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Abstract. We consider field localizing and concentration of electromagnetic waves governed by the
time-harmonic anisotropic Maxwell system in a bounded domain. It is shown that there always exist
certain boundary inputs which can generate electromagnetic fields with the energy localized/concentrated
in a given subdomain while nearly vanishing in another given subdomain. The theoretical results may
have potential applications in telecommunication, inductive charging and medical therapy. We also
derive a related Runge approximation result for the time-harmonic anisotropic Maxwell system with
partial boundary data.
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1. Introduction

1.1. Background and motivation. The electromagnetic (EM) phenomena are ubiquitous and they
lie at the heart of many scientific and technological applications including radar and sonar, geophys-
ical exploration, medical imaging, information processing and communication. In this paper, we are
mainly concerned with the mathematical study of field localizing and concentration of electromag-
netic waves governed by the time-harmonic Maxwell system in a bounded anisotropic medium. More
specifically, we show that there always exist certain boundary inputs which can generate the desired
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LOCALIZING ELECTROMAGNETIC FIELDS 2

electromagnetic fields that are localized/concentrated in a given subdomain while nearly vanishing in
another given subdomain.

The localizing and concentration of electromagnetic fields can have many potential applications. In
telecommunication [44], one common means of transmitting information between communication par-
ticipants is via the electromagnetic radiation. In a certain practical scenario, say the secure commu-
nication, one may intend the information to be transmitted mainly to a partner located at a certain
region, while avoid the transmission to another region. Clearly, if the information is encoded into the
electromagnetic waves that are localized and concentrated in the region where the partner is located
while are nearly vanishing in the undesired region, then one can achieve the expected telecommunica-
tion effect. In the setup of our proposed study, one can easily obtain the aforementioned communica-
tion effect, in particular if the communication participants transmit and receive information on some
surface patches.

Concentrating electromagnetic fields can also be useful in inductive charging, also known as wireless
charging or cordless charging [43], which is an emerging technology that can have significant im-
pact on the real life. It uses electromagnetic fields to transfer energy between two objects through
electromagnetic induction. Clearly, the energy transfer would be more efficient and effective if the
corresponding electromagnetic fields are concentrated around the charging station. The localizing of
electromagnetic fields can also have potential application in electromagnetic therapy. Though it is
mainly considered to be pseudoscientific with no affirmative evidence, the electromagnetic therapy
has been widely practiced which claims to treat disease by applying electromagnetic radiation to the
body. If the electromagnetic therapy shall be proven to be effective, then through the use of certain
purposely designed sources, one can generate electromagnetic fields that are concentrated around the
diseased area.

The above conceptual and potential applications make the study of field concentration and localizing
much appealing. Nevertheless, it is emphasized that in the current article, we are mainly concerned
with the mathematical and theoretical study. We achieve some substantial progress on this interesting
topic, though the corresponding study is by no means complete. It is also interesting to note that
the localizing of resonant electromagnetic fields has been used to produce invisibility cloaking and has
received significant attention in the literature in recent years [2, 3, 6, 31, 34, 37]. The corresponding
study is mainly based on the use of plasmonic materials to induce the so-called anomalous localized
resonance.

Our mathematical argument for proving the existence of the localized and concentrated electromag-
netic fields is mainly based on combining the unique continuation property for the anisotropic Maxwell
system with a functional analytic duality argument developed in [12]. By a similar argument, we also
obtain a related Runge approximation property.

The use of blow up solutions has a long tradition in the study of inverse boundary value prob-
lems, cf. [1, 25, 27, 28] for early seminal works on this topic. Moreover, the combination of local-
ized fields and monotonicity relations have led to the development of monotonicity-based methods
for obstacle/inclusion detection, cf. [22, 39] for the origins and mathematical justification of this
approach, [5, 7, 9–11, 16–19, 21, 23, 33, 38, 40, 42, 45] for further recent contributions, and the recent
works [13, 20] for the Helmholtz equation. Theoretical uniqueness results for inverse coefficient prob-
lems have also been obtained by this approach in [4, 14,15,21,24].

In this work, we show the existence of localized electromagnetic fields for the more challenging case of
time-harmonic anisotropic Maxwell system with partial data. We also derive a Runge approximation
result, which shows that every solution in a subdomain can be approximated sby a solution on the
whole domain. In that context let us note the famous equivalence theorem from Peter Lax [29]: the
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weak unique continuation property is equivalent to the Runge approximation property for the second
order elliptic equation. In our study, we affirmatively verify that this property still holds for the
anisotropic Maxwell system.

The rest of this section is devoted to the mathematical description of the setup of our study and the
statement of the main result.

1.2. Mathematical setup and statement of the main result. Let Ω be a simply connected
domain in R3 with a Lipschitz connected boundary ∂Ω. Let ε = (εij)1≤i,j≤3 and µ = (µij)1≤i,j≤3 be
two 3× 3 real matrix-valued functions on Ω satisfying

• Strong ellipticity: There exist constants µ0 > 0 and ε0 > 0 verifying{
µ0|ξ|2 ≤

∑3
i,j=1 µij(x)ξiξj ≤ µ−1

0 |ξ|2,
ε0|ξ|2 ≤

∑3
i,j=1 εij(x)ξiξj ≤ ε−1

0 |ξ|2,
for any x ∈ Ω and ξ ∈ R3. (1.1)

• Smoothness: ε and µ are Lipschitz continuous.
• Symmetry: ε and µ are symmetric matrices, that is, εij = εji and µij = µji for all i, j = 1, 2, 3.

The functions ε and µ, respectively, signify the electric permittivity and magnetic permeability of
the medium in Ω. Consider the time-harmonic electromagnetic wave propagation in Ω. With the
e−ikt time-harmonic convention assumed, we let E(x) and H(x), respectively, denote the electric
and magnetic fields. Here, k ∈ R+ signifies a circular frequency. Then the electromagnetic wave
propagation is governed by the following Maxwell system,

∇× E − ikµH = 0 in Ω,

∇×H + ikεE = 0 in Ω,

ν × E =

{
f on Γ

0 otherwise
on ∂Ω,

(1.2)

where Γ is an arbitrary nonempty relatively open subset of ∂Ω and ν is the unit outer normal vector
on ∂Ω. It is assumed that k > 0 is not an eigenvalue (or non-resonance, see Section 2) for (1.2) and
f ∈ C∞c (Γ) throughout this paper.

The main result concerning the localized electromagnetic fields for the anisotropic Maxwell system
(1.2) is contained in the following theorem.

Theorem 1.1. Let Ω ⊂ R3 be a bounded Lipschitz domain and Γ ⊆ ∂Ω be a relatively open subset of the
boundary. Let ε, µ ∈ L∞(Ω,R3×3) be real-valued, piecewise Lipschitz continuous functions satisfying
(1.1) and k > 0 be a non-resonant frequency. Let D b Ω be a closed set with a connected complement
Ω \ D. For every open set M ⊆ Ω with M 6⊆ D (see Figure 1 for the schematic illustration), there

exists a sequence
{
f (`)
}
`∈N ⊂ C

∞
c (Γ) such that the electromagnetic fields fulfill∫

M

(
|E(`)|2 + |H(`)|2

)
dx→∞ and

∫
D

(
|E(`)|2 + |H(`)|2

)
dx→ 0 as `→∞,

where, for ` ∈ N, (E(`), H(`)) ∈ H(curl,Ω)×H(curl,Ω) is a solution of{
∇× E(`) − ikµH(`) = 0 in Ω,

∇×H(`) + ikεE(`) = 0 in Ω,
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Figure 1. Schematic illustration of the field localizing and concentration.

with the boundary data

ν × E(`)|∂Ω =

{
f (`) on Γ,

0 otherwise.

Remark 1.1. We call the sequence {(E(`), H(`))}`∈N in Theorem 1.1 to be the localized electromagnetic
fields.

The rest of the paper is organized as follows. In Section 2, we present results on the well-posedness
of the time-harmonic anisotropic Maxwell system. We also provide the unique continuation property
(UCP) for the anisotropic Maxwell system, whenever the coefficients µ and ε are piecewise Lips-
chitz continuous matrix-valued functions. In Section 3, we demonstrate that there exist localized
electromagnetic fields, which proves Theorem 1.1. The method relies on certain functional analysis
techniques. In Section 4 we prove a related Runge approximation property for the anisotropic Maxwell
system with partial boundary data.

2. The anisotropic Maxwell system in a bounded domain

In this section, we summarize some useful results of the Maxwell system, including the unique solv-
ability and a unique continuation property. Throughout this section we let Ω ⊂ R3 be a bounded
Lipschitz domain.

2.1. Spaces and traces. We introduce the spaces

H(div,Ω) :=
{
E ∈ L2(Ω)3; ∇ · E ∈ L2(Ω)

}
,

H(curl,Ω) :=
{
E ∈ L2(Ω)3; ∇× E ∈ L2(Ω)3

}
,

and the tangential trace operators

γt : H(curl,Ω)→ H−1/2(div∂Ω, ∂Ω), E 7→ γtE := ν × E|∂Ω,

γT : H(curl,Ω)→ H−1/2(curl∂Ω, ∂Ω), E 7→ γTE := ν × (E|∂Ω × ν),

where and also in what follows all functions are complex-valued unless indicated otherwise. γt and
γT are surjective bounded linear operators with bounded right inverses γ−1

t and and γ−1
T (cf. [8, 41]
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). The space H−1/2(div∂Ω, ∂Ω) can be identified with the dual of H−1/2(curl∂Ω, ∂Ω), and for all
E,F ∈ H(curl,Ω) we have the integration by parts formula∫

Ω
(∇× E) · F dx−

∫
Ω
E · (∇× F ) dx =

∫
∂Ω

(ν × E|∂Ω) · (ν × (F |∂Ω × ν)) dS (2.1)

(cf. [8,35]), where the dual pairing on H−1/2(div∂Ω, ∂Ω)×H−1/2(curl∂Ω, ∂Ω) is written as an integral
for notational convenience.

The subspace of H(curl,Ω)-functions with vanishing tangential traces is denoted by

H0(curl,Ω) := {E ∈ H(curl,Ω) : ν × E|∂Ω = 0}.

H0(curl,Ω) is a closed subspace of H(curl,Ω) and C∞0 (Ω)3 is dense in H0(curl,Ω) ( cf. [35]).

To treat partial boundary data on a relatively open subset Γ ⊆ ∂Ω , we also introduce the space of
functions on Γ that can be extended by zero to the trace of a H(curl,Ω)-function

H(Γ) := closure of C∞c (Γ) in H−1/2(div∂Ω, ∂Ω). (2.2)

For all E ∈ H(curl,Ω), we identify the restricted trace ν × (E|Γ × ν) with the quotient space element

ν × (E × ν)|∂Ω +H(Γ)⊥ ∈ H−1/2(curl∂Ω, ∂Ω)/H(Γ)⊥ = H(Γ)∗,

and thus define the restricted trace operator

γ
(Γ)
T : H(curl,Ω)→ H(Γ)∗, E 7→ γ

(Γ)
T E := ν × (E|Γ × ν).

2.2. Well-posedness of the anisotropic Maxwell system. Given anisotropic coefficients ε, µ ∈
L∞(Ω,R3×3) satisfying (1.1), k > 0, J,K ∈ L2(Ω)3 and f ∈ H−1/2(div∂Ω, ∂Ω), we consider the
Maxwell system for (E,H) ∈ H(curl,Ω)×H(curl,Ω) such that

∇× E − ikµH = K in Ω, (2.3)

∇×H + ikεE = J in Ω, (2.4)

ν × E|∂Ω = f. (2.5)

For the variational formulation of (2.3)–(2.4) we introduce the sesquilinear form

B : H(curl,Ω)×H(curl,Ω)→ C,

B(E,F ) :=

∫
Ω

(
µ−1∇× E

)
·
(
∇× F

)
dx−

∫
Ω
k2εE · F dx.

Then we have the following variational formulation and well-posedness result.

Theorem 2.1. (a) (E,H) ∈ H(curl,Ω) ×H(curl,Ω) solve (2.3)–(2.4) if and only if E ∈ H(curl,Ω)
solves

B(E,F ) =

∫
Ω
ikJ · F dx+

∫
Ω

(
µ−1K

)
·
(
∇× F

)
dx for all F ∈ H0(curl,Ω),

and H = − i
k
µ−1(∇× E −K).

(b) The set of k > 0 for which the homogeneous system (2.3)–(2.5) with J = 0, K = 0, and f = 0,
possesses a non-trivial solution is discrete. We call these k resonance frequencies.

(c) If k is not a resonance frequency, then there exists a unique solution (E,H) ∈ H(curl; Ω) ×
H(curl; Ω) of (2.3)–(2.5), and the solution depends linearly and continuously on J,K ∈ L2(Ω)3

and f ∈ H−1/2(div∂Ω, ∂Ω).
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The proof of Theorem 2.1 follows from a standard argument. Since we couldn’t find a convenient
reference for precisely this setting, we supply a proof for the sake of completeness. We first derive the
following lemma.

Lemma 2.1. (E,H) ∈ H(curl,Ω)×H(curl,Ω) solves (2.3)–(2.4) if and only if E ∈ H(curl,Ω) solves

B(E,F ) =

∫
Ω
ikJ · F dx+

∫
Ω

(
µ−1K

)
·
(
∇× F

)
dx for all F ∈ H0(curl,Ω), (2.6)

and H = − i
k
µ−1(∇× E −K).

Proof. Let (E,H) ∈ H(curl,Ω)×H(curl,Ω) solve (2.3)–(2.4). Then (2.3) implies that

E ∈ H(curl,Ω) and H = − i
k
µ−1(∇× E −K),

and combining (2.3) and (2.4) we obtain

∇×
(
µ−1 (∇× E −K)

)
− k2εE = ikJ, (2.7)

which also shows that µ−1 (∇× E −K) ∈ H(curl; Ω). Using (2.7) and the integration by parts formula
(2.1), it follows that for all F ∈ H0(curl; Ω)∫

Ω
ikJ · F dx =

∫
Ω

(
∇×

(
1

µ
(∇× E −K)

))
· F dx−

∫
Ω
k2εE · F dx

=

∫
Ω

(
µ−1 (∇× E −K)

)
·
(
∇× F

)
dx−

∫
Ω
k2εE · F dx,

and thus (2.6) holds.

On the other hand, if E ∈ H(curl,Ω) fulfills (2.6) for all F ∈ H0(curl,Ω), then this also holds for all
F ∈ C∞0 (Ω)3 which (by the definition of distributional derivatives) shows that

∇×
(
µ−1∇× E

)
− k2εE = ikJ +∇×

(
µ−1K

)
,

and thus

1

ik
∇×

(
µ−1(∇× E −K)

)
+ ikεE = J.

Defining H :=
1

ik
µ−1(∇×E −K) it follows that H ∈ H(curl; Ω) and that E and H solve (2.3)–(2.4).

The proof is complete. �

If H(curl,Ω) was compactly embedded into L2(Ω), then Theorem 2.1 would immediately follow from
Lemma 2.1 by a Fredholm argument. However this is not the case, and we need to introduce an
additional variational formulation on the space

H := {E ∈ L2(Ω)3 : ∇× E ∈ L2(Ω)3, ∇ · (εE) = 0, ν × E|∂Ω = 0},

which is compactly embedded into L2(Ω)3 (see e.g. [26, Theorem 5.32]). We now first consider the
Maxwell system with homogeneous boundary data and divergence free electric currents, so that the
solution lies in H. After that we shall show that the general Maxwell system can be transformed (or
gauged) to fulfill this condition.
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Lemma 2.2. For f = 0 and ∇ · J = 0, (E,H) ∈ H(curl,Ω) × H(curl,Ω) solves (2.3)–(2.5) if and
only if E ∈ H solves

B(E,F ) =

∫
Ω
ikJ · F dx+

∫
Ω

(
µ−1K

)
·
(
∇× F

)
dx for all F ∈ H, (2.8)

and H = − i
k
µ−1(∇× E −K).

Proof. If (E,H) ∈ H(curl,Ω)×H(curl,Ω) fulfill (2.3)–(2.5), then clearly E ∈ H and Lemma 2.1 shows
that (2.8) is fulfilled for all F ∈ H ⊂ H0(curl,Ω).

To prove the other direction, let E ∈ H fulfill (2.8) for all F ∈ H. Given Φ ∈ H0(curl,Ω), there exists
a solution ϕ ∈ H1

0 (Ω) of
∇ · (ε∇ϕ) = −∇ · (εΦ)

and thus F := Φ +∇ϕ ∈ H. Using (2.8) it follows that for

B(E,Φ) = B(E,F )− B(E,∇ϕ)

=

∫
Ω
ikJ · F dx+

∫
Ω

(
µ−1K

)
·
(
∇× F

)
dx+

∫
Ω
k2εE · ∇ϕdx

=

∫
Ω
ikJ · Φ dx+

∫
Ω

(
µ−1K

)
·
(
∇× Φ

)
dx,

where we used ∇× (∇ϕ) = 0, ∇ · J = 0, ∇ · (εE) = 0 and ϕ|∂Ω = 0.

The proof is complete. �

We recall that we call k > 0 a resonant frequency, if the homogeneous Maxwell system (2.3)–(2.5)
with J = 0, K = 0 and f = 0 admits a non-trivial solution.

Lemma 2.3. If k > 0 is not a resonant frequency, then for every J,K ∈ L2(Ω)3 with ∇ · J = 0 and
f = 0, there exists a unique solution (E,H) ∈ H(curl,Ω)×H(curl,Ω) of (2.3)–(2.5), and the solution
depends continuously on J,K ∈ L2(Ω)3. Moreover, the set of resonant frequencies is discrete.

Proof. Lemma 2.2 yields that (E,H) ∈ H(curl,Ω)×H(curl,Ω) solves (2.3)–(2.5) if and only if

(A+K(k))E = l,

where A,K(k) : H → H∗ are defined by

〈AE,F 〉 :=

∫
Ω

(
µ−1∇× E

)
· (∇× F ) dx+

∫
Ω
E · F dx, for all E,F ∈ H,

〈K(k)E,F 〉 := −
∫

Ω
(1 + k2ε)E · F dx, for all E,F ∈ H,

and l ∈ H∗ is defined by

〈l, F 〉 =

∫
Ω
ikJ · F dx+

∫
Ω

(
µ−1K

)
· (∇× F ) dx, for all F ∈ H,

where H∗ is the dual space of H.

Then A is a coercive linear bounded operator and thus continuously invertible due to the Lax-Milgram
theorem. For every k ∈ C, K(k) : H → H∗ is a linear compact operator due to the compact imbedding
of H into L2(Ω)3. l ∈ H∗ depends linearly and continously on J,K ∈ L2(Ω)3. It thus follows from the
Fredholm alternative, that A + K(k) is continuously invertible if it is injective, i.e., if k > 0 is not a
resonant frequency.
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Moreover, K(k) depends analytically on k, and for k̂ := i, A+K(k̂) is coercive and thus continuously
invertible. Hence, it follows from the analytic Fredholm theorem that the set of resonances is discrete.

The proof is complete. �

Next we extend this result to non-homogeneous boundary data f and non-divergence-free currents J
and prove Theorem 2.1.

Proof of Theorem 2.1. (a) follows from Lemma 2.1. (b) and the uniqueness of the solution of the
Maxwell system is proven in Lemma 2.3. To prove the existence of the solution, we let J,K ∈ L2(Ω)3

and f ∈ H−1/2(div∂Ω, ∂Ω). Define Ef = γ−1
t f ∈ H(curl,Ω), i.e., ν × Ef |∂Ω = f and Ef depends

continuously and linearly on f . Moreover, we let ψ ∈ H1
0 (Ω) solve

∇ · (ikε∇ψ) = ∇ · (J − ikεEf ),

which also depends continuously and linearly on J and Ef .

It follows from Lemma 2.3 that there exists a solution (E0, H) ∈ H(curl,Ω)×H(curl,Ω) of the gauged
system 

∇× E0 − ikµH = K −∇× Ef in Ω,

∇×H + ikεE0 = J − ikεEf − ikε∇ψ in Ω,

ν × E0|∂Ω = 0,

and E0 and H depends linearly and continuously on K −∇×Ef ∈ L2(Ω)3 and J − ikεEf − ikε∇ψ ∈
L2(Ω)3. Hence, E := E0 +Ef +∇ψ and H solve (2.3)–(2.5) and depend linearly and continuously on

J,K ∈ L2(Ω)3 and f ∈ H−1/2(div∂Ω, ∂Ω).

The proof is complete.

�

2.3. Unique continuation. The unique continuation property (UCP) is an important property to
study the localized fields for differential equations. The UCP for the anisotropic Maxwell system was
studied by [30, 36], which is of critical importance for our subsequent construction of the localized
electromagnetic fields.

Definition 2.1. We say that (ε, µ) satisfies the UCP in Ω if any solution (E,H) ∈ H(curl; Ω) ×
H(curl; Ω) to the Maxwell system {

∇× E − ikµH = 0 in Ω,

∇×H + ikεE = 0 in Ω,
(2.9)

satisfy the property that if (E,H) vanishes in a nonempty open set D in Ω, then it must be identically
vanishing in the whole domain Ω.

The UCP of the Maxwell system was proved by Leis [30] when the parameters ε, µ are C2 scalar func-
tions. When ε, µ are Lipschitz continuous anisotropic parameters, the UCP was proved by Nguyen-
Wang [36]. In [32], Liu, Rondi and Xiao have shown that the UCP holds for piecewise Lipschitz
continuous matrix-valued functions ε and µ under some conditions, which we shall need for the sub-
sequent study.

Proposition 2.1 (Unique continuation property, Proposition 2.13 in [32]). Given an open set Ω̃ in

R3, let ε, µ ∈ L∞(Ω̃,R3×3) be matrix-valued functions in Ω satisfying (1.1) in Ω̃. Suppose that
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(1) There is a family {Ωi} of pairwise disjoint domains with Ωi ⊂ Ω̃ such that

Ω̃ ⊂ ∪iΩi.

(2) The set Σ0 := Ω̃ ∩ (∪i∂Ωi) has Lebesuge measure zero (i.e., |Σ0| = 0).
(3) The point x ∈ Σ0 is called to be a partition point is there exists δ > 0 such that

|Bδ(x) \ (Ωi ∪ Ωj)| = 0 for all i 6= j,

with Bδ(x) ∩ Ωi and Bδ(x) ∩ Ωj are non-empty sets. Consider the set

Pc := {x ∈ Σ0 : x is not a partition point},

then we assume that Ω̃ \ Pc is connected.
(4) The functions (ε, µ) = (εi, µi) in Ωi, where (εi, µi) are locally Lipschitz matrix-valued functions

in Ω̃.

Then the UCP holds.

We have the following theorem.

Theorem 2.2. Let Ω be a bounded Lipschitz domain and F ⊂ Ω be a closed set in R3 such that Ω\F
is connected to a relatively open boundary part Γ ⊆ ∂Ω. Let (E,H) ∈ H(curl; Ω)×H(curl; Ω) solve{

∇× E − ikµH = 0 in Ω\F ,
∇×H + ikεE = 0 in Ω\F .

If ν × E|Γ = ν ×H|Γ = 0 on Γ, then (E,H) = (0, 0) in Ω\F .

Proof. Let O be a nonempty open set in R3 such that O ∩ ∂Ω = Γ and F ⊂ O. In the open set

Ω̃ := Ω ∪ O, we define

ε̂ :=

{
ε in Ω

1 in O\Ω
and µ̂ =

{
µ in Ω

1 in O\Ω
.

It can be seen that the parameters ε̂ and µ̂ satisfy the conditions (1)-(4) in Proposition 2.1 in the

open set Ω̃ = Ω ∪ O. Since ν × E = ν ×H = 0 on Γ, we can extend (E,H) by (0, 0) and define the
extension functions

Ê :=

{
E in Ω

0 in O\Ω
and Ĥ :=

{
H in Ω

0 in O\Ω
.

First, we prove that (Ê, Ĥ) ∈ H(curl; Ω ∪ O)×H(curl; Ω ∪ O). For any φ ∈ C∞c (Ω ∪ O), we have∫
Ω∪O

Ê · (∇× φ)dx =

∫
Ω
E · (∇× φ)dx

=

∫
Ω

(∇× E) · φdx+

∫
∂Ω
E · (ν × φ)dS

=

∫
Ω∪O

((∇× E)χΩ) · φdx,

where we have used E · (ν × φ) = −φ · (ν × E) = 0 on Γ and φ = 0 on ∂Ω\Γ. This shows that

Ê ∈ H(curl; Ω ∪ O) and that ∇× Ê is the zero extension of ∇× E. The same holds for Ĥ, and thus

it also follows that (Ê, Ĥ) is a solution of{
∇× Ê − ikµ̂Ĥ = 0 in (Ω ∪ O) \F ,
∇× Ĥ + ikε̂Ê = 0 in (Ω ∪ O) \F .
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Notice that ε̂ and µ̂ are piecewise Lipschitz continuous functions fulfilling the ellipticity condition (1.1)

and the conditions in Proposition 2.1. Recalling that Ê = Ĥ = 0 in O\Ω (a nonempty open set), and

by using Proposition 2.1, the UCP gives Ê ≡ Ĥ ≡ 0 in (Ω ∪ O) \F .

The proof is complete. �

3. Localized electromagnetic fields

We are now in a position to present the main result on localizing and concentrating electromagnetic
fields. We show that there exists boundary data (supported on an arbitrarily small boundary part)
which can generate an electromagnetic field with an arbitrarily high energy on one part of the con-
sidered domain and an arbitrarily small energy on another part. This extends the related results
in [12] for the conductivity equation and [20] for the Helmholtz equation to the more practical and
challenging Maxwell system. In this section, we prove the existence of localized fields by using the
functional analysis techniques from [12]. Recall our main result as follows.

Theorem 3.1. Let Ω ⊂ R3 be a bounded Lipschitz domain and Γ ⊆ ∂Ω be a relatively open piece of the
boundary. Let ε, µ ∈ L∞(Ω,R3×3) be real-valued, piecewise Lipschitz continuous functions satisfying
(1.1) and k ∈ R+ be a non-resonant frequency. Let D b Ω be a closed set with a connected complement
Ω \ D. For every open set M ⊆ Ω with M 6⊆ D (see Figure 1 for the schematic illustration), there

exists a sequence
{
f (`)
}
`∈N ⊂ C

∞
c (Γ) such that the electromagnetic fields fulfill∫

M

(
|E(`)|2 + |H(`)|2

)
dx→∞ and

∫
D

(
|E(`)|2 + |H(`)|2

)
dx→ 0 as `→∞, (3.1)

where, for ` ∈ N, (E(`), H(`)) ∈ H(curl,Ω)×H(curl,Ω) is a solution of

∇× E(`) − ikµH(`) = 0 in Ω, (3.2)

∇×H(`) + ikεE(`) = 0 in Ω, (3.3)

with the boundary data

ν × E(`)|∂Ω =

{
f (`) on Γ,

0 otherwise.
(3.4)

Proof of Theorem 3.1. We first note that it suffices to prove the theorem for an open subset of M .
Hence, without loss of generality, we can assume that M b Ω is open, M ∩D = ∅ and that Ω\(M ∪D)
is connected. We follow the localized potentials strategy in [12, 20, 21] and first describe the energy
terms in Theorem 3.1 as operator evaluations. Then we show that the ranges of the adjoints of these
operators have trivial intersection. A functional analytic relation between the norm of an operator
evaluation and the range of its adjoint then yields that the operator evaluations cannot be bounded
by each other, which then shows that we can drive one energy term in theorem 3.1 to infinity and the
other one to zero.

For a measurable subset O ⊆ Ω, we define

LO : H(Γ)→ L2(O)3 × L2(O)3 by f 7→ (E|O, H|O),

where H(Γ) is defined in (2.2), and (E,H) ∈ L2(Ω)3 × L2(Ω)3 solves (3.2)–(3.3) with the boundary
data ν × E|∂Ω = f . Now we characterize the adjoint of this operator.
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Lemma 3.1. The adjoint of LO is given by

L∗O : L2(O)3 × L2(O)3 → H(Γ)∗ by (J,K)→ −ν × (H̃ × ν)|Γ,

where (Ẽ, F̃ ) ∈ H(curl,Ω)×H(curl,Ω) solves the (adjoint) Maxwell system (cf. Theorem 2.1)
∇× Ẽ + ikµH̃ = KχO in Ω,

∇× H̃ − ikεẼ = JχO in Ω,

ν × Ẽ|∂Ω = 0,

and KχO and JχO denote the zero extensions of K and J to Ω, respectively.

Proof. Similar to Section 2.1, we write the dual pairing on H(Γ)∗ ×H(Γ) as an integral for the sake
of notational convenience. With this notation we have that∫

Γ
f · L∗O(J,K) ds

=

∫
O

(J,K) · (E|O, H|O) dx =

∫
Ω
JχO · E dx+

∫
Ω
KχO ·H dx

=

∫
Ω
JχO · E dx− 1

ik

∫
Ω
KχO ·

(
µ−1∇× E

)
dx

=

∫
Ω

(
∇× H̃ − ikεẼ

)
· E dx− 1

ik

∫
Ω

(
∇× Ẽ + ikµH̃

)
·
(
µ−1∇× E

)
dx

=

∫
Ω

(
∇× H̃

)
· E dx−

∫
Ω
H̃ ·

(
∇× E

)
dx

− 1

ik

(∫
Ω

(
µ−1∇× E

)
·
(
∇× Ẽ

)
dx−

∫
Ω
k2εE · Ẽ dx

)
= −

∫
∂Ω

(
ν × E|∂Ω

)
·
(
ν × (H̃|∂Ω × ν)

)
dS = −

∫
Γ
f ·
(
ν × (H̃|Γ × ν)

)
dS,

where we make use of the fact that ε and µ are real-valued and symmetric. We also utilized the

integration by parts formula (2.1) and that Ẽ ∈ H0(curl,Ω) implies that∫
Ω

(
µ−1∇× E

)
·
(
∇× Ẽ

)
dx−

∫
Ω
k2εE · Ẽ dx = 0

by Theorem 2.1 (a). �

Next we show the following property for the ranges of the adjoint operators L∗M and L∗D.

Lemma 3.2. LM and L∗D are injective, the ranges R(L∗M ) and R(L∗D) are both dense in H(Γ)∗, and

R(L∗M ) ∩R(L∗D) = {0}. (3.5)

Proof. The proof follows from the UCP for the Maxwell system. By Proposition 2.1, one readily sees
that LM and LD are injective, and therefore R(L∗M ) and R(L∗D) both are dense in H(Γ)∗.

To prove (3.5), let g ∈ R(L∗M )∩R(L∗D), then there exist JM ,KM ∈ L2(M) and JD,KD ∈ L2(D) such
that the solutions (EM , HM ), (ED, HD) ∈ H(curl,Ω)×H(curl,Ω) of

∇× EM + ikµHM = KMχM in Ω

∇×HM − ikεEM = JMχM in Ω

ν × EM |∂Ω = 0 on ∂Ω

and


∇× ED + ikµHD = KDχD in Ω

∇×HD − ikεED = JDχD in Ω

ν × ED|∂Ω = 0 on ∂Ω
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fulfill
ν × (HM × ν)|Γ = g = ν × (HD × ν)|Γ.

Since Ω \ (M ∪D) is connected, we obtain by using Theorem 2.2 that

EM = ED in Ω \ (M ∪D).

Hence, we can define

E :=


ED in M

EM in D

ED = EM in Ω \ (M ∪D)

and H :=


HD in M

HM in D

HD = HM in Ω \ (M ∪D)

.

As in the proof of UCP, Theorem 2.2, it is easy to see that (E,H) ∈ H(curl,Ω) × H(curl,Ω) is a
solution of 

∇× E + ikµH = 0 in Ω,

∇×H− ikεE = 0 in Ω,

ν × E|∂Ω = 0 on ∂Ω.

Since k is non-resonant, it follows that (E,H) = (0, 0), and hence g = 0. This completes the proof. �

Now we can use the following tool from functional analysis.

Lemma 3.3. Let X, Y1 and Y2 be Hilbert spaces, and A1 : X → Y1 and A2 : X → Y2 be linear
bounded operators. Then

∃C > 0 : ‖A1x‖ ≤ C‖A2x‖ ∀x ∈ X if and only if R(A∗1) ⊆ R(A∗2).

Proof. This is proven for reflexive Banach spaces in [12, Lemma 2.5]. �

Proof of Theorem 1.1. From Lemma 3.2 it follows that R(L∗M ) 6⊆ R(L∗D). Using Lemma 3.3 this
shows that

6 ∃C > 0 : ‖LMf‖ ≤ C‖LDf‖ for all f ∈ H(Γ),

and by continuity of LM and LD and density of C∞c (Γ) ⊂ H(Γ) this is equivalent to

6 ∃C > 0 : ‖LMf‖ ≤ C‖LDf‖ for all f ∈ C∞c (Γ). (3.6)

Using (3.6) with C := `2 for all ` ∈ N we thus obtain a sequence
{
f̃ (`)
}
`∈N
⊂ C∞c (Γ) with

‖LM f̃ (`)‖ > `2‖LDf̃ (`)‖ for all ` ∈ N.

By injectivity LM f̃ (`) 6= 0 implies f̃ (`) 6= 0 and LDf̃ (`) 6= 0, so that we can define

f (`) :=
f̃ (`)

`‖LDf̃ (`)‖
∈ C∞c (Γ)

and it follows that ∫
M

(
|E(`)|2 + |H(`)|2

)
dx = ‖LMf (`)‖2 > `2 →∞,∫

D

(
|E(`)|2 + |H(`)|2

)
dx = ‖LDf (`)‖2 =

1

`2
→ 0.

This completes the proof of Theorem 1.1. �

Remark 3.1. (a) A constructive version of the existence proof for the localized fields can be obtained
as in [12, Lemma 2.8].
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(b) With the same arguments as in [20, Section 4.1] one can also show that for all spaces W ⊆ H(Γ)

with finite codimensions, one can find a sequence
{
f (`)
}
`∈N ⊂ W such that the corresponding

electromagnetic fields fulfill (3.1). This might be useful for developing monotonicity-based recon-
struction methods as in [20].

4. Runge approximation property for the partial data Maxwell system

In this section we derive an extension of the localization result in Theorem 1.1 and establish a Runge
approximation property for the partial data Maxwell system, which is of mathematical interest for
its own sake. We show that every solution of the Maxwell system on a subset of Ω with a Lipschitz
boundary and a connected complement can be approximated arbitrarily well by a sequence of solutions
on the whole domain Ω with partial boundary data. Since we can choose a solution that is zero on a
part of Ω and non-zero on another part of Ω, this readily implies a-fortiori the localization result in
Theorem 1.1. We also refer to [20] for the connection between Runge approximation properties and
localized solutions.

Theorem 4.1. Let Ω ⊂ R3 be a bounded Lipschitz domain and Γ ⊆ ∂Ω be a relatively open piece of the
boundary. Let ε, µ ∈ L∞(Ω,R3×3) be real-valued, piecewise Lipschitz continuous functions satisfying
(1.1) and k ∈ R+ be a non-resonant frequency.

Let O b Ω be an open set with Lipschitz boundary and connected complement Ω\O. For every solution
(e, h) ∈ H(curl, O)×H(curl, O) of

∇× e− ikµh = 0 in O, (4.1)

∇× h+ ikεe = 0 in O, (4.2)

there exists a sequence
{
f (`)
}
`∈N ⊂ C

∞
c (Γ) such that the electromagnetic fields fulfill

‖E(`) − e‖L2(O) → 0 and ‖H(`) − h‖L2(O) → 0 as `→∞,

where (E(`), H(`)) ∈ H(curl, O)×H(curl, O) solve (3.2)–(3.4) in O.

Proof. Let (e, h) ∈ H(curl, O) × H(curl, O) solve (4.1)–(4.2). With the operator LO introduced in
Section 3, we shall show that

(e, h) ∈ R(LO) =
(
R(LO)⊥

)⊥
= N (L∗O)⊥, (4.3)

where the closure and the orthogonal complement are understood with respect to the L2(O)3×L2(O)3-

scalar product. This shows that the assertion holds with a sequence
{
f (`)
}
`∈N ⊂ H(Γ), and it follows

by density that the assertion holds with a sequence
{
f (`)
}
`∈N ⊂ C

∞
c (Γ).

To prove (4.3), we let (J,K) ∈ N (L∗O) ⊆ L2(O)3 × L2(O)3. Then, by Lemma 3.1, there exists
(E,H) ∈ H(curl, O)×H(curl, O) that solves

∇× E + ikµH = KχO in Ω,

∇×H − ikεE = JχO in Ω,

ν × E|∂Ω = 0 on ∂Ω,

with ν × (H × ν)|Γ = L∗O(J,K) = 0. The unique continuation property in Theorem 2.2 implies that

(E,H) = (0, 0) on Ω \O and thus

ν × E|∂O = 0 = ν ×H|∂O.
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Hence, using the integration by parts formula (2.1), it follows that∫
O

(
e · J + h ·K

)
dx =

∫
O
e ·
(
∇×H + ikεE

)
dx+

∫
O
h ·
(
∇× E − ikµH

)
dx

=

∫
O

(
(∇× e) ·H + ikεe · E

)
dx+

∫
O

(
(∇× h) · E − ikµh ·H

)
dx

=

∫
O

(∇× e− ikµh) ·H dx+

∫
O

(∇× h+ ikεe) · E dx = 0.

This shows (e, h) ⊥ (J,K) so that (4.3) holds, and thus the assertion is proven. �

Remark 4.1. The Runge approximation property in Theorem 4.1 implies the localization property in
Theorem 1.1 by the following argument. Let D b Ω be a closed set with a connected complement
Ω \D, and M ⊆ Ω is an open set with M 6⊆ D (see again Figure 1). By shrinking M and enlarging
D, we can assume that M is an open set and D is a closed set with Lipschitz boundaries, M ∪D b Ω,
M ∩D = ∅ and that Ω \ (M ∪D) is connected.

The unique continuation property in Theorem 2.2 implies that a solution of the Maxwell system in Ω
with non-trivial boundary data cannot vanish identically on M . This shows that there exists a non-
zero solution of the Maxwell system on M . We extend this solution by zero on D, and obtain a solution
(e, h) ∈ H(curl, O)×H(curl, O) on O := M ∪ intD with (e, h)|intD ≡ (0, 0) and (e, h)|M 6≡ (0, 0). Then
the Runge approximation sequence from Theorem 4.1 converges to zero on D but not on M and a
simple scaling argument as in the proof of Theorem 1.1 in Section 3 gives a sequence of electromagnetic
fields such that∫

M

(
|E(`)|2 + |H(`)|2

)
dx→∞ and

∫
D

(
|E(`)|2 + |H(`)|2

)
dx→ 0 as `→∞,

and ν × E(`) ∈ C∞c (Γ) for all ` ∈ N, which also proves Theorem 1.1.

5. Concluding remarks

We considered field localizing and concentrating for the electromagnetic waves governed by the time-
harmonic Maxwell system in a bounded domain occupied by a given medium that is generic and
could be anisotropic. It has been shown that through proper boundary inputs, one can generate
electromagnetic fields with the corresponding energy concentrated in a given subregion while nearly
vanishing in another given subregion. We would like to emphasize that the localizing results are known
previously for several scalar models including the conductivity equation and the Helmholtz equation,
but the extension to the Maxwell system with non-smooth anisotropic coefficients requires considerable
care and technical involvement. As pointed out in Remark 3.1, the result can be used to develop
monotonicity-based reconstruction methods for inverse problems associated with the electromagnetic
waves. In fact, with the localizing result established in the present article, this can be done by following
a similar spirit to the one in [20] for the Helmholtz equation by one of the authors of this article. We
also propose more applications of practical interest including the telecommunication and inductive
charging. This new perspective poses interesting problems for future investigation. For example, for
certain given boundary inputs, one may consider to construct a specific medium configuration for
localizing and concentrating the electromagnetic fields in a desirable way.
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Neumann–Poincaré-type operator and analysis of cloaking due to anomalous localized resonance. Archive for Ra-
tional Mechanics and Analysis, 208(2):667–692, 2013.

[3] Kazunori Ando, Hyeonbae Kang, and Hongyu Liu. Plasmon resonance with finite frequencies: a validation of the
quasi-static approximation for diametrically small inclusions. SIAM Journal on Applied Mathematics, 76(2):731–749,
2016.

[4] L. Arnold and B. Harrach. Unique shape detection in transient eddy current problems. Inverse Problems,
29(9):095004, 2013.

[5] Andrea Barth, Bastian Harrach, Nuutti Hyvönen, and Lauri Mustonen. Detecting stochastic inclusions in electrical
impedance tomography. Inverse Problems, 33(11):115012, 2017.
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