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Abstract

We consider the inverse boundary value problem of determining the
Lamé moduli of an isotropic, static elasticity equations of system at the
boundary from the localized Dirichlet-to-Neumann map. Assuming ap-
propriate local regularity assumptions as weak as possible on the Lamé
moduli and on the boundary, we give explicit pointwise reconstruction
formulae of the Lamé moduli and their higher order derivatives at the
boundary from the localized Dirichlet-to-Neumann map.
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1 Introduction and main result

Let us briefly give our main result before giving its detailed mathematical de-
scription. That is we give explicit pointwise reconstruction formulae of Lamé
moduli and their derivatives at a given point on the boundary from the measured
data called the localized Dirichlet-to-Neumann map for the inverse boundary
value problem associated to an isotropic elastic equation in a bounded domain.
We will refer this kind of inverse problem by boundary determination.

Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω and λ = λ(x), µ = µ(x)
be the Lamé moduli which satisfy

µ > 0, 3λ+ 2µ > 0 on Ω. (1.1)

The regularity of ∂Ω and Lamé moduli will be specified later. Consider the
boundary value problem(Lu)i :=

∑3
j,k,l=1

∂

∂xj
(Ċijkl

∂

∂xl
uk) = 0 (i = 1, 2, 3) in Ω,

u = f ∈ H1/2(∂Ω;C3) on ∂Ω
(1.2)

for the displacement vector u = (u1, u2, u3), where

Ċijkl = Ċijkl(x) = λδijδkl + µ(δikδjl + δilδjk) (1 ≤ i, j, k, ` ≤ 3) (1.3)
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are isotropic elastic tensors in terms of the Cartesian coordinates x = (x1, x2, x3)
with Kronecker delta δij . It is easy to see that Ċijkl defined by (1.3) satisfies
the symmetry given as

Ċijkl(x) = Ċklij(x) = Ċjikl(x)

and the strong convexity condition given as

3∑
i,j,k,l=1

Ċijkl(x)εijεkl ≥ c0
3∑

i,j=1

ε2
ij

with some constant c0 > 0 for any x ∈ Ω and symmetric matrix (εij).
Define the Dirichlet-to-Neumann (DN) map ΛC : H1/2(∂Ω) → H−1/2(∂Ω)

by

(ΛCf)i :=

3∑
j,k,l=1

νjĊijkl
∂uk
∂xl
|∂Ω for i = 1, 2, 3,

where u is the solution of (1.2) and ν = (ν1, ν2, ν3) is the unit normal of ∂Ω di-
rected into the exterior of Ω. Let ε(u) := (εij(u)) be the strain tensor associated
to the solution u of (1.2), where

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
for i, j = 1, 2, 3.

It is well-known that for f, g ∈ H1/2(∂Ω),

〈ΛCf, g〉H−1/2(∂Ω)×H1/2(∂Ω) =

ˆ
Ω

(
λ divu (div v) + 2µ ε(u) : ε(v)

)
dy,

where 〈·, ·〉H−1/2(∂Ω)×H1/2(∂Ω) is the pairing in H−1/2(∂Ω) × H1/2(∂Ω), v ∈
H1(Ω) can be taken whichever satisfies v = g on ∂Ω and the notation “:”
denotes the Frobenius inner product. Let x0 ∈ ∂Ω be an arbitrary point, then
the DN map ΛC can be localized near x0 by restricting the support of f, g in an
open neighborhood of x0 in ∂Ω.

The precise description of the aim of this paper is to recover λ, µ and their
higher-order normal derivatives near a given point x0 ∈ ∂Ω by knowing the
localized ΛC around x0, under the regularity assumptions on λ, µ and ∂Ω near
x0 as weak as possible. More specifically, we will show that for any m ∈ N, the
Lamé moduli and their normal derivatives at x0 ∈ ∂Ω up to order m can be given
explicitly from the localized DN map ΛC around x0. There are some related
results on this boundary determination for the elasticity system. For the two
dimensional isotropic elastic system, the boundary determination was given by
[1] if the Lamé moduli and ∂Ω are smooth. In [7] and [8] the authors developed
layer stripping algorithm in which they solved the boundary determination for
the three dimensional isotropic and transversally isotropic elastic systems also
for the case the elasticity tensor and ∂Ω are smooth. But it should be remarked
here that a result of boundary determination under regularity assumptions as
weak as possible was missing for the elasticity systems and we aimed to provide
such a result for the isotropic elasticity system in this paper. For practical
application, it is needless to say the importance of such a result. We note
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that there are related results for both the isotropic and anisotropic conductivity
equations using arguments similar as in this paper. For that see [2, 3, 5, 6] and
the references there in.

For any m ∈ N, p ∈ (0, 1), Cm,p(Ω) denotes the standard Hölder space.
Then the regularity assumptions on the Lamé moduli λ, µ and ∂Ω are locally
Cm+2 and Cm,p near x = 0, respectively.

By introducing the boundary normal coordinates which was used in [3, 4,
6] for the conductivity equation and [12] for the elasticity equation, we can
flatten ∂Ω. Also, without loss of generality, we may assume that x0 can be the
origin. In terms of the boundary normal coordinates the displacement vector
u = (u1, u2, u3) and isotropic elastic tensor (Ċijkl) will undergo tensorial change
which complicates the notations and description of arguments. Hence, in order
not to distract reader’s attention, we first focus on the reconstruction formulae
for the Lamé parameters for the flat boundary case at 0 ∈ ∂Ω. We will illustrate
the non flat boundary case in the last section of this paper. It will be shown
there that the difference we will have for the non flat boundary case is just
coming from the change of coordinates and normal vector.

To begin with assume that ∂Ω is flat near 0 ∈ ∂Ω and Ω is locally given
as {y3 > 0} in terms of the Cartesian coordinates (y1, y2, y3). For the local
determination of the Lamé parameters at 0 ∈ ∂Ω, we only need to assume each
Ċijkl is of Cm,p class around the origin. Fix x = (x1, x2, 0) ∈ ∂Ω and define

Cm,x := (Ċm,xijkl ) by

Ċm,xijkl (y) :=
∑
b<m

∂by3Ċijkl(y
′, 0)

b!
yb3 for y near x. (1.4)

Then extending this Cm,x to Ω without destroying the regularity and strong
convexity, we denote the corresponding localized DN map by ΛCm,x . Similarly,
we define λm,x and µm,x by

λm,x(y) :=
∑
b<m

∂by3λ(y′, 0)

b!
yb3, µ

m,x(y) :=
∑
b<m

∂by3µ(y′, 0)

b!
yb3. (1.5)

Let ω′ = (ω1, ω2, 0) be a unit tangent vector of ∂Ω at 0 and η(y′) ∈ C∞0 (R2)
satisfy

0 ≤ η ≤ 1,

ˆ
R2

η2dy′ = 1 and supp(η) ⊂ {|y′| < 1}.

First, by choosing suitably large ` ∈ N, we may assume that
m

`
=

1

ρ̃
for some

large ρ̃ ∈ N with
1

ρ̃
< p and we also assume that

(1− 1

ρ̃
)(m+ p) ≥ m+

1

ρ̃
. (1.6)

For convenience, we denote ρ =
1

ρ̃
and for large N ∈ N, we put ηN (y′) :=

η(N1−ρy′). For any column vector a = (a1, a2, a3) ∈ C3, let

φN (y) := ηN (y′) exp(
√
−1Ny′ · ω′)a (1.7)
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be the localized Dirichlet data around 0 ∈ ∂Ω, then we have the following
theorem.

Theorem 1.1. (1) Let Ω be of C1 class near 0 ∈ ∂Ω and let Ċijkl be continuous
near y = 0. Then

lim
N→∞

〈
ΛCφ

N , φN
〉

=

3∑
i,j=1

Zij(0)aiaj (1.8)

and Zij = Zji for 1 ≤ i, j ≤ 3, where

Zii =
µ

λ+ 3µ

(
2(λ+ 2µ)− (λ+ µ)ι2i

)
,

Zij =
µ

λ+ 3µ

(
− (λ+ µ)ιiιj +

√
−1(−1)k2µ ιk

)
, 1 ≤ i < j ≤ 3 (1.9)

with (ι1, ι2, ι3) = (ω2,−ω1, 0) and the index k ∈ N has to satisfy 1 ≤ k ≤ 3,
k 6= i, j.

(2) For m ∈ N, let ∂Ω be of Cm+2 class near 0 ∈ ∂Ω. Let C = (Ċijkl) be of
Cm,p near 0. Then

lim
N→∞

Nm
〈

(ΛC − ΛCm,0)φN , φN
〉

(1.10)

=
1

2m+1

∂mλ

∂ym3
(0)

(
√
−1

2∑
i=1

ωiai − a3

)2

+
1

2m
∂mµ

∂ym3
(0)

 2∑
i,j=1

(
aiωj + ajωi

2

)2

+ 2

2∑
i=1

(√
−1a3ωi − ai

2

)2

+ a2
3

 .
Hence from these formulae, we can recover Lamé moduli and their derivatives
up to order m.

Remark 1.2. We remark here that the above boundary determination formulae
(1.8) and (1.10) are given in terms of the leading part of the equations of system.
Further (1.8) was proved in the Section 2 of [11] and (1.9) was shown in Theorem
1.24 of [11], so we omit their proofs. We will only prove (1.10).

The rest of this paper is organized as follows. In Section 2, we construct
an approximate solution of Lu = 0 with u = φN on ∂Ω. By using this special
solution, we will prove Theorem 1.1 for the flat boundary case in Section 3.
Finally, in Section 4, we will demonstrate deriving the reconstruction formulae
in terms of the boundary normal coordinates for the non-flat boundary case in
the lasts section.
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tional Center for Theoretical Sciences (NCTS) for his stay in National Taiwan
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and 15H05740) of the Japan Society for the Promotion of Science.
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2 Construction of approximate solutions

In order to prove Theorem 1.1, we need to construct an approximate solution
depending on a large parameter N . Let

ΩN :=

{
y : |y1|, |y2| ≤ Nρ−1, 0 ≤ y3 ≤

1√
N

}
. (2.1)

and α be a multi-index such that

α = (1− ρ, 1− ρ, 1) and Nαy = (N1−ρy1, N
1−ρy2, Ny3) = (N1−ρy′, Ny3).

Inspired by [3, 6], we can prove the following lemma.

Lemma 2.1. For each N ∈ N, there exists for any column vector a = (a1, a2, a3) ∈
C3 an approximate solution ΦN of (1.2) near 0 of the form

ΦN (y) = e
√
−1Ny′·ω′e−Ny3

ηN (y′) a +

m
ρ∑

n=1

N−nρvn(Nαy)

 (2.2)

with ΦN |∂Ω = φN = e
√
−1Ny′·ω′ηN (y′) a, where each vector vn(Nαy) is polyno-

mial in Ny3 with coefficients which are C∞-smooth functions of N1−ρy′ sup-

ported in {|y′| < Nρ−1} for n = 1, 2, · · · , m
ρ

and

∣∣(LΦN )(y)
∣∣ ≤ CN2−m−ρP(Ny3)e−Ny3 , y ∈ ΩN (2.3)

for some constant C = C(m) > 0. Here P(Ny3) is a polynomial with non-
negative coefficients.

Proof. We look for ΦN = (ΦN1 ,Φ
N
2 ,Φ

N
3 ) ∈ C3 of the form

ΦNk (y) = e
√
−1Ny′·ω′Vk(N1−ρy′, Ny3). (2.4)

Then

(LΦN )i

=

3∑
j,k,l=1

∂

∂yj
(Ċijkl

∂

∂yl
ΦNk )

=

3∑
k=1

{ 2∑
j,l=1

Ċijkl(
∂2

∂yj∂yl
ΦNk ) +

2∑
j=1

Ċijk3(
∂2

∂yj∂y3
ΦNk ) +

2∑
l=1

Ċi3kl(
∂2

∂y3∂yl
ΦNk )

+ Ċi3k3
∂2

∂y2
3

ΦNk +

3∑
j=1

2∑
l=1

( ∂

∂yj
Ċijkl

) ∂
∂yl

ΦNk +

3∑
j=1

( ∂

∂yj
Ċijk3

) ∂

∂y3
ΦNk

}
.

(2.5)
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Substituting (2.4) into (2.5), we have

(LΦN )i

=e
√
−1Ny′·ω′

3∑
k=1

[
−N2

2∑
j,l=1

Ċijklωjωl +
√
−1N

{ 2∑
j,l=1

Ċijkl(ωj
∂

∂yl
+ ωl

∂

∂yj
)

+

2∑
j=1

Ċijk3ωj
∂

∂y3
+

2∑
l=1

Ċi3klωl
∂

∂y3
+

2∑
j,l=1

( ∂

∂yj
Ċijkl

)
ωl

}

+

2∑
j=1

Ċijk3
∂2

∂yj∂y3
+

2∑
l=1

Ċi3kl
∂2

∂yl∂y3
+

2∑
j,l=1

Ċijkl
∂2

∂yj∂yl
+ Ċi3k3

∂2

∂y2
3

+

3∑
j=1

2∑
l=1

( ∂

∂yj
Ċijkl

) ∂
∂yl

+

3∑
j=1

( ∂

∂yj
Ċijk3

) ∂

∂y3

]
Vk(N1−ρy′, Ny3). (2.6)

Now, we introduce the scaled variables

zi = N1−ρyi for i = 1, 2 and z3 = Ny3, (2.7)

which implies

∂

∂yi
= N1−ρ ∂

∂zi
for i = 1, 2 and

∂

∂y3
= N

∂

∂z3
. (2.8)

We refer (2.7) by scaling. Then (2.6) becomes

(LΦN )i

=e
√
−1Ny′·ω′

3∑
k=1


N2(Ċi3k3

∂2

∂z2
3

+
√
−1(

2∑
j=1

Ċijk3ωj
∂

∂z3
+

2∑
l=1

Ċi3klωl
∂

∂z3

−
2∑

j,l=1

Ċijklωjωl) +N2−ρ(
√
−1

2∑
j,l=1

Ċijkl(ωj
∂

∂zl
+ ωl

∂

∂zj
)

+

2∑
j=1

Ċijk3
∂2

∂zj∂z3
+

2∑
l=1

Ċi3kl
∂2

∂zl∂z3
) +N2−2ρ

2∑
j,l=1

Ċijkl
∂2

∂zj∂zl

+N [
√
−1

2∑
j,l=1

(
∂

∂yj
Ċijkl

)
ωl +

3∑
j=1

(
∂

∂yj
Ċijk3

)
∂

∂z3
]

+N1−ρ
3∑
j=1

2∑
l=1

(
∂

∂yj
Ċijkl

)
∂

∂zl

Vk(z′, z3)

 . (2.9)

On the other hand, expand Ċijkl(y) of and
∂

∂yn
Ċijkl(y) for n = 1, 2, 3 into

Taylor’s series around y = 0. Let β ∈ (N∪{0})3 be a multi-index, then we have

Ċijkl(y) =
∑
|β|≤m

1

β!

∂β

∂yβ
Cijkl(0)yβ +O(|y|m+p),
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and for n = 1, 2, 3,

∂

∂yn
Ċijkl(y) =

∑
|β|≤m−1

1

β!

∂β

∂yβ

(
∂

∂yn
Ċijkl

)
(0)yβ +O(|y|m−1+p).

Recall that we have posed the condition (1.6), which is m+ ρ ≤ (1− ρ)(m+ p).
Thus, via (2.7), we obtain

Ċijkl(y) =
∑
|β|≤m

N−β·α
1

β!

∂β

∂zβ
Ċijkl(0)zβ +R1(z), (2.10)

where
|R1(z)| = O(N−m−ρ).

Similarly, for n = 1, 2, 3, we have

∂

∂yn
Ċijkl(y) =

∑
|β|≤m

N−β·α
1

β!

∂β

∂zβ

(
∂

∂yn
Ċijkl

)
(0)zβ +R2(z), (2.11)

where
|R2(z)| = O(N−m−ρ+1).

Note that for the power of N in the expansion (2.10) and (2.11) are of the
form −Mρ for some M ∈ N ∪ {0}. Thus, we combine (2.9), (2.10), (2.11) and
V := (V1,V2,V3)t, then

LΦN = e
√
−1Ny′·ω′

 m
ρ∑
s=0

N2−sρLs + LR

V, (2.12)

where LΦN = ((LΦN )1, (LΦN )2, (LΦN )3)t and Ls (s = 0, 1, 2, · · · , mρ ) are at

most second order matrix differential operators in z′ and z3 with coefficients
depending on y′ and y3. In particular L0, L1, L2 are given by

L0 = −

Ċi3k3(0)D2
3 +

 2∑
j=1

Ċijk3(0)ωj

+

2∑
l=1

Ċi3kl(0)ωl

]
D3 +

2∑
j,l=1

Ċijkl(0)ωjωl


1≤i,k≤3

,

L1 =

√−1

2∑
j,l=1

Ċijkl(0)

(
ωj

∂

∂zl
+ ωl

∂

∂zj

)

+

2∑
j=1

Ċijk3(0)
∂2

∂zj∂z3
+

2∑
l=1

Ċi3kl(0)
∂2

∂zl∂z3


1≤i,k≤3

,

L2 =

 2∑
j,l=1

Ċijkl(0)
∂2

∂zj∂zl


1≤i,k≤3

,
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where D3 = −
√
−1

∂

∂z3
. Moreover, LR is a second order differential operator in

z and its coefficients are of order O(N2−m−ρ).
Now, we look for V(z′, z3) of the form

V(z) =

m
ρ∑

n=0

N−ρnV n(z), (2.13)

where V n(z) = (V n1 (z), V n2 (z), V n3 (z))t ∈ C3. By (2.12) and equating the coef-
ficients in each term of order Nm, we have

LΦN = e
√
−1Ny′·ω′

 m
ρ∑
s=0

N2−sρLs

 m
ρ∑

n=0

N−ρnV n

+ LRV

 (2.14)

= e
√
−1Ny′·ω′

 m
ρ∑
r=0

N2−rρ
∑
n+s=r

LsV
n +R

 ,
where

R :=

2m
ρ∑

r=m
ρ +1

N2−rρ
∑
n+s=r

LsV
n + LRV.

Therefore, we have obtained the following ordinary differential equations of
systems (ODE systems) of second order with respect to z3

L0V
0 = 0,

L0V
1 + L1V

0 = 0,

L0V
2 + L1V

1 + L2V
0 = 0, (2.15)

· · ·
L0V

m
ρ + · · ·+ Lm

ρ
V 0 = 0,

with boundary conditions

V 0|z3=0 = ηN (y′) a = η(z′) a,

V n|z3=0 = 0 for n = 1, 2, · · · , m
ρ
.

Note that this undetermined boundary value problem (2.15) can be made de-
termined if we look for solutions which are bounded in z3 ∈ [0,∞).

First, by using the Stroh formalism which is for instance given in [11], we
can solve L0V

0 = 0 with V 0(z′, 0) = η(z′) in the following way. The method
in solving system of differential equations was consider in [9, 13]. Let ξ =
(ξ1, ξ2, ξ3), ζ = (ζ1, ζ2, ζ3) ∈ R3 and we define the 3× 3 matrix 〈ξ, ζ〉 by

〈ξ, ζ〉 = (〈ξ, ζ〉ik) with 〈ξ, ζ〉ik =
∑

1≤j, l≤3

Ċijkl(y
′, y3)ξj ζl.

Also, if we set 〈ξ, ζ〉0 := 〈ξ, ζ〉 |y=0 , e3 := (0, 0, 1) and ω := (ω1, ω2, 0), we can
rewrite

L0V
0 = −

[
〈e3, e3〉0D

2
3 + (〈e3, ω〉0 + 〈ω, e3〉0)D3 + 〈ω, ω〉0

]
V 0 = 0.
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Let W 0
1 = V 0, W 0

2 = −{〈e3, e3〉0D3V
0+〈e3, ω〉0 V 0}, then by direct calculation,

then we have
D3W

0
1 = −〈e3, e3〉−1

0

[
〈e3, ω〉0W

0
1 −W 2

0

]
(2.16)

and

D3W
0
2 =

[
〈ω, ω〉0 − 〈ω, e3〉0 〈e3, e3〉−1

0 〈e3, ω〉0
]
W 0

1 − 〈ω, e3〉0 〈e3, e3〉−1
0 W 0

2 .

(2.17)
Combine (2.16), (2.17) and define the column vector W 0 := [W 0

1 ,W
0
2 ], then we

obtain
D3W

0 = K0W 0, (2.18)

where

K0 =

[
−〈e3, e3〉−1

0 〈e3, ω〉0 −〈e3, e3〉−1
0

−〈ω, ω〉0 + 〈ω, e3〉0 〈e3, e3〉−1
0 〈e3, ω〉0 −〈ω, e3〉0 〈e3, e3〉−1

0

]
.

Note that K0 is a 6× 6 matrix-valued function independent of z3 variable and
its eigenvalues are determined by

det(ΣI6 −K0) = 0, (2.19)

where I6 is a 6× 6 identity matrix and (2.19) is equivalent to

det
[
〈e3, e3〉0 Σ2 + (〈e3, ω〉0 + 〈ω, e3〉0) Σ + 〈ω, ω〉0

]
= 0. (2.20)

By using the results of [11, Chapter 1.8] , we have

det
[
〈e3, e3〉0 Σ2 + (〈e3, ω〉0 + 〈ω, e3〉0) Σ + 〈ω, ω〉0

]
=µ2(0)(λ+ 2µ)(0)(1 + Σ2)3,

which means solving (2.19) is equivalent to solve

(1 + Σ2)3 = 0

and use the strong convexity condition (1.1), then it gives that the roots are

Σ = ±
√
−1. Moreover, we can find eigenvectors {q̃+

1 , q̃
+
2 , q̃

+
3 , q̃

−
1 , q̃

−
2 , q̃

−
3 }(0) of

K0, i.e.,

K0q̃±γ = ±
√
−1q̃±γ for γ = 1, 2, 3, (2.21)

with q̃+
γ being the complex conjugate of q̃−γ , or q̃+

γ = q̃−γ at y = 0.
According to the result in [11], the eigenvalue problem for K0 is degenerate

and there are generalized eigenvectors. More precisely, let

q̃+
1 =


ω2

−ω1

0√
−1µω2

−
√
−1µω1

0

 (0), q̃+
2 =


ω1

ω2√
−1

−2µω1

−2µω2

2
√
−1

 (0)
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and

q̃+
3 =



0
0

−λ+3µ
λ+µ

− 2µ2

λ+µω1

− 2µ2

λ+µω2

−
√
−1 2µ(λ+2µ)

λ+µ


(0)

such that
K0q̃+

3 −
√
−1q̃+

3 = q̃+
2 .

and define
Q̃ :=

(
q̃+
1 , q̃

+
2 , q̃

+
3 , q̃

−
1 , q̃

−
2 , q̃

−
3

)
,

which is a non-singular matrix giving the Jordan canonical form

Q̃−1K0Q̃ =



√
−1 √

−1 1√
−1

−
√
−1

−
√
−1 1

−
√
−1

 .

Since we want to have a general form of solution of (2.18) which is bounded for
z3 ∈ [0,∞), we take ζ =

√
−1. Further we take linearly independent vectors

σ1 =

 ω2

−ω1

0

, σ2 =

 ω1

ω2√
−1

 and σ3 =

 0
0

−λ+3µ
λ+µ (0)

. Then, for any

given a = (a1, a2, a3), there exists constants cβ ∈ C (β = 1, 2, 3) such that

a =
∑3
s=1 csσs. Therefore, as in [11, Lemma 1.6 and (2.66)], V 0(z′, z3) is given

as

V 0(z′, z3) = e−z3η(z′)
( 3∑
s=1

csσs −
√
−1c3 σ2 z3

)
(2.22)

= e−z3η(z′)
(
a−
√
−1c3 z3 σ2

)
,

which is a C∞-smooth solution of L0V
0 = 0 with V 0(z′, 0) = η(z′) a.

Next, we solve

L0V
1 + L1V

0 = 0 with V 1(z′, 0) = 0. (2.23)

Since

L1 =
(√
−1

2∑
j,l=1

Ċijkl(0)(ωj
∂

∂zl
+ ωl

∂

∂zj
)

+

2∑
j=1

Ċijk3(0)
∂2

∂zj∂z3
+

2∑
l=1

Ċi3kl(0)
∂2

∂zl∂z3

)
1≤i,k≤3

,

and

L1V
0(z′, z3) = e−z3

1∑
d=0

P d0 (z′)zd3 ,
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where P d0 (z′) are C∞-smooth vector-valued function depending on ∂βz′η(z′) for
multi-indices |β| ≤ 1 for d = 0, 1. It is worth mentioning the following observa-
tion. That is for any d ∈ N, we have by direct computation

L0

(
zd3e
−z3
)

= e−z3
(
zd−1

3 Rd1 + zd−2
3 Rd2

)
with invertible matrices

Rd1 = d
[
2 〈e3, e3〉0 −

√
−1 (〈ω, e3〉0 + 〈e3, ω〉0)

]
,

Rd2 = −d(d− 1) 〈e3, e3〉0 .

Based on this we look for V 1(z′, z3) in the following form

V 1(z′, z3) = e−z3
2∑
d=1

zd3P
d
1 (z′), (2.24)

where P d1 (z′) ∈ C3 are vector-valued functions which will be determined later.
By straightforward computation, we can have

L0V
1 = z3 e

−z3 R2
1 + e−z3

{
R2

2P
2
1 (z′) +R1

1P
1
1 (z′)

}
. (2.25)

Then by equating the equation L0V
1 = −L1V

0, we have

P 1
0 (z′) = −R2

1P
2
1 (z′), (2.26)

P 0
0 (z′) = −R2

2 P
2
1 (z′)−R1

1 P
1
1 (z′). (2.27)

In order to solve P d1 (z′) explicitly for d = 1, 2, first, we can invert the right hand
side of (2.26) to find P 2

1 (z′) and plug it into (2.27) to know P 1
1 (z′). Thus we

have (2.24).
Further for each n ≥ 2, we can express the solution V n(z′, z3) of (2.15) with

V n(z′, 0) = 0 inductively as

V n(z) =

n+1∑
d=1

zd3P
d
n(z′)e−z3 ,

where P dn(z′) are smooth vector-valued functions depending on µ(0), λ(0), η(z′)

and supported in {|z′| < 1} for n = 1, 2, · · · , m
ρ

. Finally, from (2.14) and (2.15),

we have
LΦN = LRV.

Here note that the coefficients of LR are of the form O(N2−m−ρ) multiplied
with polynomials in z3. Therefore, there exists C = C(m) such that

|LRV| ≤ CN2−m−ρP(z3)e−z3 ,

where P(z3) is a polynomial in z3 with non-negative coefficients, which com-
pletes the proof.
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3 Proof of Theorem 1.1, (2)

In this section, we prove item (2) of Theorem 1.1. Our ideas are initiated from

[3, 6]. Let ζ(y3) ∈ C∞([0,∞)) satisfy 0 ≤ ζ ≤ 1, ζ(y3) = 1 for 0 ≤ y3 ≤
1

2
,

ζ(y3) = 0 for y3 ≥ 1, and put

ζN (y3) = ζ(
√
Ny3).

Given ε > 0, choose large N ∈ N,

supp(ηNζN ) ⊂ Ωε := {|x| ≤ ε}.

For m ∈ N, recall that the regularity of ∂Ω is of Cm+2 class. For convenience,
denote Cm = Cm,0, λm = λm,0 and µm = µm,0, where Cm,x, λm,x and µm,x were
introduced in (1.4) and (1.5). Let uN = (uN1 , u

N
2 , u

N
3 ) ∈ H1(Ω;C3) be the

solution to 
∑3
j,k,l=1

∂

∂xj
(Ċijkl

∂

∂xl
uNk ) = 0 (1 ≤ i ≤ 3) in Ω,

uN = φN on ∂Ω,
(3.1)

and let vN = (vN1 , v
N
2 , v

N
3 ) ∈ H1(Ω;C3) be the solution to

∑3
j,k,l=1

∂

∂xj
(Ċmijkl

∂

∂xl
vNk ) = 0 (1 ≤ i ≤ 3) in Ω,

vN = φN on ∂Ω.
(3.2)

Let ζN ΦN and ζN ΨN be approximate solutions of uN and vN with ζN ΦN |∂Ω =
ζN ΨN |∂Ω = φN , respectively. Likewise the construction in Section 2, we can
express ΨN as

ΨN (y) = e
√
−1Ny′·ω′e−Ny3

ηN (y′) a +

m
ρ∑

n=1

N−nρvmn (Nαy)

 , (3.3)

where vmn (Nαy) are polynomials in Ny3 depending on Ċmijkl(0) and their co-

efficients are C∞-smooth functions of Nαy supported in {|y′| < Nρ−1} for

n = 1, 2, · · · , m
ρ

.

Note that
〈

ΛCmφ
N , φN

〉
is real and hence we have〈

ΛCmφ
N , φN

〉
=
〈

ΛCmφN , φ
N
〉
.

By direct calculation, we have〈
(ΛC − ΛCm)φN , φN

〉
=

ˆ
Ω

[
λdivuN (div (ζNΨN )) + 2µε(uN ) : ε(ζNΨN )

]
dy

−
ˆ

Ω

[
λmdiv vN (div (ζNΦN )) + 2µmε(vN ) : ε(ζNΦN )

]
dy.
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Let
uN = ΦN + fN and vN = ΨN + gN

with
fN |∂Ω = gN |∂Ω = 0.

Then we have〈
(ΛC − ΛCm)φN , φN

〉
=

ˆ
Ω

[
λdiv ΦN (div (ζNΨN )) + 2µε(ΦN ) : ε(ζNΨN )

]
dy

−
ˆ

Ω

[
λmdiv ΨN (div (ζNΦN ) + 2µmε(ΨN ) : ε(ζNΦN )

]
dy

+

ˆ
Ω

[
λdiv fN (div (ζNΨN )) + 2µε(fN ) : ε(ζNΨN )

]
dy

−
ˆ

Ω

[
λmdiv gN (div (ζNΦN )) + 2µmε(gN ) : ε(ζNΦN )

]
dy

:=I + II + III,

where

I =

ˆ
Ω

[
λdiv ΦN (div (ζNΨN )) + 2µε(ΦN ) : ε(ζNΨN )

]
dy

−
ˆ

Ω

[
λmdiv ΨN (div (ζNΦN )) + 2µmε(ΨN ) : ε(ζNΦN )

]
dy,

II =

ˆ
Ω

[
λdiv fN (div (ζNΨN )) + 2µε(fN ) : ε(ζNΨN )

]
dy,

III = −
ˆ

Ω

[
λmdiv gN (div (ζNΦN )) + 2µmε(gN ) : ε(ζNΦN )

]
dy.

We will estimate I, II and III separately in the next subsections.

3.1 Estimate of I

Let

Ω′N :=

{
y : |y1|, |y2| ≤ Nρ−1,

1

2
√
N
≤ y3 ≤

1√
N

}
and DN := ΩN\Ω′N .

Then we can rewrite I as

I =

ˆ
DN

[
(λ− λm)div ΦN (div ΨN ) + 2(µ− µm)ε(ΦN ) : ε(ΨN )

]
dy

+

ˆ
Ω′N

[
λdiv ΦN (div (ζNΨN )) + 2µε(ΦN ) : ε(ζNΨN )

]
dy

−
ˆ

Ω′N

[
λmdiv ΨN (div (ζNΦN )) + 2µmε(ΨN ) : ε(ζNΦN )

]
dy

:= I1 + I2,
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where

I1 =

ˆ
DN

(λ− λm)div ΦN (div ΨN ) + 2(µ− µm)ε(ΦN ) : ε(ΨN )dy,

I2 =

ˆ
Ω′N

λdiv ΦN (div (ζNΨN )) + 2µε(ΦN ) : ε(ζNΨN )dy,

−
ˆ

Ω′N

λmdiv ΨN (div (ζNΦN ))− 2µmε(ΨN ) : ε(ζNΦN )dy.

Recall that a = (a1, a2, a3) ∈ C3, then for I1, by (2.2), (3.3), and direct calcu-
lation, we have

div ΦN = Ne
√
−1Ny′·ω′e−Ny3

(
√
−1

2∑
i=1

ωiai − a3

)
ηN (y′) +O(N1−ρ)e−c0Ny3 ,

with some constant c0 > 0. Hereafter c0 denotes a general constant which may
differ time to time. Also for each εij(Φ

N ) of ε(ΦN ) = (εij(Φ
N )) we have

εij(Φ
N ) =

√
−1Ne

√
−1Ny′·ω′e−Ny3

aiωj + ajωi
2

ηN (y′)

+O(N1−ρ)e−c0Ny3 ,

εi3(ΦN ) = Ne
√
−1Ny′·ω′e−Ny3

√
−1a3ωi − ai

2
ηN (y′) +O(N1−ρ)e−c0Ny3 ,

ε33(ΦN ) = −Ne
√
−1Ny′·ω′e−Ny3ηN (y′)a3 +O(N1−ρ)e−c0Ny3 .

Similarly, we have

div ΨN = Ne
√
−1Ny′·ω′e−Ny3

(
√
−1

2∑
i=1

ωi ai − a3

)
ηN (y′) +O(N1−ρ)e−c0Ny3

and for i, j = 1, 2, we have

εij(Ψ
N ) =

√
−1Ne

√
−1Ny′·ω′e−Ny3

aiωj + ajωi
2

ηN (y′)

+O(N1−ρ)e−c0Ny3 ,

εi3(ΨN ) = Ne
√
−1Ny′·ω′e−Ny3

√
−1a3ωi − ai

2
ηN (y′) +O(N1−ρ)e−c0Ny3 ,

ε33(ΨN ) = Ne
√
−1Ny′·ω′e−Ny3ηN (y′)a3 +O(N1−ρ)e−c0Ny3 .

Recall that
ε(ΦN ) : ε(ΨN ) =

∑
1≤i,j≤3

εij(Φ
N )εij(Ψ

N ),

by straightforward calculation, then we have

I1 = N2

ˆ 1
2
√
N

0

ˆ
|y′|≤Nρ−1

e−2Ny3
{
ηN (y′)2(λ− λm)

×
(√
−1

2∑
i=1

ωiai − a3

)2

+ 2
(
µ− µm

)
ηN (y′)2

×

 2∑
i,j=1

(aiωj + ajωi
2

)2

+ 2

2∑
i=1

(√−1a3ωi − ai
2

)2

+ a2
3

}dy′ dy3

+O(N2−ρ)

ˆ 1
2
√
N

0

ˆ
|y′|≤Nρ−1

e−2c0Ny3
(
|λ− λm|+ |µ− µm|

)
dy′ dy3.(3.4)
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For further argument we need the following lemma which was proved in [6].

Lemma 3.1. [6] For any k ∈ N, f(y) = f(y′, y3) ∈ Ck around y = 0, we have

lim
N→∞

N2+k

ˆ 1
2
√
N

0

ˆ
|y′|≤Nρ−1

ηN (y′)2e−2Ny3
(
f(y)− fk(y)

)
dy′dy3

=
1

2k+1

∂kf

∂yk3
(0), (3.5)

where fk(y) =
∑k−1
n=0

1

n!

∂n

∂yn3
f(y′, 0)yn3 . Also for each d ∈ N, we have

lim
N→∞

N2−ρ+k
ˆ 1

2
√
N

0

ˆ
|y′|≤Nρ−1

ψ(
√
Ny′)(Ny3)de−2Ny3

∣∣∣f(y)− fk(y)
∣∣∣ dy′dy3

= 0, (3.6)

where ψ = ψ(
√
Ny′) is a C∞ function supported in {|y′| < 1√

N
}.

Take the limit N →∞ on (3.4) and use (3.5) and (3.6), then we can see that

lim
N→∞

NmI1 (3.7)

=
1

2m+1

∂mλ

∂ym3
(0)

(
√
−1

2∑
i=1

ωiai − a3

)2

+
1

2m
∂mµ

∂ym3
(0)

 2∑
i,j=1

(
aiωj + ajωi

2

)2

+ 2

(√
−1a3ωi − ai

2

)2

+ a2
3

 .
For I2, via (2.2) and (3.3), we have |ΦN | + |ΨN | ≤ exp(−c1Ny3) for some
constant c1 > 0 and

|I2| ≤ c0 exp

(
−c1

N
1
2

2

)
. (3.8)

Combining (3.7) and (3.8), we have

lim
N→∞

NmI

=
1

2m+1

∂mλ

∂ym3
(0)

(
√
−1

2∑
i=1

ωiai − a3

)2

+
1

2m
∂mµ

∂ym3
(0)

 2∑
i,j=1

(
aiωj + ajωi

2

)2

+ 2

(√
−1a3ωi − ai

2

)2

+ a2
3

 .
3.2 Estimates of II and III

In this section, we will prove

lim
N→∞

NmII = lim
N→∞

NmIII = 0.
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Since we can use the same method to prove II and III, we only prove the case

lim
N→∞

NmII = 0. (3.9)

By direct calculation,

II =

ˆ
Ω

[
λdiv fN (div (ζNΨN )) + 2µε(fN ) : ε(ζNΨN )

]
dy

=

ˆ
DN

[
λdiv fN (div (ΨN )) + 2µε(fN ) : ε(ΨN )

]
dy

+

ˆ
Ω′N

[
λdiv fN (div (ζNΨN )) + 2µε(fN ) : ε(ζNΨN )

]
dy

:= II1 + II2,

where

II1 =

ˆ
DN

[
λdiv fN (div (ΨN )) + 2µε(fN ) : ε(ΨN )

]
dy,

II2 =

ˆ
Ω′N

[
λdiv fN (div (ζNΨN )) + 2µε(fN ) : ε(ζNΨN )

]
dy.

From (2.2) (2.3) and (3.3), it is not hard to see

|II2| = O(e−
√
N
2 ) as N →∞.

Hence it remains to show that

lim
N→∞

NmII1 = 0

with
II1 = II3 + II4,

where

II3 =

ˆ
DN

[
λdiv fN (div (ΦN )) + 2µε(fN ) : ε(ΦN )

]
dy,

II4 =

ˆ
DN

[
λdiv fN (div (ΨN − ΦN )) + 2µε(fN ) : ε(ΨN − ΦN )

]
.

Note that fN ∈ H1
0 (Ω;R3) satisfies fN = uN − ΦN and

LfN = −LΦN in Ω. (3.10)

By using the standard elliptic regularity theory, we have

‖fN‖H1
0 (Ω) ≤ C‖LΦN‖H−1(Ω) ≤ C

∥∥∥∥∥∥(

3∑
j,k,l=1

Ċijkl
∂

∂xl
ΦNk )3

i=1

∥∥∥∥∥∥
L2(Ω)

for some constant C > 0. By straightforward computation and (2.2), we have
the following lemma.
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Lemma 3.2. Let k, l = 1, 2, 3. For each b ∈ N ∪ {0}, there exists a constant
Cb > 0 such that ∥∥∥∥yb3 ∂

∂yl
ΦNk

∥∥∥∥
L2(ΩN )

≤ CbN−
1
2 +ρ−b. (3.11)

By taking b = 0, (3.11) will imply that

‖fN‖H1
0 (Ω) ≤ CN−

1
2 +ρ.

Now, ∂DN = Γ1 ∪ Γ2, where

Γ1 :=

{
y : |y1| = Nρ−1 or |y2| = Nρ−1, 0 ≤ y3 ≤

1

2
√
N

}
,

Γ2 :=

{
y : |y1|, |y2| ≤ Nρ−1, y3 =

1

2
√
N

}
.

For k, l = 1, 2, 3, it is easy to see that

∂

∂yl
ΦNk (y) = 0 on Γ1 and

∂

∂yl
ΦNk (y) = O(e−

1
2N

1
2 ) on Γ2 as N →∞.

Integration by parts yields that

II3 = −
3∑
i=1

ˆ
DN

fNi (LΦN )idy +O(e−
1
2N

1
2 ) as N →∞.

Thus, for i = 1, 2, 3, by using the Hardy’s inequality for fNi ∈ H1
0 (Ω) which was

also used in [2, 3, 6, 10], we obtain
ˆ
DN

fNi (LΦN )idy ≤ ‖y3(LΦN )i‖L2(DN )‖y−1
3 fNi ‖L2(DN ) (3.12)

≤ C‖y3(LΦN )i‖L2(DN )‖fNi ‖H1(DN )

≤ C‖y3(LΦN )i‖L2(DN )N
− 1

2 +ρ.

By (2.3), we can see that

‖y3(LΦN )i‖L2(DN ) ≤ CN2−m−ρ‖y3P(Ny3)e−Ny3‖L2(DN ) (3.13)

≤ CN−m−1.

By (3.12) and (3.13), we get

II3 = O(N−m+ρ−3/2) as N →∞,

which implies
lim
N→∞

NmII3 = 0.

Finally, we need to show that

lim
N→∞

NmII4 = 0. (3.14)

Notice that for i = 1, 2, 3,

ΦNi −ΨN
i = 0 on Γ1 and ΦNi −ΨN

i = O(e−
1
2N

1
2 ) as N →∞.
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By using the integration by parts and (3.10), we have

II4 = −
3∑
i=1

ˆ
DN

(LfN )i(Φ
N
i −ΨN

i )dy +O(e−
1
2N

1
2 )

=

3∑
i=1

ˆ
DN

(LΦN )i(Φ
N
i −ΨN

i )dy +O(e−
1
2N

1
2 ).

We can use the same arguments for II3 to show (3.14), which finishes the proof
of Theorem 1.1, (2).

4 Non-flat boundary case

In this section we will consider the boundary determination for the non-flat
boundary case. By using the boundary normal coordinates to flatten ∂Ω, we
will show the necessary change we need for the non-flat boundary case based
on the boundary determination argument we gave for the flat boundary case.
Similar argument was given in [12, Section 3] for the isotropic elasticity system.

Given any boundary point x0 ∈ ∂Ω, for all x ∈ Ω near x0 ∈ ∂Ω, let y =
F (x) : R3 → R3 be a C1-diffeomorphism which induces the boundary normal
coordinates y = (y′, y3) such that F (x0) = 0 and ∇F (x0) = I3 (a 3× 3 identity

matrix). Let us define the Jacobian matrix J := ∇F =

(
∂ya
∂xr

)3

a,r=1

and denote

G = JJT = (gai), where JT is the transpose of J and G(x0) = I3. In addition,
near x0 ∈ ∂Ω,

gai(x) =

3∑
r=1

∂xa

∂xr
(x)

∂xi

∂xr
(x)

satisfying
g33 = 1, ga3 = g3a = 0 for a = 1, 2.

Now, we have the following push-forward relations of the elastic tensor Ċ by

C̃ := F∗Ċ = J ĊJT |x=F−1(y), (4.1)

or componentwisely, C̃ = (C̃iqkp)1≤i,q,k,p≤3 with

C̃iqkp(y) =


3∑

j,l=1

Ċijkl(x)
∂yp
∂xl

∂yq
∂xj


∣∣∣∣∣∣
x=F−1(y)

.

It is easy to check that under such localized boundary normal coordinates,
the isotropic elastic equation (1.2) will become(L̃u)i :=

∑3
q,k,p=1

∂

∂yq
(C̃iqkp

∂

∂yp
ũk) = 0 in {y3 > 0}, for i = 1, 2, 3,

ũ = f̃ on {y3 = 0},
(4.2)

where ũ = (F−1)∗u := u ◦ F−1 and f̃ = f ◦ F−1. Similar as in Section 2, we

can find an approximate solution Φ̃N (y) of 4.6 with the localized boundary data
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Φ̃N (y′, 0) = φN (y′) := ηN (y′)a, where ηN (y′)a ∈ C3 was given by (1.7) with
arbitrary a ∈ C3.

As in [12, Section 3], by denoting ζ := (ζ ′, ζ3), we can define

T̃ (y, ζ ′) :=
(
C̃i3k3(y)

)
1≤i,k≤3

,

R̃(y, ζ ′) :=

(
2∑
p=1

C̃ipk3(y)ζj

)
1≤i,k≤3

,

Q̃(y, ζ ′) :=

(
2∑

p,q=1

C̃ipkq(y)ζjζl

)
1≤i,k≤3

.

Likewise Section 2, we need to find a solution of the second order ordinary
differential system with constant matrix variables{

T̃ (0)D2
3U0 +

(
R̃(0) + R̃T (0)

)
D3U0 + Q̃(0)U0 = 0,

V 0|x3=0 = φN (y′).
(4.3)

For that repeat the argument given in Section 2 and need to consider the fol-
lowing eigenvalue problem

det
[
T̃ (0)Σ2 +

(
R̃(0) + R̃T (0)

)
Σ + Q̃(0)

]
= 0, (4.4)

which is similar to 2.20.
By the transformation rule of tensor, we have

(

3∑
p,q=1

C̃iqkpζqζp)
3
i,k=1 = J(

3∑
j,l=1

Ċijklξjξl)
3
i,k=1J

T (4.5)

for any x near x0 ∈ ∂Ω (or for any y near 0 ∈ ∂Ω̃, where Ω̃ = F (Ω)). In addition,
for any x ∈ ∂Ω near x0, we can choose a unit vector ν(x) = (ν1, ν2,ν3) ∈ R3 such
that for any ξ = (ξ1, ξ2, ξ3) ∈ R3 can be represented as ξ(x) = qν(x) + ω(x, ξ)
for some q ∈ R and ν ⊥ ω and we define

Ṫ :=

 3∑
j,l=1

Ċijklνjνl


1≤i,k≤3

,

Ṙ :=

 3∑
j,l=1

Ċijklνjωl


1≤i,k≤3

,

Q̇ :=

 3∑
j,l=1

Ċijklωjωl


1≤i,k≤3

.

By 4.5, we also have the following relations

T̃ = JṪJT , R̃ = JṘJT and Q̃ = JQ̇JT (4.6)

19



in a small neighborhood of x0 ∈ ∂Ω. For solving the eigenvalue problem 4.4,
use the relation 4.6 and J is an invertible Jacobian matrix, then it is equivalent
to solve

det
[
ṪΣ2 +

(
Ṙ+ ṘT

)
Σ + Q̇

]
x=x0

= 0. (4.7)

Since Ċijkl is isotropic, Ṫ , Ṙ and Q̇ will not change the forms if we rotate the
Cartesian coordinates associated to this ξ(x), therefore, for any fixed x, we may
assume ξ(x) = (ξ′, ξ3)(x), ν(x) = (0, 0, 1) and ω(x, ξ) = (ξ′, 0).

In addition, we can construct an approximate solution in terms of this Carte-
sian coordinates as we did in Section 2. Hence, we can give an explicit recon-
struction formulae for the Lamé moduli λ(x), µ(x) and their derivatives from
the localized DN map at any x0 ∈ ∂Ω with Cm+2-smooth boundary. To be
more precise, we will give the reconstruction formulae to identify the Lamé
moduli and their first order derivatives at the boundary for the non-flat bound-
ary case in which the effect coming from the transformation of coordinates
and normal vector can be seen very clearly. The reconstruction formulae are
given as follows: For any a = (a1, a2, a3) ∈ C3, let y = F (x) be the map
given above, then for any Dirichlet boundary data φN = φN (F (x)

∣∣
∂Ω

), where

φN (y′) = ηN (y′) exp(
√
−1Ny′ ·ω′)a, we have the following approximate solution

ΦN (y) = e
√
−1Ny′·ω′e−Ny3

ηN (y′)a +

m
ρ∑

n=1

N−nρvn(Nαy)

 ,

with
ΦN (F (x))|∂Ω = φN

1. When ∂Ω ∈ C1 and C̃ijkl is continuous at x0 ∈ ∂Ω, we have

lim
N→∞

〈
ΛC̃φ

N , φN
〉

=

3∑
i,j=1

Zij(x0)aiaj , (4.8)

where (Zij) is the rank 2 tensor appeared in Theorem 1.1.

2. When ∂Ω ∈ C3 and Ċijkl ∈ C1,p near x0 ∈ ∂Ω, we have

lim
N→∞

N
〈

(ΛĊ − ΛĊ1)φN , φN
〉

=
1

2

3∑
i,q,k,p=1

∂

∂y3

 3∑
j,l=1

Ċijkl(x)
∂yp
∂xl

∂yq
∂xj

∣∣∣∣∣∣
x=F−1(0)

AkpAiq

=
1

4

∂λ

∂y3
(x0)

(
√
−1

2∑
i=1

ωiai − a3

)2

+
1

2

∂µ

∂y3
(x0)

 2∑
i,j=1

(
aiωj + ajωi

2

)2

+ 2

2∑
i=1

(√
−1a3ωi − ai

2

)2

+ a2
3


+

1

2

∑
α+β+γ=1
0≤α,β,γ≤1

3∑
i,j,k,l,p,q=1

((
∂α

∂yα3
Ċijkl

)
∂β

∂yβ3

(
∂yp
∂xl

)
∂γ

∂yγ3

(
∂yq
∂xj

))∣∣∣∣∣
x=x0

AkpAiq,

(4.9)
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where the elastic tensor Ċ1 is given by

Ċ1 = F ∗(C̃1,0) with C̃1,0 = C̃(y′, 0),

for y = (y′, y3) near 0 ∈ ∂F (Ω) and Akp is a constant rank 2 tensor defined by

Akp =

{√
−1ωpak, for k = 1, 2, 3 and p = 1, 2,

−ω3ak, for k = 1, 2, 3 and p = 3.
(4.10)

We remark here that the boundary determination formulae for the Lame mod-
uli and their normal derivatives are given in terms of the leading part of the
equations of system. This is really an advantage of scaling (2.7) we introduced
before.

Since (4.8) easily follows by taking into account on the arguments given
before the previous paragraph of this section and J(x0) = I, we will focus on
(4.9). This formula can be derived by using the integration by parts and the
representation formula of (4.1). By using the same argument given in Section
3, we know that the limit with respect to N as N →∞ of the difference of DN
maps only depends on the highest order term with respect to N , which means
we have the following relation

lim
N→∞

N
〈

(ΛC̃ − ΛC̃1,0)φN , φN
〉

= lim
N→∞

N

ˆ
Ω

(C − Ċ1)∇ΦN : ∇ΨNdx, (4.11)

where ΦN (F (x)), ΨN (F (x)) are approximate solutions of the differential oper-
ators ∇ · (Ċ∇) and ∇ · (Ċ1∇) with the same boundary data ΦN (F (x))|∂Ω =
ΨN (F (x))|∂Ω = φN , respectively.

We will further compute the right hand side of (4.11) to obtain (4.9). By
the change of variable y = F (x) and the chain rule, we have

ˆ
Ω

3∑
i,j,k,l=1

Ċijkl(x)
∂ΦNk
∂xl

∂ΨN
i

∂xj
dx

=

ˆ
F (Ω)

3∑
i,p,k,p=1

3∑
j,l=1

(
Ċijkl(x)

∂yp
∂xl

∂yq
∂xj

)∣∣∣∣
x=F−1(y)

∂ΦNk
∂yp

∂ΨN
i

∂yq
dy

=

ˆ
F (Ω)

3∑
i,p,k,p=1

C̃ipkq(y)
∂ΦNk
∂yp

∂ΨN
i

∂yq
dy, (4.12)

and similarly

ˆ
Ω

3∑
i,j,k,l=1

Ċ1
ijkl(x)

∂ΦNk
∂xl

∂ΨN
i

∂xj
dx =

ˆ
F (Ω)

3∑
i,q,k,p=1

C̃ipkp(y
′, 0)

∂ΦNk
∂yp

∂ΨN
i

∂yq
dy,

(4.13)
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where x̃ is the point such that F (x̃) = (y′, 0). Then it is easy to see

ˆ
F (Ω)

(C̃(y)− C̃1,0(y′, 0))∇yΦN : ∇yΨNdy

=

ˆ
F (Ω)

3∑
i,q,k,p=1

C̃ipkp(y)
∂ΦNk
∂yp

∂ΨN
i

∂yq
dy

−
ˆ
F (Ω)

3∑
i,q,k,p=1

C̃ipkp(y
′, 0)

∂ΦNk
∂yp

∂ΨN
i

∂yq
dy (4.14)

From direct calculation for the approximate solutions, we have

∇yΦNj = N

( √
−1ω′

−1

)
e
√
−1Ny′·ω′e−Ny3ηN (y′)aj +O(N1−ρ) (4.15)

and

∇yΦNj = N

( √
−1ω′

−1

)
e
√
−1Ny′·ω′e−Ny3ηN (y′)aj +O(N1−ρ). (4.16)

Substitute (4.13) and (4.13) into (4.14), by using similar arguments as in Section
3, then we have

ˆ
Ω

(Ċ(x)− Ċ1(x))∇yΦN : ∇yΨNdx

=

ˆ
F (Ω)

(C̃(y)− C̃(y′, 0))∇yΦN : ∇yΨNdy

=

3∑
i,q,k,p=1

ˆ
F (Ω)

(C̃iqkp − C̃iqkp(y′, 0))
∂ΦNk
∂yp

∂ΨN
i

∂yq
dy. (4.17)

Now, we substitute (4.15) and (4.16) into (4.17), and use (3.5) again, then we
have

lim
N→∞

ˆ
Ω

(Ċ(x)− Ċ1(x))∇yΦN : ∇yΨNdx

=
1

2

3∑
i,q,k,p=1

(
∂

∂y3
C̃iqkp

)
(0)AkpAiq. (4.18)

Note that the quantity Akp is obtained from the representation of the approxi-
mate solution and straightforward calculation.

It remains to give the explicit formula for (4.18) in terms of the elastic tensor
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Ċ. By the straightforward calculation for (4.18), it is not hard to see that

1

2

3∑
i,q,k,p=1

(
∂

∂y3
C̃iqkp

)
(0)AkpAiq

=
1

2

3∑
i,q,k,p=1

∂

∂y3

 3∑
j,l=1

Ċijkl(x)
∂yp
∂xl

∂yq
∂xj

∣∣∣∣∣∣
x=F−1(0)

AkpAiq

=
1

4

∂λ

∂y3
(x0)

(
√
−1

2∑
i=1

ωiai − a3

)2

+
1

2

∂µ

∂y3
(x0)

 2∑
i,j=1

(
aiωj + ajωi

2

)2

+ 2

2∑
i=1

(√
−1a3ωi − ai

2

)2

+ a2
3


+

1

2

∑
α+β+γ=1
0≤α,β,γ≤1

3∑
i,j,k,l,p,q=1

((
∂α

∂yα3
Ċijkl

)
∂β

∂yβ3

(
∂yp
∂xl

)
∂γ

∂yγ3

(
∂yq
∂xj

))∣∣∣∣∣
x=x0

AkpAiq

which proves the reconstruction formula to identify the first order derivatives of
the Lamé moduli at the boundary for the non-flat boundary case.
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