > 0 on Ω be the conductivity of the medium, then one
can determine the conductivity γ from the knowledge of current and voltage
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on the boundary measurements
(
u|∂Ω, γ

∂u
∂ν |∂Ω

)
, where u solves the conductivity

equation
−∇ · (γ∇u) = 0 in Ω. (1.1)

It gets its momentum with the seminal work of Sylvester and Uhlmann [45],
solving the Calderón problem in space dimension n ≥ 3 by establishing the fact
that the conductivity γ gets uniquely determined by the Dirichlet-to-Neumann
map

(
u|∂Ω 7→ γ ∂u∂ν

)
of the conductivity equation (1.1). Later on the same result

has been proved in dimension n = 2 also in [5]. However, the conclusion does not
true in one dimensional case. We refer readers to a survey article [49] for more
information. In a very recent progress the study of Calderón’s type inverse
problem is being initiated for nonlocal operators, in particular the Calderón
problem of the fractional Schrödinger operator (−∆)s + q(x) has been solved in
[18].

In this article, we continue the progress by considering more general non-
local operators (−∇ · (A(x)∇))s + q(x) where A is possibly variable coefficient
anisotropic matrix with standard ellipticity and boundedness assumptions on
it. This work also offers a comparative study between nonlocal inverse prob-
lem of (−∇ · (A(x)∇))s + q(x) for 0 < s < 1, and the local inverse problem of
−∇· (A(x)∇) + q(x). The solvability of the local inverse problem is fully known
in two dimension, whereas in three and higher dimension it is partially solved
for certain class of anisotropic matrix. We will see such difficulties do not arise
in our non-local analogue.

In this paper, we consider L to be a second order linear elliptic operator of
the divergence form

L := −∇ · (A(x)∇), (1.2)

which is defined in the entire space Rn for n ≥ 2, where A(x) = (aij(x)), x ∈ Rn
is an n× n symmetric matrix satisfying the ellipticity condition, i.e.,{

aij = aji for all 1 ≤ i, j ≤ n, and

Λ−1|ξ|2 ≤
∑n
i,j=1 aij(x)ξiξj ≤ Λ|ξ|2 for all x ∈ Rn, for some Λ > 0.

(1.3)
Our definition of the fractional power Ls, with its domain Dom(Ls), initiated
from the spectral theorem. We then extend the operator Ls, by applying the
heat kernel and its estimates, as a bounded linear operator

Ls : Hs(Rn) −→ H−s(Rn).

The detailed definition of Ls is included in Section 2.
If Ω is a bounded open set in Rn, let us consider u ∈ Hs(Rn) a solution to

the Dirichlet problem

(Ls + q)u = 0 in Ω with u = g in Ωe, (1.4)

where q = q(x) ∈ L∞(Ω) and Ωe is the exterior domain denoted by

Ωe = Rn\Ω.

We also assume that {0} is not an eigenvalue of the operator (Ls + q), which
means {

if w ∈ Hs(Rn) solves (Ls + q)w = 0 in Ω and w|Ωe = 0,

then w ≡ 0.
(1.5)
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For being q ≥ 0, the condition (1.5) is satisfied. Then for any given g ∈ Hs(Ωe),
there exists a unique solution u ∈ Hs(Rn) solving the nonlocal problem (1.4)
(see Proposition 3.3). Next, we are going to define the associated DN map of
the problem (1.4) in an analogues way introduced in [18, Lemma 2.4]. The DN
map is given by

Λq : X → X∗, (1.6)

where X is the abstract trace space X = Hs(Rn)/H̃s(Ω) such that

(Λq[g], [h]) = Bq(u, h), for g, h ∈ Hs(Rn). (1.7)

Here [·] stands for the equivalence class in X, i.e., for given g ∈ Hs(Rn),

[g] = g + g̃, with g̃ ∈ H̃s(Ω),

and Bq(·, ·) in (1.7) is the standard bilinear form associated to the above problem
(1.4) explicitly introduced in Subsection 3.2.

The range of the DN map could be interpreted as infinitesimal amount of
particles migrating to the exterior domain Ωe in the steady state free diffusion
process in Ω modeled by (1.4) which gets excited due to some source term in Ωe.
Analogue to the diffusion process, similar interpretations might be regarded in
the theory of stochastic analysis. For more details, see [1, 11, 35].

Furthermore, if the domain Ω, the potential q in Ω, the source term in Ωe
and the matrix A(x) in (1.2) satisfying (1.3) in Rn are sufficiently smooth, the
DN map is more explicit and is given by (see Remark 3.7)

Λq : Hs+β(Ωe)→ H−s+β(Ωe) with Λqg = Lsu|Ωe ,

where g ∈ Hs+β(Ωe) and β ≥ 0 is an arbitrary real number satisfying β ∈
(s − 1

2 ,
1
2 ). Heuristically, given an open set W ⊆ Ωe, we interpret Λqg|W as

measuring the cost required to maintain the exterior value g in W for the fixed
inhomogeneity in the system given by A(x) in the whole space Rn.

The following theorem is the main result in this article. It is a generalization
of the fractional Schrödinger inverse problem studied in [18] in any dimension
n ≥ 2. This is also a local data result with exterior Dirichlet and Neumann
measurements in arbitrary open (possibly disjoint) sets O1,O2 ⊆ Ωe.

Theorem 1.1. Let n ≥ 2, and A(x) is a C∞-smooth matrix-valued function in
Rn satisfying (1.3). Let Ω ⊆ Rn be a bounded domain with Lipschitz boundary
and let q1, q2 ∈ L∞(Ω) satisfy condition (1.5). Assume that O1,O2 ⊆ Ωe are
arbitrary open sets and Λqj is the DN map with respect to (Ls + qj)u = 0 in Ω
for j = 1, 2. If

Λq1g|O2
= Λq2g|O2

for any g ∈ C∞c (O1), (1.8)

then one can conclude that
q1 = q2 in Ω.

Theorem 1.1 can be interpreted as a partial data result for the above nonlocal
inverse problem. Analogues resembles can be made with the study of the partial
data Calderón’s type problem, the richness of such works can be found in [23,
24, 25, 26].
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Let us present a comparative study between our non-local inverse problem
and the known local inverse problem. We begin with recalling the following local
inverse problem as: Determining the uniqueness of the potentials q1 = q2 in Ω
from the information on the associated DN maps ΛA,q1 = ΛA,q2 on ∂Ω, where
the ΛA,qj : H1/2(∂Ω) → H−1/2(∂Ω) is the DN map defined by Λq(u|∂Ω) =
(A∇u) · ν|∂Ω (where ν is the unit outer normal on ∂Ω), and uj solves

(L+ qj)uj = −∇ · (A(x)∇uj) + qj(x)uj = 0 in Ω for j = 1, 2,

with A ∈ L∞(Ω) satisfying the ellipticity condition (1.3).
It has been answered positively in two dimensional case by using the isother-

mal coordinate. For n ≥ 3, the answer is known for a certain class of anisotropic
matrices A. This problem has been often addressed via geometry settings which
goes as follows: Let (M, g) be a oriented compact Riemannian n-dimensional
manifold with C∞-smooth boundary ∂M and let q be a continuous potential
on M . Consider

(−∆g + q)u = 0 in M, (1.9)

where

∆g =

n∑
j,k=1

(det g)−1/2 ∂

∂xj

(
(det g)1/2gjk

∂

∂xk

)
is the Laplace-Beltrami operator on (M, g) and g = (gjk) with (gjk) = (gjk)−1.
If {0} is not an eigenvalue of −∆g + q, we have the corresponding DN map on
∂M defined by

Λg,q : H1/2(∂M)→ H−1/2(∂M) by Λg,q(u|∂M ) :=

n∑
j,k=1

gjk
∂u

∂xj
νk

∣∣∣∣∣∣
∂M

,

where ν = (ν1, ν2, · · · , νn) is the unit outer normal on ∂M . The connection
between the matrix A = (ajk) and the metric gjk can be made as

gjk(x) = (detA(x))−1/(n−2)ajk(x) for n ≥ 3.

In the two-dimensional setting, if Λg,q1 = Λg,q2 on ∂M , then q1 = q2 in M
whenever q1, q2 are continuous potential on M , see [22]. However in the case of
three and higher dimensions, it has been answered only partially. Under special
geometries, for instance, when (M, g) is admissible (see [17, Definition 1.5]) and
q1, q2 are C∞-smooth, then Λg,q1 = Λg,q2 on ∂M implies q1 = q2 in M , see [17,
Theorem 1.6].

In our paper, we study the inverse problem associated with the nonlocal
operator Ls + q, where L = −∇ · (A(x)∇) and s ∈ (0, 1). We can determine
q1 = q2 in Ω ⊆ Rn for any n ≥ 2 via the partial information Λq1g|O2

= Λq2g|O2

for any g ∈ C∞c (O1), with O1, O2 being arbitrary open subsets in Ωe, for any
C∞-smooth matrix-valued function A(x) in Rn satisfying (1.3).

Note that we do not assume any further special structures on A(x) unlike
to the case s = 1, for example, the method (see [17]) consists of considering
the limiting Carleman weight function for the Laplace-Beltrami operator in M
and constructing the corresponding complex geometrical optics (CGO) solutions
based on those weights of the problem (1.9). Whereas, our analysis relies on
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the Runge type approximation result (cf. Theorem 1.2) based on the strong
uniqueness property (cf. Theorem 1.3) of the nonlocal operator Ls.

For A(x) being an n× n identity matrix In, then L becomes the Laplacian
operator (−∆) and the associated inverse problem for s = 1 has been studied
extensively. When n ≥ 3, the global uniqueness result is due to [45] for q ∈ L∞
and the authors [10, 32] proved it for the case of q ∈ Lp. When n = 2, Bukhgeim
[5] proved it for slightly more regular potentials and see [2] for the case of
q ∈ Lp. We refer readers to [50] for detailed survey on this inverse problem. For
s ∈ (0, 1), the study of this problem has been recently initiated in [18].

Let us briefly mention the way we prove the uniqueness result q1 = q2 in Ω
as stated in Theorem 1.1. By having the following integral identity

ˆ
Ω

(q1 − q2)u1u2 dx = 0,

which we obtain from the assumption on the DN maps (1.8). In particular, by
taking uj ∈ Hs(Rn) solving (Ls + qj)uj = 0 in Ω with supp(uj) ⊂ Ω ∪ Oj ;
finally we derive for any g ∈ L2(Ω)

ˆ
Ω

(q1 − q2)g dx = 0.

The proof of the above integral identity will be completed with subsequent
requirements of the following strong uniqueness property and the Runge ap-
proximation property for the nonlocal operator Ls, similar to the results known
(see [18]) for the fractional Laplacian operator.

Theorem 1.2. (Strong uniqueness property)Let n ≥ 2, and A(x) is a C∞-
smooth matrix-valued function in Rn satisfying (1.3). Let u ∈ Hs(Rn) be the
function with u = Lsu = 0 in some open set O of Rn, for s ∈ (0, 1), then u ≡ 0
in Rn.

Theorem 1.3. (Runge approximation property)Let n ≥ 2, and A(x) is a C∞-
smooth matrix-valued function in Rn satisfying (1.3). Let Ω ⊆ Rn be a bounded
open set and D ⊆ Rn be an arbitrary open set containing Ω such that int(D\Ω) 6=
∅. Let q ∈ L∞(Ω) satisfies (1.5), then for any f ∈ L2(Ω), for any ε > 0, we can
find a function uε ∈ Hs(Rn) which solves

(Ls + q)uε = 0 in Ω and supp(uε) ⊆ D

and
‖uε − f‖L2(Ω) < ε.

Remark 1.4. Runge approximation is the reason why one gets better results for
nonlocal equations, and Theorem 1.3 is a further generalization of the recent
works of Dipierro-Savin-Valdinoci [15] and Ghosh-Salo-Uhlmann [18] where as
a nonlocal operator (−∆)s (s ∈ (0, 1)) has been considered.

The paper is organized as follows. In Section 2, we will give a brief review
of the background knowledge required in our paper, including the definition of
the operator Ls. Some results for the Dirichlet problem, including the well-
posedness and the definition of the corresponding DN map, associated with the
nonlocal operator Ls will be established in Section 3. In Section 4, we will show
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that the nonlocal problem in Rn is related to an extension degenerate local el-
liptic problem in Rn × (0,∞), which was first characterized by [44]. We also
introduce suitable regularity results for the nonlocal operator Ls in Rn, and its
extension operator in Rn × (0,∞). These regularity results play the essential
role to achieve our desired results. We hope that these regularity results could
be of some independent interests. In Section 5, we will derive the strong unique
continuation property (SUCP) for variable fractional operators and we prove
Theorems 1.2 and 1.3. In Section 6, we prove the nonlocal type Calderón prob-
lem, Theorem 1.1. In Appendix, we offer the proof of the existence, uniqueness,
and related properties including the Almgren type frequency function method
and the associated doubling inequality for the degenerate elliptic problem.
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2 Preliminaries

In this section, we will discuss some key properties for the variable coefficients
fractional nonlocal operator Ls = (−∇ · (A(x)∇))s. For A(x) being an identity
matrix, the operator Ls becomes the well-known fractional Laplacian operator
(−∆)s, and the detailed study about the (−∆)s is available in [3, 6, 7, 8, 38,
39, 41, 42, 43].

2.1 Spectral Theory

We sketch in this section some basis of the spectral theory which will be used
in this paper. For details, readers can refer to the references [36, 40, 47], etc.

Let L be a non-negative definite and self-adjoint operator densely defined in a
Hilbert space, say, L2(Rn). Let φ be a real-valued measurable function defined
on the spectrum of L. Then the following defined φ(L) is also a self-adjoint
operator in L2(Rn),

φ(L) :=

ˆ ∞
0

φ(λ) dEλ,

where {Eλ} is the spectral resolution of L and each Eλ is a projection in L2(Rn)
(see for instance, [20]). The domain of φ(L) is given by

Dom(φ(L)) =

{
f ∈ L2(Rn);

ˆ ∞
0

|φ(λ)|2 d‖Eλf‖2 <∞
}
.

The linear operator φ(L) : Dom(φ(L)) → L2(Rn) is understood, via Riesz
representation theorem, in the following sense,

〈φ(L)f, g〉L2 :=

ˆ ∞
0

φ(λ) d〈Eλf, g〉L2 , f ∈ Dom(φ(L)), g ∈ L2(Rn),
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where 〈·, ·〉 denotes the (real) inner product in L2(Rn).
Now we are in a position to define the fractional operator Ls. Notice that

λs =
1

Γ(−s)
´∞

0
(e−tλ − 1)t−1−sdt for s ∈ (0, 1), where Γ(−s) := −Γ(1 − s)/s,

and Γ is the Gamma function. We define, given s ∈ (0, 1),

Ls :=

ˆ ∞
0

λs dEλ =
1

Γ(−s)

ˆ ∞
0

(
e−tL − Id

) dt

t1+s
, (2.1)

where e−tL given by

e−tL :=

ˆ ∞
0

e−tλ dEλ (2.2)

is a bounded self-adjoint operator in L2(Rn) for each t ≥ 0. The operator family
{e−tL}t≥0 is called the heat semigroup associated with L (cf. [34]). The domain
of Ls is given by

Dom(Ls) =

{
f ∈ L2(Rn);

ˆ ∞
0

λ2s d‖Eλf‖2 <∞
}
. (2.3)

Notice for any f ∈ Dom(Ls) that, Lsf ∈ L2(Rn) and is given, again in the sense
of Riesz representation theorem, by the formula

〈Lsf, g〉L2 =
1

Γ(−s)

ˆ ∞
0

〈(
e−tLf − f

)
, g
〉
L2

dt

t1+s
, g ∈ L2(Rn), (2.4)

when s ∈ (0, 1).

Remark 2.1. We remark here that

Dom(L) ⊆ Dom(Ls), s ∈ (0, 1). (2.5)

In fact, for any f ∈ Dom(L) ⊆ L2(Rn), one has

ˆ ∞
0

λ2s d‖Eλf‖2 =

ˆ ∞
1

λ2s d‖Eλf‖2 +

ˆ 1

0

λ2s d‖Eλf‖2

≤
ˆ ∞

0

λ2 d‖Eλf‖2 +

ˆ ∞
0

d‖Eλf‖2

= ‖Lf‖2L2(Rn) + ‖f‖2L2(Rn) <∞.

2.2 Sobolev Spaces

For simplicity, we shall always consider real function spaces in this paper. Our
notations for Sobolev spaces are mainly followed by [30].

Let a ∈ R be a constant. Let Ha(Rn) = W a,2(Rn) be the (fractional)
Sobolev space endowed with the norm

‖u‖Ha(Rn) :=
∥∥F−1

{
〈ξ〉a Fu

}∥∥
L2(Rn)

,

where 〈ξ〉 = (1 + |ξ|2)
1
2 . It is known that for s ∈ (0, 1), ‖ · ‖Hs(Rn) has the

following equivalent form

‖u‖Hs(Rn) := ‖u‖L2(Rn) + [u]Hs(Rn) (2.6)
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where

[u]2Hs(O) :=

ˆ
O×O

|u(x)− u(z)|2

|x− z|n+2s
dxdz,

for any open set O of Rn.
Given any open set O of Rn and a ∈ R, we denote the following Sobolev

spaces,

Ha(O) := {u|O; u ∈ Ha(Rn)},

H̃a(O) := closure of C∞c (O) in Ha(Rn),

Ha
0 (O) := closure of C∞c (O) in Ha(O),

and
Ha
O := {u ∈ Ha(Rn); supp(u) ⊂ Ω}.

The Sobolev space Ha(O) is complete under the norm

‖u‖Ha(O) := inf
{
‖v‖Ha(Rn); v ∈ Ha(Rn) and v|O = u

}
.

It is known that H̃a(O) ⊆ Ha
0 (O), and that Ha

O is a closed subspace of Ha(Rn).

Lemma 2.2. ([30]) Let Ω be a Lipschitz domain in Rn. Then
(1) For any a ∈ R,

H̃a(Ω) = Ha
Ω
⊆ Ha

0 (Ω),

(Ha(Ω))
∗

= H̃−a(Ω) and
(
H̃a(Ω)

)∗
= H−a(Ω).

(2) For a ≥ 0 and a /∈ { 1
2 ,

3
2 ,

5
2 ,

7
2 , . . .},

H̃a(Ω) = Ha
0 (Ω).

2.3 The Operator Ls

In this paper, we consider L to be a linear second order partial differential
operator of the divergence form

L := −∇ · (A(x)∇). (2.7)

We assume that the n× n matrix A(x) = (aij(x))ni,j=1 such that aij ∈ C∞(Rn)
for i, j = 1, 2, · · · , n and satisfies (1.3). It is easy to see that the operator L is
well-defined on C∞0 (Rn), which is dense in the Hilbert space L2(Rn). However,
L is not self-adjoint in the domain C∞0 (Rn). In fact, one can verify in the case
that, the adjoint operator admits the domain Dom(L∗) = {f ∈ L2(Rn); Lf ∈
L2(Rn)}, which does not coincide with C∞0 (Rn). In order to define the fractional
power Ls by applying the spectral theory we briefly sketched in Section 2.1, one
needs firstly to extend L as a self-adjoint operator densely defined in L2(Rn).

It is known, see for instance [20], that L with the domain

Dom(L) = H2(Rn) (2.8)

is the maximal extension such that L is self-adjoint and densely defined in
L2(Rn). Moreover, it is natural to expect that Dom(Ls) is close to the Sobolev
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space H2s(Rn), which is shown, at least when s = 1/2, that Dom(Ls) =
H2s(Rn) (cf. [12, 20]). Next, we would like to extend the definition of Ls
from its domain Dom(Ls) introduced in (2.3) to Hs(R), using heat kernels and
theirs estimates.

It is known that for L satisfying (1.3) with C∞-smooth leading coefficient,
then the bounded operator e−tL given in (2.2) admits a symmetric (heat) kernel
pt(x, z) (cf. [20]). In other words, one has for any t ∈ R+ := (0,∞) and any
f ∈ L2(Rn) that (

e−tLf
)

(x) =

ˆ
Rn
pt(x, z)f(z) dz, x ∈ Rn. (2.9)

Moreover for any t ∈ R+, the kernel pt(·, ·) is symmetric and admits the following
estimates (cf. [12]) with some positive constants cj and bj , j = 1, 2,

c1e
−b1 |x−z|

2

t t−
n
2 ≤ pt(x, z) ≤ c2e−b2

|x−z|2
t t−

n
2 , x, z ∈ Rn. (2.10)

By applying similar arguments as in the proof of [8, Theorem 2.4], one has for
f, g ∈ Dom(Ls) that

〈Lsf, g〉L2 =
1

2Γ(−s)

ˆ ∞
0

ˆ
Rn×Rn

(f(x)− f(z))(g(x)− g(z))pt(x, z)dxdz
dt

t1+s
,

(2.11)
Now we define

Ks(x, z) :=
1

Γ(−s)

ˆ ∞
0

pt(x, z)
dt

t1+s
. (2.12)

It is seen from (2.10) that Ks enjoys the following pointwise estimate

C1

|x− z|n+2s
≤ Ks(x, z) = Ks(z, x) ≤ C2

|x− z|n+2s
, x, z ∈ Rn, (2.13)

with some positive constants C1, C2. Hence it is obtain by recalling the norm
(2.6) of Hs(Rn) that for any f, g ∈ Hs(Rn), the right hand side (RHS) of (2.11)
coincides with

1

2

ˆ
Rn×Rn

(f(x)− f(z))(g(x)− g(z))Ks(x, z)dxdz.

Therefore, it is natural to extend the definition of Ls from Dom(Ls) to Hs(Rn)
in the following distributional sense

〈Lsf, g〉H−s×Hs :=
1

2

ˆ
Rn×Rn

(f(x)− f(z))(g(x)− g(z))Ks(x, z)dxdz. (2.14)

Moreover, it is obtained from (2.13) that, there exists a positive constant C such
that the operator Ls defined in (2.14) satisfies

|〈Lsf, g〉H−s×Hs | ≤ C‖u‖Hs(Rn)‖v‖Hs(Rn), u, v ∈ Hs(Rn). (2.15)

Thus, the definition (2.14) gives a bounded linear operator

Ls : Hs(Rn) −→ H−s(Rn).
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We observe by using the symmetry Ks(x, z) = Ks(z, x) that Ls is also symmet-
ric, namely

〈Lsf, g〉H−s×Hs = 〈f,Lsg〉(Hs,H−s), f, g ∈ Hs(Rn). (2.16)

Furthermore, it is obtained that

〈Lsf, g〉H−s×Hs =
1

2
lim
ε→0+

ˆ
Rn

ˆ
|x−z|>ε

(f(x)− f(z))(g(x)− g(z))Ks(x, z)dxdz

=
1

2
lim
ε→0+

ˆ
Rn

ˆ
|x−z|>ε

(f(x)− f(z))g(x)Ks(x, z)dxdz

+
1

2
lim
ε→0+

ˆ
Rn

ˆ
|x−z|>ε

(f(x)− f(z))g(x)Ks(x, z)dzdx

=

ˆ
Rn
g(x) lim

ε→0+

ˆ
|x−z|>ε

(f(x)− f(z))Ks(x, z)dzdx,

holds for all f, g ∈ Hs(Rn). Hence, one can also write

(Lsf) (x) = lim
ε→0+

ˆ
|x−z|>ε

(f(x)− f(z))Ks(x, z)dz, f ∈ Hs(Rn). (2.17)

3 Dirichlet problems for Ls + q

In a continuation to the general case, we proceed our discussions by introducing
the state spaces followed by the Dirichlet problem and associated DN map for
for Ls + q.

3.1 Well-Posedness

Throughout this section, we shall always let Ω ⊆ Rn be a bounded Lipschitz
domain, q be a potential in L∞(Ω) and s ∈ (0, 1) be a constant. We consider
the following nonlocal Dirichlet problem for the nonlocal operator Ls,{

(Ls + q)u = f in Ω,

u = g in Ωe.
(3.1)

Define the bilinear form Bq(·, ·) by

Bq(v, w) := 〈Lsv, w〉+

ˆ
Ω

q(x)v(x)w(x) dx, v, w ∈ Hs(Rn) (3.2)

with Ls given by the form (2.14). It is seen from (2.16) that Bq is symmetric,
and from (2.15) that Bq is a bounded in Hs(Rn)×Hs(Rn), i.e.,

|Bq(v, w)| ≤ C‖v‖Hs(Rn)‖w‖Hs(Rn), v, w ∈ Hs(Rn). (3.3)

Note that Bq can be also regarded as a symmetric bounded bilinear form in the

space H̃s(Ω). In fact, by using (3.3) and the fact that C∞0 (Ω) is dense in H̃s(Ω),

one can define for any v ∈ H̃s(Ω) that,

Bq(v, φ) = 〈Lsṽ, φ〉+

ˆ
Ω

q(x)v(x)φ(x) dx, φ ∈ C∞0 (Ω), (3.4)

where ṽ ∈ Hs(Rn) is an extension of v such that ṽ|Ω = v.
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Definition 3.1. (Weak solution) Let Ω be a bounded Lipschitz domain in Rn.
Given f ∈ H−s(Ω) and g ∈ Hs(Rn), we say that u ∈ Hs(Rn) is a (weak)

solution of (3.1) if ũg := u− g ∈ H̃s(Ω) and

Bq(u, φ) = 〈f, φ〉 for any φ ∈ C∞0 (Ω), (3.5)

or equivalently

Bq(ũg, φ) = 〈f − (Ls + q)g, φ〉 for any φ ∈ C∞0 (Ω). (3.6)

Remark 3.2. It is easy to see that the space C∞0 (Ω) of test functions in (3.5)

and (3.6) can be replaced by H̃s(Ω).

The well-posedness of the Dirichlet problem (3.1) is shown by the following
more general result.

Proposition 3.3. Let Ω be a bounded Lipschitz domain in Rn and q ∈ L∞(Ω).
The following results hold.

(1) There is a countable set Σ = {λj}∞j=1 of real numbers λ1 ≤ λ2 ≤ . . . →
∞, such that given λ ∈ R \ Σ, for any f ∈ H−s(Ω) and any g ∈ Hs(Rn), there

is a unique u ∈ Hs(Rn) satisfying u− g ∈ H̃s(Ω) and

Bq(u, v)− λ(u, v)L2 = 〈f, v〉 for any v ∈ H̃s(Ω). (3.7)

Moreover,
‖u‖Hs(Rn) ≤ C0

(
‖f‖H−s(Ω) + ‖g‖Hs(Rn)

)
, (3.8)

for some constant C0 > 0 independent of f and g.
(2) The condition (1.5) holds if and only if 0 /∈ Σ.
(3) If q ≥ 0 a.e. in Ω, then Σ ⊆ R+, and hence (1.5) always holds.

Proof. It is obtained from (2.13) and (2.14) that

〈Lsv, v〉(H−s,Hs) =
1

2

ˆ
Rn×Rn

|v(x)− v(z)|2Ks(x, z)dxdz ≥ c0‖v‖Hs(Rn), (3.9)

for any v ∈ Hs(Rn) with some constant c0 > 0 independent of v. As a conse-
quence,

Bq(v, v) + λ0(v, v)L2 ≥ c0‖v‖2H̃s(Ω)
, (3.10)

for any v ∈ H̃s(Ω), where λ0 is a constant such that λ0 ≤ ‖q−‖L∞(Ω) with
q−(x) := −min{0, q(x)}. On the other hand, it is easy to see from (3.3) that

|Bq(w, v) + λ0(w, v)L2 | ≤ (C + λ0)‖w‖H̃s(Ω)‖v‖H̃s(Ω), (3.11)

holds for any w, v ∈ H̃s(Ω). Hence, we know that the bilinear form Bq(·, ·) +

λ0(·, ·)L2 is bounded and coercive. Therefore, given any f ∈ H−s(Ω) =
(
H̃s(Ω)

)∗
,

there is a unique u ∈ H̃s(Ω) such that

Bq(u, v) + λ0(u, v)L2 = 〈f, v〉 for any v ∈ H̃s(Ω), (3.12)

and that
‖u‖H̃s(Ω) ≤ C‖f‖H−s(Ω) (3.13)
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with some constant C independent of f . Denote by G0 the operator mapping f
to the solution u of (3.12). Then G0 is bounded from H−s(Ω) to H̃s(Ω) with a
bounded inverse.

Now, suppose ũg ∈ H̃s(Ω) satisfying (3.7) with u = ũg. Then one has

ũg = G0 (f + (λ+ λ0)ũg) ,

which implies (
1

λ+ λ0
Id− G0

)
ũg = G0f, (3.14)

where Id denotes the identity map in H̃s(Ω). By compact Sobolev embedding,

it is observed that G0 is compact in H̃s(Ω). Thus by the spectral properties
of compact operators, G−1

0 has discrete spectrum { 1
λj+λ0

}∞j=1 consisting only

eigenvalues with λj → ∞ as j increases. Denote Σ = {λj}∞j=1. Then by the
Fredholm alternative, one has for any λ /∈ Σ, the operator(

1

λ+ λ0
Id− G0

)
: H̃s(Ω)→ H̃s(Ω),

is injective and has a bounded inverse. Therefore, the equation (3.14) is uniquely
solvable, providing λ /∈ Σ, with the following estimate of the solution ũg,

‖ũg‖H̃s(Ω) ≤ C‖f‖H−s(Ω), (3.15)

for some constant C > 0 independent of ũg and f .
The rest of the proof for the statement (1) is completed by considering

ũg = u− g. The result in (2) is a direct consequence of (1). Finally, by taking
λ0 = 0 in the previous arguments, one already sees (3).

Next we consider the Dirichlet problem (3.1) with a zero RHS, namely,{
(Ls + q)u = 0 in Ω,

u = g in Ωe.
(3.16)

In the rest of the paper, we shall always assume that q ∈ L∞(Ω) satisfies (1.5),
or equivalently, 0 /∈ Σ with the set Σ given in Proposition 3.3. Under this
assumption, it is shown in Proposition 3.3 that given any g ∈ Hs(Rn), the
Dirichlet problem (3.16) admits a unique solution u ∈ Hs(Rn) such that

‖u‖Hs(Rn) ≤ C‖g‖Hs(Rn). (3.17)

Recall that u ∈ Hs(Rn) is called a solution of (3.16) if u − g ∈ H̃s(Ω) and

Bq(u, v) = 0 for any v ∈ H̃s(Ω). We emphasize the following proposition before
ending this subsection.

Proposition 3.4. The solution u ∈ Hs(Rn) of (3.1) does not depend on the
value of g ∈ Hs(Rn) in Ω, it depends only on g|Ωe .

Proof. Let g1, g2 ∈ Hs(Rn) be such that g1 − g2 ∈ H̃s(Ω) = Hs
Ω

. Denote
uj ∈ Hs(Rn) as the solution of (3.16) with the Dirichlet data gj for each j = 1, 2.
It is observed that

ũ := u1 − u2 = (u1 − g1)− (u2 − g2) + (g1 − g2) ∈ H̃s(Ω)

12



and Bq(ũ, v) = 0 for any v ∈ H̃s(Ω). Thus by the unique solvability of (3.16)
with g = 0 one has ũ = 0.

From Proposition 3.4, one can actually consider the nonlocal problem (3.16)
with Dirichlet data in the quotient space

X := Hs(Rn)/Hs
Ω
∼= Hs(Ωe), (3.18)

provided that Ω is Lipschitz.

3.2 The DN Map

We define in this section the associated DN map for Ls+q via the bilinear form
Bq in (3.5).

Proposition 3.5. (DN map) Let Ω be a bounded Lipschitz domain in Rn for
n ≥ 2, s ∈ (0, 1) and q ∈ L∞(Ω) satisfy the eigenvalue condition (1.5). Let X
be the quotient space given in (3.18). Define

〈Λq[g], [h]〉 := Bq(u, h), [g], [h] ∈ X, (3.19)

where g, h ∈ Hs(Rn) are representatives of the classes [g], [h] ∈ X respectively,
and u ∈ Hs(Rn) is the solution of (3.16) with the Dirichlet data g. Then,

Λq : X → X∗,

which is bounded. Moreover, we have the following symmetry property for Λq,

〈Λq[g], [h]〉 = 〈Λq[h], [g]〉 , [g], [h] ∈ X. (3.20)

Proof. We first show that Λq given in (3.19) is well-defined. Recall from Remark
3.4 that, the solution to (3.16) with Dirichlet data g̃ ∈ Hs(Rn) is the same as

the solution with data g, as long as g̃ − g ∈ H̃s(Ω). Thus the RHS of (3.19)
is invariant under the different choices of the representative g ∈ Hs(Rn) for
[g] ∈ X. In addition, one has

Bq(u, h̃) = Bq(u, h) + Bq(u, h̃− h) = Bq(u, h),

for any h̃ ∈ Hs(Rn) such that h̃− h ∈ H̃s(Ω). Therefore, the RHS of (3.19) is
well determined by [g], [h] ∈ X.

From the boundedness (3.3) of Bq, one has

|〈Λq[g], [h]〉| ≤ C‖g0‖Hs(Rn)‖h0‖Hs(Rn)

≤ C1‖[g]‖X‖[h]‖X ,

by properly choosing representatives g0, h0 ∈ Hs(Rn) for [g], [h] ∈ X. The
symmetry of X is a direct consequence of the symmetry of the bilinear form Bq.
The proof is completed.

Recall that the quotient space X is isometric to Hs(Ωe), whenever Ω ⊆ Rn
is a Lipschitz domain. Hence one can always regard the operator Λq defined in
Proposition 3.5 as

Λq : Hs(Ωe)→ (Hs(Ωe))
∗

= H−s
Ωe

= H̃−s(Ωe).
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In general, for any h̃ ∈ Hs(Rn) we have

(Λq[g], [h])X∗×X = Bq(ug, h̃)

=

ˆ
Rn
h̃Lsugdx+

ˆ
Ω

qugh̃dx

=

ˆ
Ωe

h̃Lsugdx

=

ˆ
Ωe

hLsug dx. (3.21)

Then from (3.21) we have

(Λq[g], [h])H−s
Ωe

(Rn)×Hs(Ωe) =

ˆ
Ωe

hLsug dx, for any h ∈ Hs(Ωe).

This implies that
Λq[g] = Lsug|Ωe . (3.22)

Let us continue to give another representation of Λq[g] involving the Neumann
operator Ns. We introduce the anisotropic nonlocal Neumann operator Ns
analogues to the Neumann operator which is initiated in [14] for the fractional
Laplacian operator (−∆)s. Here we define the anisotropic nonlocal Neumann
operator Ns for Ls over the exterior domain Ωe as follows:

Nsu(x) :=

ˆ
Ω

Ks(x, z)(u(x)− u(z)) dz, for x ∈ Ωe and u ∈ Hs(Rn) (3.23)

where Ks(x, z) (cf. (2.12)) is the kernel of L introduced in (2.17).

Lemma 3.6. Let Ω ⊆ Rn as mentioned above. Then

Λq[g] = (Nsug −mg + Ls(E0g))|Ωe . (3.24)

where m ∈ C∞(Ωe) is given by m(x) :=
´

Ω
Ks(x, z) dz and E0 is extension by

zero, i.e. E0g = χΩeg.

Proof. Since Ω is a Lipschitz domain, from (3.22) we have:

Λq[g] = (Lsug) |Ωe = (Ls(χΩug) + Ls(χΩeug))|Ωe ,

as we know if g ∈ Hs(Ωe), then g ∈ Hα(Ωe) for some α ∈ (−1/2, 1/2) and hence
E0g, ug ∈ Hα(Rn). Recall also that χΩ and (1 − χΩ) are pointwise multipliers
on Hα(Rn) (see [18]). Now from the pointwise definition of Ls given in (2.17),
and the Neumann operator in (3.23) it simply follows that :

(Ls(χΩug)) |Ωe = (Nsug −mg) |Ωe

where m ∈ C∞(Ωe) is given by m(x) =
´

Ω
Ks(x, z) dz.

Hence, we have two representation of Λq[g] are given by (3.22) and (3.24).
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Remark 3.7. Let Ω ⊆ Rn be a bounded open set with C∞-smooth boundary.
Suppose the matrix A(x) given in (2.7) satisfying (1.3), potential q(x) and the
source term g(x) are C∞-smooth functions in Rn, Ω, and Ωe , respectively.

Then for any β ≥ 0 with s− 1

2
< β <

1

2
, the DN map is given by

Λq : Hs+β(Ωe)→ H−s+β(Ωe), with Λqg = Lsug|Ωe ,

where ug ∈ Hs+β(Rn) is a solution of (Ls + q)u = 0 in Ω with u = g in Ωe.

Proof. Since A(x) ∈ C∞(Rn) and Ls is the fractional operator with C∞-smooth
coefficients of order 2s, it bounds to satisfy the s-transmission eigenvalue condi-
tion given in [21]. Then the proof becomes analogues to the proof of [18, Lemma
3.1] and we omit here.

We end this section by deriving couple of results regarding the integral iden-
tity in our case.

Lemma 3.8. (Integral identity) Let Ω ⊆ Rn as mentioned above, s ∈ (0, 1) and
q1, q2 ∈ L∞(Ω) satisfy (1.5). For any g1, g2 ∈ Hs(Ωe) one has

((Λq1 − Λq2)[g1], [g2]) = ((q1 − q2)rΩu1, rΩu2)Rn (3.25)

where uj ∈ Hs(Rn) solves (Ls + qj)uj = 0 in Ω with uj |Ωe = gj for j = 1, 2.

Proof. By (3.20), we have

((Λq1 − Λq2)[g1], [g2]) = (Λq1 [g1], [g2])− ([g1],Λq2 [g2])

= Bq1(u1, u2)−Bq2(u1, u2)

= ((q1 − q2)rΩu1, rΩu2)Rn .

4 Extension Problems for Ls

In this section, we introduce an extension problem, which characterize the non-
local operator Ls. For convenience, we introduce the following notations.

Notations in Rn+1

We shall always, unless otherwise specified, refer the notation (x, y) ∈ Rn+1 with
x ∈ Rn and y ∈ R. Let Rn+1

+ be the (open) upper half space of Rn+1, namely,

Rn+1
+ := {(x, y); x ∈ Rn, y > 0} and its boundary ∂Rn+1

+ := {(x, 0); x ∈ Rn}.
Given any x0 ∈ Rn, (x0, y0) ∈ Rn+1 and R > 0, we denote the balls

B (x0, R) := {x ∈ Rn : |x− x0| < R} ⊂ Rn,

Bn+1 ((x0, y0), R) :=
{

(x, y) ∈ Rn+1 :
√
|x− x0|2 + |y − y0|2 < R

}
,

and as y0 = 0, we set

Bn+1 (x0, R) := Bn+1 ((x0, 0), R) ,

Bn+1
+ (x0, R) := Bn+1 (x0, R) ∩ {y > 0}.
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LetD be a Lipschitz domain in Rn+1. Let w be an arbitraryA2 Muckenhoupt
weight function (cf. [16, 31]) and we denote L2(D, w) to be the weighted Sobolev
space containing all functions U which are defined a.e. in D such that

‖U‖L2(D,w) :=

(ˆ
D
w|U |2dxdy

)1/2

<∞.

Define
H1(D, w) := {U ∈ L2(D, w); ∇x,yU ∈ L2(D, w)},

where ∇x,y := (∇, ∂y) = (∇x, ∂y) is the total derivative in Rn+1. It is easy to
see that L2(D, w) and H1(D, w) are Banach spaces with respect to the norms
‖ · ‖L2(D,w) and

‖U‖H1(D,w) :=
(
‖U‖2L2(D,w) + ‖∇x,yU‖2L2(D,w)

)1/2

,

respectively. We shall also make use of the weighted Sobolev space H1
0 (D, w)

which is the closure of C∞0 (D) under the H1(D, w) norm.
In this work, we will consider the weight function w to be y1−2s, |y|1−2s,

y2s−1 and |y|2s−1. It is known (cf. [27]) that y1−2s, y2s−1 ∈ A2 for s ∈ (0, 1) in
Rn+1

+ and |y|1−2s, |y|2s−1 ∈ A2 in Rn+1.

Let us consider the following extension problem in Rn+1
+{

−LxU + 1−2s
y Uy + Uyy = 0 in Rn+1

+ ,

U(·, 0) = u(x) on ∂Rn+1
+ .

(4.1)

The extension problem is related to the nonlocal equation (1.4), where the non-
local operator Ls has been regarded as a Dirichlet-to-Neumann map of the
above degenerate local problem (4.1). For convenience, we introduce an auxil-

iary matrix-valued function Ã : Rn → R(n+1)×(n+1) by

Ã(x) =

(
A(x) 0

0 1

)
. (4.2)

We introduce the following degenerate local operator by

L 1−2s

Ã
= ∇x,y · (y1−2sÃ(x)∇x,y). (4.3)

It can be seen that y−1+2sL 1−2s

Ã
is nothing but the above degenerate local

operator introduced in (4.1) as

L 1−2s

Ã
= y1−2s

{
∇ · (A(x)∇) +

1− 2s

y
∂y + ∂2

y

}
.

4.1 Basic properties for the extension problem

Let us begin with the following solvability result of the extension for L, where L
is a second order elliptic operator L = −∇ · (A(x)∇). Recall that the fractional
Sobolev space Hs(Rn) can be realized as a trace space of the weighted Sobolev
space H1(Rn+1

+ , y1−2s) for s ∈ (0, 1) (see [48]), i.e., for a given u ∈ Hs(Rn),
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there exists U0(x, y) ∈ H1(Rn+1
+ , y1−2s) such that U0(x, 0) = u(x) ∈ Hs(Rn)

with
‖U0‖H1(Rn+1

+ ,y1−2s) ≤ C‖u‖Hs(Rn). (4.4)

For given u ∈ Hs(Rn) and define H1
0 (Rn+1

+ , y1−2s) := {U ∈ H1(Rn+1
+ , y1−2s) :

U = 0 on ∂Rn+1
+ }, then we say U(x, y) ∈ H1(Rn+1

+ , y1−2s) is a weak solu-
tion of the Dirichlet boundary value problem (4.1) whenever U := U − U0 ∈
H1

0 (Rn+1
+ , y1−2s)

ˆ
Rn+1

+

y1−2sÃ(x)∇x,yU · ∇x,yφdxdy (4.5)

=−
ˆ
Rn+1

+

y1−2sÃ(x)∇x,yU0 · ∇x,yφdxdy,

for all φ ∈ C∞c (Rn+1
+ ). The solution U(x, y) ∈ H1(Rn+1

+ , y1−2s) can be also
characterized as a unique minimizer of the Dirichlet functional

min
Ψ∈H1(Rn+1

+ ,y1−2s)

{ˆ
Rn+1

+

y1−2sÃ(x)∇x,yΨ · ∇x,yΨdxdy : Ψ(x, 0) = u(x)

}
.

The existence and the uniqueness for the Dirichlet problem with zero exterior
data is given in the Appendix. First, we have the following uniqueness result.

Lemma 4.1. (Unique extension) Let s ∈ (0, 1) and let Ã be given by (4.2) with
A(x) satisfying (1.3). Given any u ∈ Hs(Rn), there exists a unique solution
U ∈ H1(Rn+1

+ , y1−2s) of {
L 1−2s

Ã
U = 0 in Rn+1

+ ,

U(·, 0) = u in Rn.
(4.6)

Proof. It is known from [33, 48] that Hs(Rn) can be regarded as the trace space
of H1(Rn+1

+ , y1−2s) on ∂Rn+1
+ . Therefore, one can find a function V in the

space H1(Rn+1
+ , y1−2s) such that V (x, 0) = u(x) for x ∈ Rn. It is then verified

by [16, Theorem 2.2] that there is a unique solution U ∈ H1(Rn+1
+ , y1−2s) of

L 1−2s

Ã
U = 0 such that U − V ∈ H1

0 (Rn+1
+ , y1−2s). Thus, the existence of

solution to (4.6) has been proven. The uniqueness is then a simple consequence
of [16, Theorem 2.2].

Next, we demonstrate the following stability estimate.

Lemma 4.2. (Stability estimate) Let u and U be the same as in Lemma (4.1),
then the stability estimate is given by

‖U‖H1(Rn+1
+ ,y1−2s) ≤ C‖u‖Hs(Rn). (4.7)

for some C > 0 independent of u and U .

Proof. Given u ∈ Hs(Rn), there exists U0(x, y) ∈ H1(Rn+1
+ , y1−2s) such that

U0(x, 0) = u(x). Since U ∈ H1(Rn+1
+ , y1−2s) is a weak solution of (4.6), let

V := U − U0, then V ∈ H1(Rn+1
+ , y1−2s) is a weak solution of{

∇ · (y1−2sÃ∇V ) = ∇ ·G in Rn+1
+ ,

V (x, 0) = 0 in Rn,
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where G := −y1−2sÃ(x)∇x,yU0. It is easy to see that y2s−1G ∈ L2(Rn+1
+ , y1−2s)

and ˆ
Rn+1

+

y1−2s|y2s−1G|2dxdy =

ˆ
Rn+1

+

y1−2s
∣∣∣Ã∇x,yU0

∣∣∣2 dxdy
≤ C

ˆ
Rn+1

+

y1−2s|∇x,yU0|2dxdy,

for some universal constant C > 0. Thus, from (7.2) in Appendix, we know

‖V ‖H1(Rn+1
+ ,y1−2s) ≤ C‖y−1+2sG‖L2(Rn+1

+ ,y1−2s)

≤ C‖U0‖H1(Rn+1
+ ,y1−2s),

for some constant C > 0 and the last inequality comes the trace estimate (4.4).
Finally, by U = V + U0 and the trace estimate (4.4) again, we conclude that
there is a constant C > 0 such that

‖U‖H1(Rn+1
+ ,y1−2s) ≤ C‖u‖Hs(Rn),

which finished the proof.

We observe that since from the standard elliptic regularity theory, we get
that U is C∞-smooth in Rn+1

+ . Consequently, by using the standard weak
formulation method, we can obtain that y1−2s∂yU converges to some function
h ∈ H−s(Rn) as y → 0 in H−s(Rn) as

(h, φ(x, 0))H−s(Rn)×Hs(Rn) =

ˆ
Rn+1

+

y1−2sÃ(x)∇x,yU · ∇x,yφdxdy, (4.8)

for all φ ∈ H1(Rn+1
+ , y1−2s). In other words, U ∈ H1(Rn+1

+ , y1−2s) is a weak
solution of the Neumann boundary value problem{

∇x,y · (y1−2sÃ(x)∇x,yU) = 0 in Rn+1
+ ,

limy→0 y
1−2s∂yU = h in Rn × {0}.

(4.9)

The following proposition characterizes limy→0 y
1−2s∂yU = h as dsh = Lsu, for

some constant ds depending on s, which connects the nonlocal problem and the
extension problem.

Proposition 4.3. Given u ∈ Hs(Rn), define

U(x, y) :=

ˆ
Rn
P sy (x, z)u(z)dz, (4.10)

where P sy is the Poisson kernel given by

P sy (x, z) =
y2s

4sΓ(s)

ˆ ∞
0

e−
y2

4t pt(x, z)
dt

t1+s
, x, z ∈ Rn, y > 0, (4.11)

with the heat kernel pt introduced in Section 2.3. Then U ∈ H1(Rn+1
+ , y1−2s)

and is the weak solution of (4.6) and

lim
y→0+

U(·, y)− U(·, 0)

y2s
=

1

2s
lim
y→0+

y1−2s∂yU(·, y) =
Γ(−s)
4sΓ(s)

Lsu, (4.12)

in H−s(Rn).
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Remark 4.4. Note that Stinga and Torrea [44] proved the equality (4.12) for
u ∈ Dom(Ls). Here we extend such results for all u ∈ Hs(Rn).

Proof of Proposition 4.3. From [44, Theorem 2.1], we know that

U(x, y) :=

ˆ
Rn
P sy (x, z)u(z)dz

solves the equation (4.6). From Lemma 4.1, we know that U ∈ H1(Rn+1
+ , y1−2s)

due to u ∈ Hs(Rn). It remains to demonstrate that (4.12) for u ∈ Hs(Rn).

Firstly, we prove limy→0+

U(·, y)− U(·, 0)

y2s
=

Γ(−s)
4sΓ(s)

Lsu, for any v ∈ Hs(Rn).

By using (7.6) in Appendix, we can deduce〈
lim
y→0

U(·, y)− U(·, 0)

y2s
, v

〉
H−s(Rn)×Hs(Rn)

=

ˆ
Rn

lim
y→0

[´
Rn P

s
y (x, z)u(z)dz − u(x)

y2s

]
v(x)dx

=

ˆ
Rn

lim
y→0

´
Rn P

s
y (x, z) (u(z)− u(x)) v(x)dz

y2s
dx

=
1

4sΓ(s)

ˆ
Rn

lim
y→0+

lim
ε→0+

ˆ
|z−x|>ε

ˆ ∞
0

e−
y2

4t pt(x, z) (u(z)− u(x)) v(x)
dt

t1+s
dzdx

=
1

4sΓ(s)

ˆ
Rn

lim
ε→0+

ˆ
|z−x|>ε

(ˆ ∞
0

pt(x, z)
dt

t1+s

)
(u(z)− u(x)) v(x)dzdx

=
Γ(−s)
4sΓ(s)

ˆ
Rn

lim
ε→0+

ˆ
|z−x|>ε

Ks(x, z) (u(z)− u(x)) v(x)dzdx

=
Γ(−s)
4sΓ(s)

〈Lsu, v〉H−s(Rn)×Hs(Rn) .

Secondly, we prove
1

2s
limy→0+ y

1−2s∂yU(·, y) =
Γ(−s)
4sΓ(s)

Lsu by utilizing the

density argument. It is known that for u ∈ Dom(Ls), then (4.12) holds in
L2(Rn). Consider a sequence {uk}k∈N ⊆ Dom(Ls) ∩Hs(Rn) such that uk → u
in Hs(Rn) as k → ∞. Let Uk ∈ H1(Rn+1

+ , y1−2s) be the solution to (4.1)
with the boundary data uk for each k ∈ N. Recall from (2.5) and (2.8) that
C∞0 (Rn) ⊆ Dom(Ls). Thus by [44, Theorem 1.1] and Lemma 4.1, Uk(x, y) can
be uniquely represented by

Uk(x, y) =

ˆ
Rn
P sy (x, z)uk(z)dz, for x ∈ Rn and y ∈ R+. (4.13)

Moreover, the following relation

1

2s
lim
y→0+

y1−2s∂yUk(·, y) =
Γ(−s)
4sΓ(s)

Lsuk (4.14)

holds in L2(Rn) by [44, Theorem 1.1] again. Following that, from (4.8) or (4.9),

we conclude for being U ∈ H1(Rn+1
+ , y1−2s),

1

2s
limy→0+ y

1−2s∂yU(x, y) = h

exists in H−s(Rn). For convenience, we set hk := Γ(−s)
4sΓ(s)L

suk. Note that Uk−U
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solves the equation L 1−2s

Ã
(Uk − U) = 0 in Rn+1

+ with (Uk − U)(x, 0) = (uk −
u)(x), by the stability estimate (4.7), we get

‖Uk − U‖H1(Rn+1
+ ,y1−2s) ≤ C‖uk − u‖Hs(Rn),

for some constant C > 0 independent of Uk, U , uk and u. Hence, Uk → U
in H1(Rn+1

+ , y1−2s) due to uk → u in Hs(Rn) as k → ∞. On the other hand,

by using the weak formulation (4.8), for any φ ∈ H1(Rn+1
+ , y1−2s) (recall that

φ(x, 0) ∈ Hs(Rn) by the trace characterization), Uk − U satisfies

ˆ
Rn+1

+

y1−2sÃ(x)∇x,y(Uk −U) · ∇x,yφdxdy = ((hk − h), φ(x, 0))H−s(Rn)×Hs(Rn) .

From Uk → U in H1(Rn+1
+ , y1−2s) as k → ∞, we conclude that hk → h in

H−s(Rn) as k → ∞. Finally, by the integral representation (2.14) for Ls and
uk → u in Hs(Rn) as k →∞, we can derive that

(hk, φ(x, 0))H−s(Rn)×Hs(Rn)

=
Γ(−s)
4sΓ(s)

(Lsuk, φ(x, 0))H−s(Rn)×Hs(Rn)

=
1

2

Γ(−s)
4sΓ(s)

ˆ
Rn×Rn

(uk(x)− uk(z))(φ(x, 0)− φ(z, 0))Ks(x, z)dxdz

→1

2

Γ(−s)
4sΓ(s)

ˆ
Rn×Rn

(u(x)− u(z))(φ(x, 0)− φ(z, 0))Ks(x, z)dxdz

=
Γ(−s)
4sΓ(s)

(Lsu, φ(x, 0))H−s(Rn)×Hs(Rn) ,

as k → ∞. By using the uniqueness limit of hk, then we can conclude that

h = Γ(−s)
4sΓ(s)L

su inH−s(Rn). Therefore we have verified (4.12) and thus completes

the proof.

Next, we recall the well-known reflection extension for the extension problem.

4.2 Even reflection extension and its related regularity
properties

Similar to the fractional Laplacian case, we also have the following reflection
property for fractional variable operators. Let us consider Bn+1

+ (x0, R) ⊂ Rn+1
+ ,

where limy→0 y
1−2s∂yU = 0 in B(x0, R) ⊂ Ω. Now by using the even reflection,

we define

Ũ(x, y) :=

{
U(x, y) if y ≥ 0,

U(x,−y) if y < 0,
(4.15)

where U(x, y) solves (4.1). Then Ũ(x, y) is a solution of the following problem

∇x,y · (|y|1−2sÃ(x)∇x,yŨ) = 0 in Bn+1(x0, R). (4.16)

In general, for

∇x,y · (|y|1−2sÃ(x)∇x,yV ) = ∇x,y ·G in Bn+1(x0, R),
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whereG is a vector-valued function satisfies |y|−1+2s|G| ∈ L2(Bn+1(x0, R), |y|1−2s),
then we say V to be a weak solution of the above equation if
ˆ
Bn+1(x0,R)

|y|1−2sÃ(x)∇x,yV · ∇x,yφdxdy =

ˆ
Bn+1(x0,R)

G · ∇x,yφdxdy,

for all φ ∈ C∞c (Bn+1(x0, R)). We have the following regularity results.

Proposition 4.5. (a) (Solvability) Let D ⊂ Rn+1 be a bounded domain with
C∞-smooth boundary and G is a vector-valued function satisfies |y|−1+2s|G| ∈
L2(D, |y|1−2s). Let g ∈ H1(D, |y|1−2s), then there is a unique solution V ∈
H1(D, |y|1−2s) of

∇x,y · (|y|1−2sÃ(x)∇x,yV ) = ∇x,y ·G in D, (4.17)

with V − g ∈ H1
0 (D, |y|1−2s).

(b) (Interior Hölder’s regularity) Let D ⊂ Rn+1 be a bounded domain with
C∞-smooth boundary and let V be a weak solution to (4.17) where G is a vector-
valued function satisfies |y|−1+2s|G| ∈ L2(n+1)(D, |y|1−2s). Then V ∈ C0,β(D′)
for some β ∈ (0, 1) depending on n and s, where D′ b D is an arbitrary open
set.

(c) (Higher regularity in the x-direction) Let D ⊂ Rn+1 be a bounded domain
with C∞-smooth boundary and let V ∈ H1(D, |y|1−2s) be a weak solution of

∇x,y · (|y|1−2sÃ(x)∇x,yV ) = 0 in D. (4.18)

Then for each fixed y = y0 with (x, y0) ∈ D′, we have V (x, y0) ∈ C∞(D′ ∩ {y =
y0}) in any open subset D′ b D, since A(x) is a C∞-smooth matrix-valued
function in Rn satisfying (1.3).

Proof. The proof of (a) has been established in [16] for |y|1−2s being an A2

function and the proof of (b) is a direct consequence of [16, Theorem 2.3.12]. We
move into showing (c). Set ∆h

xi to be the classical difference quotient operator,
which means

∆h
xiV (x, y) :=

V (x+ hei, y)− V (x, y)

h
for any i = 1, 2, · · · , n,

where we have fixed y > 0. From straightforward calculation, if V (x) solves
(4.18), we get ∆h

xiV (x) solves

∇x,y · (|y|1−2sÃ(x+ hei)∇x,y(∆h
xiV )) = ∇x,y ·G in Dh, (4.19)

where the function G = −|y|1−2s(∆h
xiÃ)∇x,yV (x, y) and Dh b D is an arbitrary

subset such that the Hausdorff distance between D and Dh greater than h.
Note that in the right hand side of (4.19) satisfies the condition |y|−1+2sG ∈
L2(Dh, |y|1−2s) since V ∈ H1(D, |y|1−2s). Hence, from (a) and the standard
cutoff techniques, we know that ∆h

xiV ∈ H
1(Dh, |y|1−2s) and

‖∆h
xiV ‖H1(D′,|y|1−2s) ≤ K <∞, (4.20)

for any subsetD′ b Dh and it is easy to see that the constantK > 0 independent
of h since A(x) is a C∞-smooth matrix-valued function in Rn satisfying (1.3),
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such that
∣∣∣∆h

xiÃ(x)
∣∣∣ ≤ ‖∂xiÃ‖L∞(D) ≤ C <∞. Recall that H1(D, |y|1−2s) is a

reflexive Banach space, by using the same argument as in [19, Lemma 7.24], then
∂xiV ∈ H1(D′, |y|1−2s) for i = 1, 2, · · · , n with ‖∇x,y(∂xiV )‖L2(D′,|y|1−2s) ≤
K <∞, where K > 0 is the same constant as in (4.20).

Continue this process, we can apply the difference quotient with respect to
the x-direction for any order, then one can derive that ∂αxV ∈ H1(D′, |y|1−2s),
for any multi-index α ∈ (N ∪ {0})n. Now, since ∂αxV (x, y) ∈ H1(D′, |y|1−2s),
by using the trace theorem for the weighted Sobolev space again, we have
∂αxV (x, 0) ∈ Hs(D′∩{y = 0}) for any α ∈ Nn, or V (x, 0) ∈ Hm+s(D′∩{y = 0})
for any m ∈ N ∪ {0}. Now, apply the fractional Sobolev embedding theorem
(see [13] for instance), we derive V (x, 0) ∈ C∞(D′ ∩ {y = 0}). For each fixed
y = y0 6= 0, the equation (4.18) can be regarded as a standard second order
elliptic equation with C∞-smooth coefficients, by the standard elliptic theory it
is easy to see that V (x, y0) is C∞-smooth in D′ ∩ {y = y0} with respect to x.
This finishes the proof.

In the end of this section, we introduce the conjugate equation, which is
associated to the degenerate operator L 1−2s

Ã
given by (4.3).

4.3 Conjugate equation and odd reflection

As in [7, Section 2] and [44, Section 2], it is known that if U ∈ H1(Rn+1
+ , y1−2s)

is a weak solution to L 1−2s

Ã
U = 0 in Rn+1

+ then the function

W (x, y) := y1−2s∂yU(x, y)

is a solution to the conjugate equation

L −1+2s

Ã
W = y1−2s

(
−LxW +

1− 2s

y
Wy +Wyy

)
= 0 in Rn+1

+ . (4.21)

If we assume that W (x, 0) = 0 for x ∈ B(x0, R) ⊂ Ω and use the odd reflection,
we define

W̃ (x, y) :=

{
W (x, y), if y ≥ 0,

−W (x,−y), if y < 0.
(4.22)

Then we will prove that that W̃ ∈ H1(|y|−1+2s, Bn+1(x0, R)) is a weak solution
of

∇x,y · (|y|−1+2sÃ(x)∇x,yW̃ ) = 0 in Bn+1(x0, R).

By using Proposition 4.5, we say W̃ ∈ C0,β(Bn+1(x0, R)) for some β ∈ (0, 1)
depending on n and 1− 2s.

Lemma 4.6. (The Conjugate Equation) Let U ∈ H1(Rn+1
+ , y1−2s) be a weak

solution of L 1−2s

Ã
U = 0 in Rn+1

+ and limy→0 y
1−2s∂yU = 0 in B(x0, R). Then

for any r < R, the function W = y1−2s∂yU ∈ H1(Bn+1
+ (x0, r), y

2s−1) solves the

conjugate equation L 2s−1

Ã
W = 0 weakly in Bn+1

+ (x0, r) with W (x, 0) = 0 for

x ∈ B(x0, r).
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Proof. As previous discussions, we define Ũ and W̃ to be even and odd extension
by (4.15) and (4.22), respectively. Then Ũ solves

∇x,y · (|y|1−2sÃ(x)∇x,yŨ) = 0 in Bn+1(x0, R),

where we know the fact that Ũ ∈ C0,β(Bn+1(x0, R)) and Ũ(·, y) ∈ C∞(B(x0, R))

for y > 0. We will show that W̃ ∈ H1
loc(B

n+1(x0, R), |y|2s−1) as a weak solution
of

∇x,y · (|y|2s−1Ã(x)∇x,yW̃ ) = 0 in B bBn+1(x0, R), (4.23)

First, it is easy to see that W̃ ∈ L2(Bn+1(x0, R), |y|2s−1). Second, for 0 <

h� 1, we consider the difference quotient for Ũ , then ∆h
xiŨ ∈ H

1(Bn+1(x0, R), |y|1−2s)
is a weak solution of

∇x,y · (|y|1−2sÃ(x)∇x,y(∆h
xiŨ)) = ∇x,y ·G in Bn+1(x0, R), (4.24)

for any h > 0, where the function G = −|y|1−2s(∆h
xiÃ)∇x,yŨ and it is easy

to see that |y|2s−1H ∈ L2(Bn+1(x0, R), |y|1−2s)) for i = 1, 2, · · · , n. Let η ∈
C∞c (Bn+1(x0, R)) be a standard cutoff function such that 0 ≤ η ≤ 1 with

η(x, y) =

{
1 for x ∈ Bn+1(x0,

3
4R),

0 for x /∈ Bn+1(x0, R),
, and ‖∇x,yη‖L∞(Bn+1(x0,R)) ≤

C

R
,

for some constant C > 0. Now, consider η2∆h
xiŨ ∈ H

1(Bn+1(x0, R), |y|1−2s) as
a test function and multiply it on the both sides of (4.24) and do the integration
by parts over Bn+1(x0, R), then we have

ˆ
Bn+1(x0,R)

|y|1−2sÃ(x)∇x,y(∆h
xiŨ) · ∇x,y(η2∆h

xiŨ)dxdy

=−
ˆ
Bn+1(x0,R)

|y|1−2s(∆h
xiÃ)∇x,yŨ · ∇x,y(η2∆h

xiŨ). (4.25)

From a direct computation, it is not hard to see that

∇x,y(η2∆h
xiŨ) = η2∇x,y(∆h

xiŨ) + 2(η∆h
xiŨ)∇x,yη

and (4.25) becomes

ˆ
Bn+1(x0,R)

|y|1−2sη2
∣∣∣∇x,y(∆h

xiŨ)
∣∣∣2 dxdy

≤C
ˆ
Bn+1(x0,R)

|y|1−2s
∣∣∣∇x,y(∆h

xiŨ)
∣∣∣ |η| ∣∣∣∆h

xiŨ
∣∣∣ |∇x,yη| dxdy

+ C

ˆ
Bn+1(x0,R)

|y|1−2s|η|2
∣∣∣∇x,yŨ ∣∣∣ ∣∣∣∇x,y(∆h

xiŨ)
∣∣∣ dxdy

+ C

ˆ
Bn+1(x0,R)

|y|1−2s
∣∣∣∇x,yŨ ∣∣∣ |η| |∇x,yη| ∣∣∣∆h

xiŨ
∣∣∣ dxdy. (4.26)

23



Apply the Young’s inequality on (4.26) and absorb the highest order term of Ũ
to the left hand side of (4.26), then we can deriveˆ

Bn+1(x0,
3
4R)

|y|1−2s
∣∣∣∇x,y(∆h

xiŨ)
∣∣∣2 dxdy

≤C

{ˆ
Bn+1(x0,R)

|y|1−2s
∣∣∣∆h

xiŨ
∣∣∣2 dxdy +

ˆ
Bn+1(x0,R)

|y|1−2s
∣∣∣∇x,yŨ ∣∣∣2 dxdy}

≤C‖Ũ‖H1(Bn+1(x0,R),|y|1−2s),

where the constant C > 0 is independent of Ũ and h. This implies that

∆h
xi(∇x,yŨ) ∈ L2(Bn+1(x0,

3

4
R), |y|1−2s) and

‖∆h
xi(∇x,yŨ)‖L2(Bn+1(x0,

3
4R),|y|1−2s) ≤ C, for i = 1, 2, · · · .n,

for some constant C > 0 is independent of Ũ and h. Then use the same technique
as in Proposition (4.5), then one can conclude ‖∂xi(∇x,yŨ)‖L2(Bn+1(x0,

3
4R),|y|1−2s),

which means ∂xiŨ ∈ H1(Bn+1(x0,
3

4
R), |y|1−2s) for i = 1, 2, · · · , n.

It remains to show ∂yW ∈ L2(Bn+1
+ (x0,

3

4
R), y2s−1). Note that

∂yW = ∂y(y1−2s∂yU) = y1−2s

(
1− 2s

y
∂yU + ∂2

yU

)
= y1−2sLxU.

Via the fact that ∂2
xixj Ũ ∈ L

2(Bn+1(x0,
3

4
R), |y|1−2s), this implies the lemma

holds and completes the proof.

5 Strong unique continuation principle and the
Runge approximation property

In order to prove Theorem 1.2, we will be using the strong unique continuation
principle (SUCP) for the extension operator L 1−2s

Ã
. Our strategy in proving

Theorem 1.2 is decomposed into two parts. First, we will prove under the
condition of Theorem 1.2, the solution of the extension problem will vanish to
infinite order, which is inspired by the proof of [41, Proposition 2.2]. Second,
we apply the SUCP for degenerate differential equation, which was introduced
by [51, Corollary 3.9]. Combine these two steps, then we can prove the SUCP
for the operator L 1−2s

Ã
.

5.1 Strong unique continuation principle

We begin with the definition of the vanishing to infinity order for the degenerate
case.

Definition 5.1. (Vanishing to infinite order) A function Ψ ∈ L2
loc(R

n+1
+ , y1−2s)

is vanishing to infinite order at a point (x0, 0) ∈ Rn+1
+ if for every m ∈ N, we

have

lim
r→0

r−m
ˆ
Bn+1(x0,r)

|y|1−2sΨ2(x, y) dxdy = 0. (5.1)
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We begin with the first step: Vanishing to infinite order.

Theorem 5.2. Given u ∈ Hs(Rn), let U ∈ H1(Rn+1
+ , y1−2s) be the unique

solution of the extension problem (4.1). Suppose that u = Lsu = 0 in B(x0, 2R).
Then U vanishes to infinite order on B(x0, R).

Proof. We will follow ideas of proof of [41, Proposition 2.2].
1. We know from Proposition 4.3 that U = limy→0 y

1−2s∂yU = 0 for x ∈
B(x0, 2R). Define W := y1−2s∂yU . Then by Lemma 4.6 we know that W ∈
H1(Bn+1

+ (x0,
3

2
R), y1−2s) solves L 2s−1

Ã
W = 0 in Bn+1

+ (x0,
3

2
R) with W (x, 0) =

0. We define Ũ and W̃ given by even reflection (4.15) and odd reflection (4.22),

respectively. It is straightforwardly verified that Ũ ∈ H1
(
Bn+1(x0, 2R), |y|1−2s

)
satisfies

∇x,y · (|y|1−2sÃ(x)∇x,yŨ) = 0 in Bn+1(x0, 2R), (5.2)

and W̃ ∈ H1

(
Bn+1(x0,

3

2
R), |y|−1+2s

)
is a solution to

∇x,y · (|y|−1+2sÃ(x)∇x,yW̃ ) = 0 in Bn+1(x0,
3

2
R). (5.3)

Hence recalling by Proposition 4.5, the functions Ũ and W̃ are Hölder continuous
in Bn+1(x0, R). As a consequence U and W are both Hölder continuous in

Bn+1
+ (x0, R).

2. It can be seen by using the mean value theorem and the fundamental
theorem of calculus, for all h ∈ C1((0, 1)) ∩ C([0, 1]) and any a ∈ (−∞, 1) if

h(0) = 0 and limy→0 y
a d

dy
h(y) = 0 then

lim
y→0

ya−1h(y) = 0. (5.4)

The remaining proof of this theorem follows the proof of [41, Proposition 2.2].
We divided it into the following three steps arguments.

Step 1. One-step improvement
As a solution to (5.2), we know from Lemma 4.5 that Ũ is C0,β in any

direction in Rn+1 and C∞ in the x-direction since Ã(x) is C∞-smooth. Thus,
we can differentiate (5.2) with respect to all xi-direction up to an arbitrary order
for i = 1, 2, · · · , n, due to the C∞-smoothness. By using the continuity of U ,
we know that

lim
y→0+

y1−2s∂y (∇x · (A(x)∇xU)) = 0. (5.5)

Then (5.4) will imply that

lim
y→0+

y−2s∇x · (A(x)∇xU) = 0. (5.6)

Recall that U satisfies the equation

∇x,y · (y1−2sÃ(x)∇x,yU) = 0 in Bn+1
+ (x0, R), (5.7)
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or equivalently, U fulfills

∂y(y1−2s∂yU) = −y1−2s∇x · (A(x)∇xU).

By using (5.5), we have

lim
y→0+

∂y(y1−2s∂yU) = 0.

Next, recall that limy→0 y
1−2s∂yU = dsLsu = 0 for some constant ds and use

(5.4) again, then we obtain

lim
y→0+

y−2s∂yU = lim
y→0+

y−2s−1U = 0.

Step 2. Iteration
Let us differentiate (5.7) with respect to y and consider U to be a weak

solution of

∂2
y(y1−2s∂yU) = −(1− 2s)y−2s∇x · (A(x)∇xU) (5.8)

−y1−2s∂y∇x · (A(x)∇xU) in Bn+1
+ (x0, R)

with
lim
y→0+

∂y(y1−2s∂yU) = 0 for x ∈ B(x0, R).

Plug (5.5) and (5.6) into (5.8), we have

lim
y→0+

∂2
y(y1−2s∂yU) = lim

y→0+
y−2s−2U = 0.

As previous arguments, let us take the function W (x, y) = y1−2s∂yU(x, y) with

limy→0+ W (x, y) = 0, then we can reflect the function W to be W̃ (x, y) into a
whole ball in Rn+1(see 5.3). Since U(x, y) is C∞-smooth in the x-direction, so

is W̃ (x, y). Therefore, we can differentiate W̃ (x, y) with respect to x-variables
with arbitrary order. Then by repeating Step 1, we will obtain the continuity
of ∂y (∇x · (A(x)∇W )) and

lim
y→0

∂y (∇x · (A(x)∇W )) = 0.

To sum up, after these iterate procedures and use the x-direction derivatives,
then we can get

lim
y→0+

∂y
(
y1−2s∂y(∇x · (A(x)∇xU))

)
= lim

y→0+
y−2s∂y(∇x · (A(x)∇xU))

= lim
y→0+

y−2s−1(∇x · (A(x)∇xU)) = 0.

Note that the right hand sides of these terms is obtained by differentiating (5.8)
with y direction (in the weak sense) and they may involve higher order deriva-
tives with respect to x-variables, hence, we can use the bootstrap arguments to
proceed previous arguments.

Step 3. Conclusion
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By using the bootstrap arguments, we can get

lim
y→0+

y−mU(x, y) = 0 for all m ∈ N and x ∈ B(x0, R), (5.9)

which implies that U vanishes to infinite order in the y-direction on the plane
∂Rn+1

+ , and in the tangential x-direction it is zero on the plane ∂Rn+1
+ and this

proves the theorem.

Corollary 5.3. Let U be the same function as in Theorem 5.2 and Ũ be the
even reflection of U given by (4.15), then the function Ũ vanishes to infinite
order on B(x0, R).

Proof. Since Ũ is an even reflection of U , then we can repeat the same proof as
in Theorem 5.2 in the lower half space Rn+1 ∩ {y < 0}, then we have

lim
y→0−

(−y)−mU(x,−y) = 0 for all m ∈ N and x ∈ B(x0, R). (5.10)

Combining (5.9) and (5.10), we obtain that

lim
y→0
|y|−mŨ(x, y) = 0 for all m ∈ N and x ∈ B(x0, R), (5.11)

which completes the proof.

Proposition 5.4. [51, Corollary 3.9] Let Ũ ∈ H1(Bn+1(x0, 1), |y|1−2s) be a
solution to

∇x,y · (|y|1−2sÃ(x)∇x,yŨ) = 0 in Bn+1(0, 1). (5.12)

Then the equation (5.12) possesses the SUCP, for a C∞-smooth matrix-valued
function A(x) in Rn satisfying (1.3).

Recall that the equation (5.12) has the SUCP if Ũ ∈ H1(Bn+1(0, 1), |y|1−2s)

is a weak solution of (5.12) and Ũ vanishes to infinite order, then Ũ ≡ 0 in
Bn+1(0, 1).

Proof of Proposition 5.4. Firstly, the condition of vanishing to infinite order
(5.11) shows that U ∈ L2(B(x0, R)× (−r0, r0), |y|1−2s) for R, r0 � 1, since

ˆ
B(x0,R)×(−r0,r0)

|y|1−2s|Ũ |2 dxdy ≤
ˆ
B(x0,R)×(−r0,r0)

|y|−m|Ũ |2 dxdy < 1

(5.13)
for y ≤ r0 � 1 being sufficiently small enough and for any m ∈ N with m ≥ 2.

On the other hand, by using the doubling inequality (7.23) in Appendix, we
have ˆ

Bn+1(x0,1)

|y|1−2s|Ũ |2dxdy ≤ C
ˆ
Bn+1(x0,

1
2 )

|y|1−2s|Ũ |2dxdy (5.14)
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where the constant C same as in (7.23). Now, by iterating (5.14), then we have

ˆ
Bn+1(x0,1)

|y|1−2s|Ũ |2dxdy

≤CN
ˆ
Bn+1(x0,

1

2N
)

|y|1−2s|Ũ |2dxdy

≤CN (
1

2
)N(m−1)

ˆ
Bn+1(x0,

1

2N
)

|y|2−2s−m|Ũ |2dxdy

≤CN (
1

2
)N(m−1)

ˆ
B(x0,R)×(−r0,r0)

|y|−m|Ũ |2dxdy,

for N large such that
1

2N
< min {R, r0} and for any m ∈ N with m ≥ 2. Now,

since Ũ has vanishing order at x0, by using (5.13)
´
B(x0,R)×(−r0,r0)

|y|−m|Ũ |2dxdy

remains bounded and CN (
1

2
)Nm → 0 as m → ∞. This implies Ũ = 0 in

Bn+1(x0, 1), which completes the proof.

Lemma 5.5. Let u ∈ Hs(Rn), if u = Lsu = 0 in any ball B(x0, R) ⊆ Rn, then

U = 0 in Bn+1
+ (x0, R), where U is the function in Theorem 5.2.

Proof. As u ∈ Hs(Rn) satisfying u|B(x0,R) = Lsu|B(x0,R) = 0, so from Theorem

5.2, we have U vanishes infinite order on ∂Rn+1
+ so does Ũ , where Ũ is the even

reflection of U defined by (4.15). Therefore, by using Proposition 5.4, we have

SUCP for (5.12). Consequently it follows Ũ = 0 in Bn+1(x0, R) so U = 0 in

Bn+1
+ (x0, R).

5.2 Proof of Theorem 1.2

Let us begin to prove Theorem 1.2 by using Lemma 5.5.

Proof of Theorem 1.2. We have already shown that U = 0 in Bn+1
+ (x0, R).

Now, we will show U = 0 in Rn+1
+ \ Bn+1

+ (x0, R) also. Let us consider the
region Dε = {(x, y) : x ∈ Rn and ε < y < 1/ε} for any ε > 0. Since the weight
y1−2s is smooth and positive in Dε for any s ∈ (0, 1), thus U can be realized as
a solution of a uniformly elliptic equation

∇x,y · (y1−2sÃ(x)∇x,yU) = 0 in Rn+1
+ (5.15)

in H1(Dε) for all s ∈ (0, 1). Since U also vanishes in Bn+1
+ (x0, R) ∩Dε, where

ε > 0 is chosen so small that this set is nonempty, it follows by standard weak
unique continuation property for the uniform elliptic equation in a strip domain
that U has to vanish in entire Dε. Since this is true for any ε > 0 small, one
has U = 0 in Rn+1

+ as required. Hence as a trace of U ∈ H1(Rn+1
+ , y1−2s),

U(x, 0) = u(x) = 0 in Rn.

Remark 5.6. We would like to present a different proof using simply integration

by parts techniques only, which works for the case s ≤ 1

2
only. In order to
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establish our claim, U = 0 in Rn+1
+ in this case s ≤ 1

2
, we write

ˆ
Rn+1

+

y1−2sÃ∇x,yU · ∇x,yUdx dy

= lim
R→∞

ˆ
Bn+1

+ (0,R)

y1−2sÃ∇x,yU · ∇x,yUdx dy

= lim
R→∞

ˆ
∂Bn+1

+ (0;1,R)

y1−2s(Ã∇x,yU · ν)UdS(x, y), (5.16)

where ∂Bn+1
+ (0; 1, R) = ∂Bn+1

+ (0, R)∪∂Bn+1
+ (0, 1)∪B0(0; 1, R) andB0(0; 1, R) ={

(x, 0) ∈ Rn+1; 1 ≤ |x| ≤ R
}

. Then using the fact w = 0 on ∂Bn+1
+ (0, 1) and

s ≤ 1

2
gives the integrand in (5.16) to be 0 on B0(0; 1, R). Hence,

ˆ
Rn+1

+

y1−2sÃ∇x,yU · ∇x,yUdx dy

= lim
R→∞

ˆ
∂Bn+1

+ (0,R)

y1−2s(Ã∇x,yU · ν)UdS(x, y)

= lim
R→∞

ˆ
Rn+1

+ \Bn+1
+ (0,R)

y1−2sÃ∇x,yU · ∇x,yUdx dy = 0 (5.17)

since U ∈ H1(Rn+1
+ , y1−2s). Thus, it follows from (5.15) and (5.17), U ≡ 0 in

Rn+1
+ and consequently, as a trace of U ∈ H1(Rn+1

+ , y1−2s), U(x, 0) = u(x) = 0
in Rn. This completes the proof of Theorem 1.2 for Hs(Rn) class of functions

whenever s ≤ 1

2
.

5.3 Runge approximation property

Let s ∈ (0, 1) and assume that q ∈ L∞(Ω) satisfy the eigenvalue condition (1.5).
We denote u = uf ∈ Hs(Rn) as the unique solution of

(Ls + q)uf = 0 in Ω, with uf − f ∈ H̃s(Ω).

Lemma 5.7. Let n ≥ 2, and A(x) is a C∞-smooth matrix-valued function in
Rn satisfying (1.3). Let Ω ⊆ Rn be bounded open set with Lipschitz boundary
and q ∈ L∞(Ω) satisfy the eigenvalue condition (1.5). Let O be any open subset
of Ωe and consider the set

D = {uf |Ω ; f ∈ C∞c (O)}.

Then D is dense in L2(Ω).

Proof. By the Hahn-Banach theorem, it is only needed to show that for any
v ∈ L2(Ω) satisfying (v, w)Ω = 0 for any w ∈ D, then v ≡ 0. Let v be a such
function, which means v satisfies

(v, rΩuf ) = 0, for any f ∈ C∞c (O). (5.18)
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Now, let φ ∈ H̃s(Ω) be the solution of (Ls + q)φ = v in Ω. We want to show
that for any f ∈ C∞c (O), the following relation

Bq(φ, f) = −(v, rΩuf )Ω (5.19)

holds. In other words, Bq(φ,w) = (v, rΩw) for any w ∈ H̃s(Ω). The (5.19)
follows due to

Bq(φ, f) = Bq(φ, f − uf ) = (v, rΩ(f − uf ))Ω = −(v, rΩuf )Ω,

where we have used the facts that uf is a solution and φ ∈ H̃s(Ω). Note that
(5.18) and (5.19) imply that

Bq(φ, f) = 0 for any f ∈ C∞c (O).

Moreover, we know that rΩf = 0 because f ∈ C∞c (O) and we can derive

(Lsφ, f)Rn = 0 for any f ∈ C∞c (O).

In the end, we know that φ ∈ Hs(Rn) which satisfies

φ|O = Lsφ|O = 0.

By Theorem 1.2, we obtain φ ≡ 0 and then v ≡ 0.

Remark 5.8. We also refer readers to [28] for more details of the Runge approx-
imation property for the (local) differential equations.

6 Proof of Theorem 1.1

Now, we are ready to prove the global uniqueness result for variable coefficients
fractional operators. Even though the proof is similar as the proof in [18], we
still give a proof for the completeness.

Proof of Theorem (1.1). If Λq1g|O2
= Λq2g|O2

for any g ∈ C∞c (O1), where O1

and O2 are open subsets of Ωe, by the integral identity in Lemma 3.8, we haveˆ
Ω

(q1 − q2)u1u2dx = 0

where u1, u2 ∈ Hs(Rn) solve (Ls + q1)u1 = 0 and (Ls + q2)u2 = 0 in Ω with u1,
u2 having exterior values gj ∈ C∞c (Oj), for j = 1, 2.

Let f ∈ L2(Ω), and use the approximation lemma 5.7, then there exist two
sequences (u1

j ), (u2
j ) of functions in Hs(Rn) that satisfy

(Ls + q1)u1
j = (Ls + q2)u2

j = 0 in Ω,

supp(u1
j ) ⊆ Ω1 and supp(u2

j ) ⊆ Ω2,

rΩu
1
j = f + r1

j , rΩu
2
j = 1 + r2

j ,

where Ω1, Ω2 are two open subsets of Rn containing Ω, and r1
j , r

2
j → 0 in L2(Ω)

as j →∞. Plug these solutions into the integral identity and pass the limit as
j →∞, then we infer that ˆ

Ω

(q1 − q2)fdx = 0.

Since f ∈ L2(Ω) was arbitrary, we conclude that q1 = q2.
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7 Appendix

At the end of this paper, we present some required materials to complete our
paper.

7.1 Stability result for the degenerate problem

In general, we have the following result.

Lemma 7.1. Let h be a vector-valued function satisfying
G

y1−2s
∈ L2(Rn+1

+ , y1−2s),

then the following Dirichlet boundary value problem{
∇x,y · (y1−2sÃ(x)∇x,yV ) = ∇x,y ·G in Rn+1

+ ,

V (x, 0) = 0 on Rn
(7.1)

has a unique weak solution in H1(Rn+1
+ , y1−2s) satisfying

‖V ‖H1(Rn+1
+ ,y1−2s) ≤ C‖y

−1+2sG‖L2(Rn+1
+ ,y1−2s), (7.2)

where the constant C > 0 is independent of G and V .

By the weak solution of (7.1) we mean V ∈ H1(Rn+1
+ , y1−2s) solves

ˆ
Rn+1

+

y1−2sÃ(x)∇x,yV · ∇x,yΨ dxdy =

ˆ
Rn+1

+

y−1+2sG · y1−2s∇Ψ dxdy, (7.3)

for all Ψ ∈ H1
0 (Rn+1

+ , y1−2s).

Proof of Lemma 7.1. Let us consider the Dirichlet functional J : H1
0 (Rn+1

+ , y1−2s)→
R+ as

J(Ψ) :=

ˆ
Rn+1

+

y1−2sÃ(x)∇x,yΨ · ∇x,yΨ dxdy −
ˆ
Rn+1

+

y−1+2sG · y1−2s∇Ψdxdy,

(7.4)
If V ∈ H1

0 (Rn+1
+ , y1−2s) is an extremum of J(Ψ) in H1

0 (Rn+1
+ , y1−2s), then for

any Ψ ∈ C∞c (Rn+1
+ ), as a function of η,

F (η) := J(V + ηΨ)

attains its extremum at η = 0 and hence F ′(0) = 0 as

F ′(0) = lim
η→0

J(V + ηΨ)− J(V )

η

= 2

ˆ
Rn+1

+

y1−2sÃ(x)∇x,yV · ∇x,yΨdxdy

−2

ˆ
Rn+1

+

y−1+2sh · y1−2s∇Ψdxdy

= 0,
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which gives the definition of the weak solution. As we can see from the definition
(7.4)

J(Ψ) ≥ 1

2

ˆ
Rn+1

+

y1−2s|∇Ψ|2dxdy − 1

2

ˆ
Rn+1

+

y−1+2s|h|2dxdy

≥ −1

2

ˆ
Rn+1

+

y−1+2s|h|2dxdy,

that means J(Ψ) is bounded from below in H1
0 (Rn+1

+ , y1−2s).
Therefore, infH1

0 (Rn+1
+ ,y1−2s) J(Ψ) is a finite number. Hence, there exists a

minimizing sequence {Ψk}∞k=1 ⊂ H1
u(Rn+1

+ , y1−2s) such that

lim
k→∞

J(Ψk) = inf
H1

0 (Rn+1
+ ,y1−2s)

J(Ψ).

Next we observe that, the functional turns out to be weakly lower semi-continuous
over its domain of definition, i.e.

J(Ψ) ≤ lim inf
k→∞

J(Ψk), if Ψk ⇀ Ψ weakly in H1
0 (Rn+1

+ , y1−2s).

This simply follows as if Ψk ⇀ Ψ weakly in H1
0 (Rn+1

+ , y1−2s) then
ˆ
Rn+1

+

y1−2sÃ(x)∇x,yΨ · ∇x,yΨ dxdy

≤ lim inf
k→∞

ˆ
Rn+1

+

y1−2sÃ(x)∇x,yΨk · ∇x,yΨk dxdy.

Thus, if {Ψk}∞k=1 is a minimizing sequence, i.e. , if

J(Ψk)→ inf
H1

0 (Rn+1
+ ,y1−2s)

J(V )

then there exists a subsequence {Ψkj}∞j=1 such that Ψkj ⇀ V weakly inH1
0 (Rn+1

+ , y1−2s)
and hence

inf
H1

0 (Rn+1
+ ,y1−2s)

J(Ψ) ≤ J(V ) ≤ lim inf
k→∞

J(Ψk) = inf
H1

0 (Rn+1
+ ,y1−2s)

J(Ψ),

Therefore, J(V ) = infH1
0 (Rn+1

+ ,y1−2s) J(Ψ) and we achieve our goal.

Next, we claim that V ∈ H1
0 (Rn+1

+ , y1−2s) is the unique minimizer of J(Ψ).

Assume that V1 and V2 ∈ H1
0 (Rn+1

+ , y1−2s) are weak solutions of (7.1), then

V1 − V2 ∈ H1
0 (Rn+1

+ , y1−2s) satisfies the following integral identity
ˆ
Rn+1

+

y1−2sÃ(x)∇x,y(V1 − V2) · ∇x,y(V1 − V2) dxdy = 0,

which implies that V1 = V2. This shows that (7.1) has a unique weak solution
in H1

0 (Rn+1
+ , y1−2s). The remaining stability estimate (7.1) simply follows from

(7.3) by taking Ψ = V there, to have

‖V ‖H1(Rn+1
+ ,y1−2s) ≤ C‖y

−1+2sG‖L2(Rn+1
+ ,y1−2s)

for some constant C > 0.
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Lemma 7.2. Let P sy be the Poisson kernel given by (4.11). Then

lim
y→0+

ˆ
Rn
P sy (x, z)dz = 1, x ∈ Rn, (7.5)

and ˆ
Rn
P sy (x, z)dz = 1, x ∈ Rn, y > 0. (7.6)

Proof. The limit (7.5) is verified in [44, Theorem 2.1]. We only need to show
(7.6). The following identity holds

ˆ ∞
0

e−
y2

4t
e−b|x−z|

2/t

tn/2
dt

t1+s
=

c(n, s, b)

(b|x− z|2 + y2)
n+2s

2

,

such that

c1y
2s

(b1|x− z|2 + y2)
n+2s

2

≤ P sy (x, z) ≤ c2y
2s

(b2|x− z|2 + y2)
n+2s

2

, (7.7)

with some positive constant bj , cj , for j = 1, 2. It is obtained by applying the
estimate (7.7) that

lim
ε→0+

ˆ
|z−x|>ε

P sy (x, z)dz = lim
ε→0+

ˆ
|z−x|>ε

y2s

4sΓ(s)

ˆ ∞
0

e−
y2

4t pt(x, z)
dt

t1+s
dz

= lim
ε→0+

ˆ ∞
0

ˆ
|z−x|>ε

y2s

4sΓ(s)
e−

y2

4t pt(x, z) dz
dt

t1+s

=

ˆ ∞
0

y2s

4sΓ(s)
e−

y2

4t
dt

t1+s
(7.8)

− lim
ε→0+

ˆ ∞
0

ˆ
|z−x|≤ε

y2s

4sΓ(s)
e−

y2

4t pt(x, z) dz
dt

t1+s

= I1 −
1

4sΓ(s)
lim
ε→0+

Iε(y),

where we have used the fact that the heat kernel pt(x, z) satisfies
´
Rn pt(x, z)dz =

1. We have from the Gamma function that the integral I1 = 1, providing
s ∈ (0, 1). We claim that limε→0+ Iε(y) = 0 for any y > 0. In fact, by (2.10)
one has

Iε(y) ≤ c

ˆ ∞
0

y2se−
y2

4t

ˆ
|z−x|≤ε

e−b
|x−z|2

t dz
dt

t1+s+n/2

= c

ˆ ∞
0

y2se−
y2

4t

ˆ
Bε

e−b
|z|2
t dz

dt

t1+s+n/2

= 4πc

ˆ ∞
0

y2se−
y2

4t

ˆ ε

0

e−b
r2

t dr
dt

t1+s+n/2

= 4πc1

ˆ ε

0

y2s

(br2 + y2)
s+n/2

dr.

Therefore, one can pass the limit ε→ 0+ in (7.8) and thus obtain (7.6).
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7.2 Almgren’s type frequency function and the doubling
inequality for the degenerate problem

Here we mention the strong unique continuation property for the degenerate
problem ∇x,y · (|y|1−2sÃ(x)∇x,yŨ) = 0 in Bn+1(0, 1). The proof relies on the
technique in using the Almgren’s frequency function method, which was intro-
duced by Yu [51].

To simplify the notation, let us denote Bn+1
r := Bn+1(0, r) and z = (x, y) ∈

Rn+1. For z 6= 0, we define

µ(z) :=

(
Ã(z)z

)
· z

|z|2
∈ R and

−→
β (z) :=

Ã(z)z

µ(z)
∈ Rn+1,

then from the ellipticity condition (1.3), it is easy to see that

Λ̃−1 ≤ µ(z) ≤ Λ̃ and |
−→
β (z)| ≤ Λ̃|z| for all z ∈ Rn+1

for some universal constant Λ̃ > 0. In addition, by the standard coordinates
transformation technique, we may assume that Ã(0) = In+1, which is an (n +
1)× (n+ 1) identity matrix, then we have the following estimates hold for µ(z)

and
−→
β (z) = (β1(z), β2(z), · · · , βn+1(z)):∣∣∣∣ ∂∂rµ(rz)

∣∣∣∣ ≤ C for r > 0 and
∂βi
∂zj

(z) = δij +O(|z|), (7.9)

where δij is the Kronecker delta and the constant C > 0 depends on Ã(z) =
(ãjk(z))n+1

j,k=1. The estimates (7.9) were proved in [46, 51], so we skip the details.

Let Ũ ∈ H1(Rn+1
+ , |y|1−2s) and consider

H(r) :=

ˆ
∂Bn+1

r

|y|1−2sµ(z)|Ũ(z)|2dS(z), (7.10)

D(r) :=

ˆ
Bn+1
r

|y|1−2s
(
Ã(z)∇Ũ

)
· ∇Ũdz, (7.11)

where ∇ := ∇z = ∇x,y in Rn+1 and it is easy to see that H(r) exists for almost

every r > 0 as a surface integral, since the volume integral (
´ R

0
H(r)dr < ∞)

exists due to Ũ ∈ H1(Rn+1
+ , |y|1−2s)). Next, similar to [29, 46, 51], we define

the corresponding Almgren’s frequency function by

N(r) :=
rD(r)

H(r)
,

and we have the following lemmas.

Lemma 7.3. For any r ∈ (0, 1), H(r) = 0 whenever Ũ ≡ 0 in Bn+1
r .

Proof. If H(r) = 0, it implies that Ũ = 0 on ∂Bn+1
r . Hence, by the uniqueness

of the solution of the degenerate problem (for example, see[16]), we conclude

Ũ ≡ 0 in Bn+1
r .
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Lemma 7.4. The function H(r) is differentiable and

H ′(r) =

(
(n+ 1− 2s)

r
+O(1)

)
H(r) + 2D(r). (7.12)

Proof. By change of variables, we have

H(r) =

ˆ
∂Bn+1

r

|y|1−2sµ(z)|Ũ(z)|2dS

= rn+1−2s

ˆ
∂Bn+1

1

|y|1−2sµ(rz)|Ũ(rz)|2dS,

then

H ′(r) =
d

dr
H(r)

= (n+ 1− 2s)rn−2s

ˆ
∂Bn+1

1

|y|1−2sµ(rz)|Ũ(rz)|2dS

+rn+1−2s

ˆ
∂Bn+1

1

|y|1−2s ∂

∂r
µ(rz)|Ũ(rz)|2dS

+2rn+1−2s

ˆ
∂Bn+1

1

|y|1−2sµ(rz)Ũ(rz)
∂

∂r
Ũ(rz)dS,

Note that H ′(r) exists for a.e. r > 0 due to Ũ ∈ H1(Rn+1
+ , |y|1−2s) and

∂

∂r
µ(rz)

is bounded by constant C > 0 (see (7.9)) and after change of variables back, we
obtain

H ′(r) ≤ (n+ 1− 2s)

r

ˆ
∂Bn+1

r

|y|1−2sµ(z)|Ũ(z)|2dS

+C

ˆ
∂Bn+1

r

|y|1−2s|Ũ(z)|2dS

+2

ˆ
∂Bn+1

r

|y|1−2sµ(z)Ũ(z)
∂Ũ

∂ν
(z)dS,

where ν is a unit outer normal on ∂Bn+1
1 . By using the regularity assumption

for A(x) and Ũ ∈ H1(Rn+1
+ , |y|1−2s), we have C

´
|z|=r |y|

1−2s|Ũ(z)|2dS bounded

for a.e. r > 0. Therefore, we have

H ′(r) =

(
(n+ 1− 2s)

r
+O(1)

)
H(r)

+2

ˆ
∂Bn+1

r

|y|1−2sµ(z)Ũ(z)
∂Ũ

∂ν
(z)dS.

Finally, we will show that

ˆ
∂Bn+1

r

|y|1−2sµ(z)Ũ(z)
∂Ũ

∂ν
(z)dS = D(r) +O(1)H(r). (7.13)

By using the equation ∇ · (|y|1−2sÃ∇Ũ) = 0, we can rewrite D(r) in terms of

D(r) =

ˆ
Bn+1
r

∇ · (|y|1−2sŨ Ã∇Ũ)dz =

ˆ
∂Bn+1

r

|y|1−2sŨ(Ãν) · ∇ŨdS.
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We define T (z) := Ãν − µ(z)ν ∈ Rn+1 and note that

T · ν = (Ãν − µ(z)ν) · ν = 0 on ∂Bn+1
r ,

which means T (z) is a tangential vector of ∂Bn+1
r . From the divergence theorem

on ∂Bn+1
r , we can derive that

D(r)−
ˆ
∂Bn+1

r

|y|1−2sµ(z)Ũ
∂Ũ

∂ν
dS

=

ˆ
∂Bn+1

r

|y|1−2sŨ∇Ũ · (Ãν − µ(z)ν)dS

=− 1

2

ˆ
∂Bn+1

r

|y|1−2s|Ũ |2∇ · T dS − 1

2

ˆ
∂Bn+1

r

|Ũ |2
(
∇|y|1−2s

)
· T dS.

From direct computation, we have |∇x · T | ≤ Cn,A for some constant Cn,A > 0
depending on n and A(x) and then

ˆ
∂Bn+1

r

|y|1−2s|Ũ |2∇x · T dS = O(1)H(r). (7.14)

On the other hand, it is not hard to see that∣∣∣∣ˆ
∂Bn+1

r

|Ũ |2
(
∇|y|1−2s

)
· T dS

∣∣∣∣ ≤ 1

r

ˆ
∂Bn+1

r

|Ũ |2
∣∣(1− 2s)y|y|−2s (1− µ(z))

∣∣ dS
and by using |1− µ(z)| ≤ CA|z|, for some constant CA > 0, then we can derive∣∣∣∣ˆ

∂Bn+1
r

|Ũ |2
(
∇|y|1−2s

)
· T dS

∣∣∣∣ ≤ C ˆ
∂Bn+1

r

|y|1−2s|Ũ |2dS = O(1)H(r).

This proves the lemma.

Lemma 7.5. The function D(r) is differentiable with

D′(r) =

(
n− 2s

r
+O(1)

)
D(r) + 2

ˆ
∂Bn+1

r

|y|1−2s 1

µ

∣∣∣(Ãν) · ∇Ũ
∣∣∣2 dS. (7.15)

Proof. It is easy to see that

D′(r) =

ˆ
∂Bn+1

r

|y|1−2sÃ(z)∇Ũ · ∇ŨdS.

By straightforward calculation, we have the following Rellich type identity
ˆ
Bn+1
r

[
∇ ·
(
|y|1−2s−→β (Ã∇Ũ · ∇Ũ)

)
− 2∇ ·

(
|y|1−2s(

−→
β · ∇Ũ)Ã∇Ũ

)]
dz

=

ˆ
Bn+1
r

∇ · (|y|1−2s−→β )(Ã∇Ũ · ∇Ũ) +

n+1∑
j,k,l=1

y1−2sβl
∂ãjk
∂zl

∂Ũ

∂zj

∂Ũ

∂zk

 dz
− 2

ˆ
Bn+1
r

n+1∑
j,k,l=1

|y|1−2sãjk
∂βl
∂zk

∂Ũ

∂zj

∂Ũ

∂zk
dz. (7.16)
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Note that βn+1 =
y

µ(z)
, so we have

ˆ
Bn+1
r

∇ · (|y|1−2s−→β )(Ã∇Ũ · ∇Ũ)dz

=

ˆ
Bn+1
r

(∇ ·
−→
β )(Ã∇Ũ · ∇Ũ)dz +

ˆ
Bn+1
r

(1− 2s)
|y|1−2s

µ(z)
Ã∇Ũ · Ũdz. (7.17)

First, for the left hand sides in (7.16), we use the relations
−→
β · ν = r,

−→
β · ∇Ũ =

r(Ãν) · ∇Ũ
µ(z)

on ∂Bn+1
r and integrate them over Bn+1

r , so we get

ˆ
∂Bn+1

r

|y|1−2s(Ã(x)∇Ũ · Ũ)(
−→
β · ν)dS − 2

ˆ
∂Bn+1

r

(
|y|1−2s(Ãν · ∇Ũ

)
(β · ∇Ũ)dS

=r

ˆ
∂Bn+1

r

|y|1−2s(Ã(x)∇Ũ · Ũ)dS − 2r

ˆ
∂Bn+1

r

|y|1−2s

∣∣∣Ãν · ∇Ũ ∣∣∣2
µ(z)

dS

=rD′(r)− 2r

ˆ
∂Bn+1

r

|y|1−2s

∣∣∣Ãν · ∇Ũ ∣∣∣2
µ(z)

dS. (7.18)

Second, we evaluate the right hand side of (7.16) as follows. For the first
term in the right hand side (RHS) of (7.16) can be rewritten as (7.17) and we
estimate them separately. By using (7.9), we have ∇ · β = n + 1 + O(r) for
z ∈ Bn+1

1 , which implies
ˆ
Bn+1
r

(∇ · β)|y|1−2s(Ã(x)∇Ũ · ∇Ũ) = (n+ 1 +O(r))D(r), (7.19)

and we know that βn+1 =
y

µ(z)
= y+

(
1− 1

µ(z)

)
y = y+O(|z|)y, with |z| ≤ r,

hence ˆ
Bn+1
r

βn+1(1− 2s)|y|−2s(Ã(x)∇Ũ · ∇Ũ)dz

=

ˆ
Bn+1
r

(y +O(r)y)(1− 2s)|y|−2s(Ã(x)∇Ũ · ∇Ũ)dz

=(1− 2s+O(r))D(r). (7.20)

For the second term in the RHS of (7.16), we have

∣∣∣∣βl ∂ãjk∂zl

∣∣∣∣ ≤ C|z| ≤ Cr so

that
n+1∑
j,k,l=1

ˆ
Bn+1
r

|y|1−2sβl
∂ãjk
∂zl

∂Ũ

∂zj

∂Ũ

∂zk
= O(r)D(r), (7.21)

For the last term in the RHS of (7.16), Now, for the last term in the RHS of

(7.16), from
∂βl
∂zk

= δlk +O(r) in a bounded region, it is easy to see that

ˆ
Bn+1
r

n+1∑
j,k,l=1

|y|1−2sãjk
∂βl
∂zk

∂Ũ

∂zj

∂Ũ

∂zk
dz = (1 +O(r))D(r). (7.22)
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Finally, by plugging (7.18), (7.19), (7.20), (7.21) and (7.22) into (7.16), we finish
the proof of this lemma.

Now, it is ready to prove the doubling inequality.

Lemma 7.6. (Doubling inequality) Let Ũ ∈ H1(Rn+1, |y|1−2s) be a weak so-

lution of ∇x,y · (|y|1−2sÃ(x)∇x,yŨ) = 0 in Bn+1
1 , then there exists a constant

C > 0 such that
ˆ
Bn+1

2R

|y|1−2s
∣∣∣Ũ ∣∣∣2 dxdy ≤ C ˆ

Bn+1
R

|y|1−2s
∣∣∣Ũ ∣∣∣2 dxdy, (7.23)

whenever Bn+1
2R ⊂ Bn+1

1 .

Proof. Since H(r) and D(r) are differentiable, so we can differentiate N(r) with
respect to r, then we get

N ′(r) = N(r)

{
1

r
+
D′(r)

D(r)
− H ′(r)

H(r)

}
. (7.24)

If we plug (7.10), (7.11), (7.12) and (7.15) into (7.24) and use the Cauchy-
Schwartz inequality, then we can deduce that

1

r
+
D′(r)

D(r)
− H ′(r)

H(r)

≥2


´
∂Bn+1

r
|y|1−2s 1

µ

∣∣∣Ãν · ∇Ũ ∣∣∣2 dS
´
∂Bn+1

r
|y|1−2sŨ

(
Ãν · ∇Ũ

)
dS
−

´
∂Bn+1

r
|y|1−2sŨ

(
Ãν · ∇Ũ

)
dS

´
∂Bn+1

r
|y|1−2sµ

∣∣∣Ũ ∣∣∣2 dS
+O(1)

≥O(1)

which implies
N ′(r) ≥ −CN(r)

for some constant C > 0. Moreover, for R < 1, we integrate the above inequality
over R to 1, then we have

ˆ 1

R

d

dr
logN(r)dr ≥ −C(1−R) ≥ −C

or
N(R) ≤ e−CN(1). (7.25)

Note that (7.12) is equivalent to

d

dr
log

H(r)

rn+1−2s
= 2

N(r)

r
+O(1),

where O(1) is independent of r. After integrating over (r, 2r) and use (7.25),
it is easy to see H(2r) ≤ CH(r) and integrate this quantity over (0, R), which
proves the doubling inequality (7.23).
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