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Abstract. We study the Calderón problem for a logarithmic Schrödinger type

operator of the form L∆+q, where L∆ denotes the logarithmic Laplacian, which
arises as formal derivative d

ds

∣∣
s=0

(−∆)s of the family of fractional Laplacian

operators. This operator enjoys remarkable nonlocal properties, such as the

unique continuation and Runge approximation. Based on these tools, we can
uniquely determine bounded potentials using the Dirichlet-to-Neumann map.

Additionally, we can build a constructive uniqueness result by utilizing the

monotonicity method. Our results hold for any space dimension.
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1. Introduction

Calderón’s pioneer work [Cal80Cal80] investigated the inverse conductivity problem,
which asks whether the conductivity can be determined from its boundary electrical
voltage and current measurements. Using a suitable reduction scheme shows that
a closely related problem is the Calderón problem for the classical Schrödinger
equation, which can be stated as follows. Let Ω ⊂ Rn be a bounded domain with
Lipschitz boundary ∂Ω, and q ∈ L∞(Ω). Consider the Dirichlet boundary value
problem

(1.1)

{
(−∆+ q)u = 0 in Ω,

u = f on ∂Ω.

Assume that 0 is not a Dirichlet eigenvalue of the Schrödinger operator −∆+ q in
Ω, which implies that there exists a unique solution u ∈ H1(Ω) to (1.11.1), for any
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given Dirichlet boundary data f ∈ H1/2(∂Ω). Then the boundary measurement is
called the (full) Dirichlet-to-Neumann (DN) map, which is well-defined and can be
encoded by

(1.2) Λ(1)
q : H1/2(∂Ω) → H−1/2(∂Ω), f 7→ ∂νuf |∂Ω ,

where uf ∈ H1(Ω) is the solution to (1.11.1). The Calderón problem for the Schrödinger
equation (1.11.1) is to ask whether the DN map Λq determines the potential q ∈ L∞(Ω)
or not. The result is positive for a more regular potential q with the full boundary
DN map, and we refer readers to the articles [SU87SU87] for n ≥ 3 and [Buk08Buk08] for
n = 2. The article [Uhl09Uhl09] provides a comprehensive introduction and review in
this direction.

After several decades of developments on Calderón’s problems, this type of prob-
lem has been generalized to the nonlocal scenario. The Calderón problem for the
fractional Schrödinger equation has first been studied in [GSU20GSU20]. The underlying
problem was proposed as an exterior value problem due to its natural nonlocality:
Given s ∈ (0, 1), let Ω ⊂ Rn be a bounded open set with Lipschitz boundary for
n ∈ N, and let q ∈ L∞(Ω). Consider the Dirichlet exterior value problem

(1.3)

{
((−∆)s + q)u = 0 in Ω,

u = f in Ωe,

where

Ωe := Rn \ Ω.
Similarly as in the case s = 1, let us assume that 0 is not a Dirichlet eigenvalue of
(−∆)s + q in Ω. Then there exists a unique solution u ∈ Hs(Rn) to (1.31.3), for any
given Dirichlet exterior data f in a suitable function space, such as C∞

c (Ωe). The
exterior (partial) DN map can be formally defined by

(1.4) Λ(s)
q : C∞

c (W1) ∋ f 7→ (−∆)suf |W2
,

where W1,W2 ⋐ Ωe can be arbitrary nonempty open subsets.
In the foundational work [GSU20GSU20], the authors showed that the DN map (1.41.4)

can determine the bounded potential q in Ω uniquely, which holds for any spatial
dimension n ∈ N. Moreover, inverse problems for fractional equations have more
profound properties than their local counterparts, such as the unique continuation
property (UCP) and Runge approximation property. Roughly speaking, the UCP
for (−∆)s (0 < s < 1) states that given a nonempty open subset O ⊂ Rn,

u = (−∆)su = 0 in O implies that u ≡ 0 in Rn,

where u belongs to appropriate function spaces (e.g., u belongs to some fractional
Sobolev space Hr(Rn) for some r ∈ R). Moreover, the Runge approximation prop-
erty states that any L2 function can be approximated by solutions of the fractional
Schrödinger equation.

Based on the properties as mentioned above, fractional-type inverse problems
have received rapidly growing attention in recent years. In the work [CLR20CLR20], the
authors demonstrated that both drift and potential can be determined uniquely,
which cannot be true for the local case in general. Moreover, simultaneous recov-
ering for both the obstacle and surrounded medium has been studied in [CLL19CLL19],
and the determination of bounded potentials for anisotropic nonlocal Schrödinger
equation was investigated in [GLX17GLX17]. These two problems remain open for the
case s = 1 and n ≥ 3. Therefore, one could expect that the nonlocality is beneficial
in the study of related inverse problems.

For more related work on both linear and nonlinear nonlocal inverse problems,
we refer readers to [HL19HL19, HL20HL20, LL23LL23, LL22LL22, GRSU20GRSU20, CMRU22CMRU22, RS20RS20, RS18RS18,
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GRSU20GRSU20, LLR20LLR20, Lin22Lin22, LZ23LZ23, GU21GU21, LLU22LLU22] and references therein. In partic-
ular, one can also determine the interior coefficients, by using either a reduction
of the Caffarelli-Silvestre extension (see e.g. [CGRU23CGRU23, Rül23Rül23, LLU23LLU23, LZ24LZ24]) or
the heat semigroup on closed Riemannian manifolds (see e.g. [FGKU21FGKU21, Fei24Fei24,
FKU24FKU24, Lin24Lin24]), where the UCP may not be a necessary tool for some cases. Very
recently, an entanglement principle for nonlocal operators has also been investi-
gated in [FKU24FKU24, FL24FL24], and it may significantly influence new nonlocal inverse
problems.

Loosely speaking, most of the existing studies of inverse problems are related to
the classical Laplacian −∆ or the fractional Laplacian (−∆)s, s ∈ (0, 1). We want
to point out that the key tools in solving classical and fractional inverse problems:

• Classical case. Suitable integral identities and complex geometrical optics
(CGO) solutions ((−∆)s for s = 1).

• Fractional case. Suitable integral identities and Runge approximation
property ((−∆)s for 0 < s < 1).

The above-mentioned tools are usually used to recover lower-order coefficients in
related mathematical problems. Furthermore, a recent work [CdHS24CdHS24] investigates
geometric optics solutions for the fractional Helmholtz equation, which combines
both local and nonlocal features.

While the nonlocality distinguishes the fractional case from the classical one, it
is important to note that the fractional Laplacian (−∆)s is still an elliptic operator
of positive order 2s and therefore admits a highly useful elliptic regularity theory.
In the present paper, we wish to study an inverse problem beyond the framework
of operators of positive order. To motivate our problem, recall that

(1.5) lim
s→1−

(−∆)su = −∆u and lim
s→0+

(−∆)su = u pointwisely in Rn

for any u ∈ C2
c (Rn). For the second limit, one may identify a well-defined first-

order correction term given as the formal derivative log(−∆)u := d
ds

∣∣
s=0

(−∆)su.
The associated logarithmic Laplacian operator

L∆ := log(−∆)

has been introduced in [CW19CW19] in the context of Dirichlet problems, and it has
attracted growing interest in recent years due to its usefulness in the analysis of
order-dependent families of linear and nonlinear fractional Dirichlet problems and
their asymptotic limits as s → 0+, see e.g. [CW19CW19, JSnW20JSnW20, FJW22FJW22, HSSn22HSSn22,
LW21LW21]. It also appears in the context of the 0-fractional perimeter, see [DLNP21DLNP21].

We note that the operator L∆ has the Fourier symbol 2 log |ξ|, which can be seen

by differentiating the symbol |ξ|2s with respect to s and evaluate at s = 0. More
precisely, by [CW19CW19, Theorem 1.1], there holds

(1.6) log(−∆)u := F−1 (2 log |ξ| û(ξ)) , for u ∈ Cα
c (Rn),

for some α > 0, where û is the Fourier transform of u, and F−1 is the inverse Fourier
transform. Due to the weak growth of the logarithmic symbol, L∆ is sometimes
called a (near) zero-order operator.

Very recently, the problem of finding an extension problem for the logarithmic
Laplacian has been solved in [CHW23CHW23], and the authors used it to prove the UCP
for L∆. The UCP will play a major role in the proof of our main results.
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Mathematical formulations and main results. Let Ω ⊂ Rn be a bounded
domain with Lipschitz boundary ∂Ω, and q ∈ L∞(Ω). Consider

(1.7)

{
(L∆ + q)u = 0 in Ω,

u = f in Ωe.

To obtain the well-posedness of (1.71.7), let us recall the eigenvalue problem of the
logarithmic Laplacian.

By [CW19CW19, Theorem 1.2], it is known that L∆ in Ω has eigenvalues

(1.8) λ1(Ω) < λ2(Ω) ≤ . . . ≤ λk(Ω) ≤ . . .↗ ∞
in a bounded domain Ω. Any of these eigenvalues λk(Ω) may be positive, zero,
or negative, depending on the size and shape of Ω. In order to have a well-posed
forward problem (1.71.7), let us impose the condition

(1.9) λ1(Ω) + q(x) ≥ λ0 > 0, for all x ∈ Ω,

for some positive constant λ0, where λ1(Ω) is the first Dirichlet eigenvalue of L∆

in Ω. Lower bounds for λ1(Ω) in terms of |Ω|, the measure of Ω, are given in
[CW19CW19, LW21LW21], see in particular [LW21LW21, Corollary 4.3 and Theorem 4.4]11.

With the eigenvalue condition (1.91.9) at hand, we can prove (1.71.7) is well-posed for
any f contained in the associated trace space HT (Ωe) which is defined in Section 33
below. Hence, the DN map of (1.71.7) can be defined as a map

Λq : HT (Ωe) 7→ HT (Ωe)
∗.

In particular, ifW1,W2 ⋐ Ωe are open bounded subsets, then for every f ∈ C∞
c (W1)

and g ∈ C∞
c (W1) we have

⟨Λqf, g⟩ =
ˆ
W2

(
L∆uf

)
g dx = 2

ˆ
Rn

(log |ξ|)ûf (ξ)ĝ(ξ) dξ,

where uf is the unique (weak) solution to (1.71.7), and ⟨·, ·⟩ denotes the natural duality
pairing between HT (Ωe) and HT (Ωe)

∗, see Section 33 below. The key question
studied in this paper is the following.

(IP) Inverse Problem. Can one determine q via the DN map Λq?

The following main result gives an affirmative answer to (IP)(IP).

Theorem 1.1 (Global uniqueness). Let Ω ⊂ Rn be a bounded Lipschitz domain for
n ∈ N, and W1,W2 ⋐ Ωe be nonempty bounded open sets. Assume that qj ∈ L∞(Ω)
satisfies (1.91.9) for j = 1, 2. Let Λqj be the DN map of

(1.10)

{
(log(−∆) + qj)uj = 0 in Ω,

uj = f in Ωe,

for j = 1, 2. Suppose that

(1.11) ⟨Λq1f, g⟩ = ⟨Λq2f, g⟩ for any f ∈ C∞
c (W1), g ∈ C∞

c (W2).

Then there holds q1 = q2 in Ω.

The proof of the preceding theorem is based on the UCP and Runge approxima-
tion for the logarithmic Schrödinger equation (1.71.7).

On top of that, we also have a constructive uniqueness for q using a monotonicity
test. Indeed, similarly as in the case of the fractional problem considered in [HL19HL19],
one can derive an if-and-only-if monotonicity relation between bounded potentials
and associated DN maps. More precisely, we have the following.

1Note that 1
2
L∆ is considered in place of L∆ in [LW21LW21], so the bounds there apply to

λ1(Ω)
2

in

place of λ1(Ω).
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Theorem 1.2 (If-and-only-if monotonicity). Let Ω ⊂ Rn be a bounded Lipschitz
domain, and assume that qj ∈ L∞(Ω) satisfies (1.91.9) for j = 1, 2. Then the following
are equivalent:

(i) q2 ≥ q1 a.e. in Ω;
(ii) ⟨(Λq2 − Λq1)f, f⟩ ≥ 0 for all f ∈ HT (Ωe);
(iii) There exists a nonempty bounded open set W ⋐ Ωe with the property that

(1.12) ⟨(Λq1 − Λq2) f, f⟩ ≥ 0, for all f ∈ C∞
c (W ).

In the following, if W ⋐ Ωe is a nonempty bounded open set, we say that

(1.13) Λq1 ≤ Λq2 in W

if (1.121.12) holds.

Remark 1.3. In the special case W1 = W2 = W , Theorem 1.11.1 can be viewed
as a corollary of Theorem 1.21.2 since in this case condition (1.111.11) implies that both
Λq1 ≤ Λq2 and Λq2 ≤ Λq1 hold in Ω and therefore q1 = q2 in Ω by Theorem 1.21.2.

As indicated above, the if-and-only-if monotonicity relation given by Theorem 1.21.2
yields a constructive global uniqueness result in the case where λ1(Ω) > 0 and
q ∈ L∞(Ω) is nonnegative. For this purpose, let us recall that a point x ∈ Rn is
called (Lebesgue) density one for a measurable set E if

lim
r→0

|Br(x) ∩ E|
|Br(x)|

= 1,(1.14)

where Br(x) denotes the ball of radius r and centered at x. The space of density
one simple functions can be defined by

Σ :=

{
φ =

m∑
j=1

ajχEj
: aj ∈ R, Ej ⊆ Ω is a density one set

}
,

where we call a subset E ⊆ Ω a density one set provided that E is nonempty,
measurable and has density one for all x ∈ E. It is not hard to find that density
one sets have a positive measure, and finite intersections of density one sets are
density one. Let, moreover, Σ+,0 ⊆ Σ denote the subset of nonnegative density one
simple functions.

Theorem 1.4 (Constructive uniqueness). Let Ω ⊂ Rn be a bounded Lipschitz
domain with λ1(Ω) > 0, and let q ∈ L∞(Ω) be nonnegative. Moreover, let W ⋐ Ωe

be an arbitrary nonempty bounded open set. Then the potential q can be determined
uniquely via the formula

(1.15) q(x) = sup {φ(x) : φ ∈ Σ+,0 and Λφ ≤ Λq in W} , for a.e. x ∈ Ω,

where the relation Λφ ≤ Λq in W is defined as above.

Note that the proofs of both Theorems 1.11.1 and 1.41.4 rely on the Runge approxi-
mation and its applications for the logarithmic Schrödinger equation.

Organization of this article. In Section 22, we introduce several basic func-
tion spaces and a rigorous definition of the logarithmic Laplacian. In Section 33, we
demonstrate the well-posedness of the exterior value problem (1.71.7) for suitable func-
tion spaces. The existence of the DN map can be guaranteed by the well-posedness
of (1.71.7). We prove Theorem 1.11.1 in Section 44, by using suitable integral identity and
the Runge approximation. Finally, in Section 55, we derive the monotonicity rela-
tions between the DN maps and nonnegative potentials as given in Theorem 1.21.2,
which will be applied to show the constructive uniqueness as stated in Theorem
1.41.4.
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2. Preliminaries

In this section, let us introduce and recall several useful properties for our study.
Our notation for the Fourier transform is

(2.1) f̂(ξ) = Ff(ξ) =
ˆ
Rn

e−ix·ξf(x) dx,

where i =
√
−1 denotes the imaginary unit. In what follows, let us always consider

u : Rn → R as a (Lebesgue) measurable function, and Ω ⊂ Rn be a bounded domain
with Lipschitz boundary. Given s ∈ (0, 1), the fractional Sobolev space Hs(Rn) is

the standard L2-based Sobolev space with the norm ∥u∥Hs(Rn) =
∥∥ (1 + |ξ|)s/2 û

∥∥
L2(Rn)

.

2.1. The logarithmic Laplacian and associated function spaces. Given s ∈
(0, 1), recall that the fractional Laplacian (−∆)s can be defined via the Fourier
transform

(2.2) (−∆)su := F−1
(
|ξ|2s û(ξ)

)
, for u ∈ S(Rn),

where S(Rn) stands for the Schwartz space. Alternatively, the fractional Laplacian
can be written as a hypersingular integral operator of the form

(2.3) (−∆)su(x) = P.V.

ˆ
Rn

(u(x)− u(z))Ks(x− z) dz

with the symmetric kernel

(2.4) Ks(z) :=
Cn,s

|z|n+2s ,

and

(2.5) Cn,s :=
4sΓ

(
n
2 + s

)
πn/2 |Γ(−s)|

.

The logarithmic Laplacian L∆ appears in the study of (−∆)s in the limit s →
0. Given u ∈ Cα

c (Rn) for some α > 0, L∆u(x) can be uniquely defined by the
asymptotic expansion22

(2.6) (−∆)su(x) = u(x) + sL∆u(x) + o(s), as s→ 0+,

so L∆u appears as a linear correction term in the second limit of (1.51.5). Formally,
we thus have

(2.7)
d

ds

∣∣∣
s=0

(−∆)su(x) = L∆u(x),

and L∆u has the symbol 2 log |ξ| given by (1.61.6).
Moreover, from [CW19CW19, Theorem 1.1] again, it is known that the logarithmic

Laplacian admits an integral representation

L∆u(x) = cnP.V.

ˆ
B1(x)

u(x)− u(z)

|x− z|n
dz − cn

ˆ
Rn\B1(x)

u(z)

|x− z|n
dz + ρnu(x),(2.8)

for x ∈ Rn and u ∈ Cα
c (Rn), for some α > 0, where Br(x) is the ball center at x

with radius r > 0, and

(2.9) cn := π−n/2Γ
(n
2

)
=

2

|Sn−1|
, ρn := 2 log 2 + ψ

(n
2

)
− γ.

Here
∣∣Sn−1

∣∣, γ := −Γ′(1) and ψ = Γ′

Γ are the (n − 1)-dimensional volume of the
unit sphere in Rn, the Euler Mascheroni constant, and the Digamma function,
respectively.

2Here o(s) denotes the small o, which satisfies
o(s)
s

→ 0 as s → 0+.
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In the distributional sense, the logarithmic Laplacian is defined on the function
space

(2.10) L1
0(Rn) :=

{
u ∈ L1

loc(Rn) :

ˆ
Rn

|u(x)|
(1 + |x|)n

dx <∞
}
.

More precisely, for a function u ∈ L1
0(Rn), the (distributional) logarithmic Lapla-

cian is well-defined by setting

(L∆u) (ϕ) =

ˆ
Rn

u (L∆ϕ) dx, for ϕ ∈ C∞
c (Rn).

On Rn, the natural energy space associated with the logarithmic Laplacian is de-
fined by

H(Rn) =

{
u ∈ L2(Rn) :

ˆ
Rn

∣∣log |ξ|∣∣|û(ξ)|2 dξ <∞
}
.

It is a Hilbert space with a scalar product

(2.11) (v, w) 7→ ⟨v, w⟩H(Rn) := ⟨v, w⟩L2(Rn) +

ˆ
Rn

∣∣log |ξ|∣∣v̂(ξ)ŵ(ξ) dξ
and induced norm ∥v∥H(Rn) =

√
⟨v, v⟩H(Rn).

Next, the bilinear form associated with the logarithmic Laplacian is given by

B0 : H(Rn)×H(Rn) → R,

B0(v, w) := 2

ˆ
Rn

log |ξ|v̂(ξ)ŵ(ξ)dξ.
(2.12)

Indeed this bilinear form is well-defined and continuous on H(Rn) since

ˆ
Rn

∣∣log |ξ|∣∣|v̂(ξ)||ŵ(ξ)|dξ ≤ (ˆ
Rn

∣∣log |ξ|∣∣|v̂(ξ)|2 ξ)1/2(ˆ
Rn

∣∣log |ξ|∣∣|v̂(ξ)|2 ξ)1/2

≤ ∥u∥H(Rn)∥v∥H(Rn) for u, v ∈ H(Rn).

(2.13)

The bilinear form B0 allows to define L∆ in the weak sense as an operator

L∆ : H(Rn) → H(Rn)∗

by

⟨L∆v, w⟩ = B0(v, w)

for v, w ∈ H(Rn), where ⟨·, ·⟩ denotes the duality pairing between H(Rn)∗ and
H(Rn). By the definition of (2.122.12), we have the symmetry property

(2.14) B0(v, w) = B0(w, v), for v, w ∈ H(Rn).

Finally, for an open subset Ω ⊂ Rn, we consider the closed subspace

H0(Ω) := {u ∈ H(Rn) : u = 0 in Ωe}(2.15)

of H(Rn), which is again a Hilbert space. We note the following observation.

Lemma 2.1. Let Ω ⊂ Rn be an open set of finite measure. Then the inner product

(2.16) (v, w) 7→ ⟨v, w⟩H0(Ω) :=

ˆ
|x−z|≤1

(v(x)− v(z)) (w(x)− w(z))

|x− z|n
dxdz

induces an equivalent norm

v 7→ ∥v∥H0(Ω) =
√

⟨v, v⟩H0(Ω) on H0(Ω).

Moreover, H0(Ω) is compactly embedded into L2(Ω).
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Proof. In the following, the letter C > 0 stands for different positive constants. We
shall use the symbol ξ 7→ log(1+ |ξ|2), associated with the logarithmic Schrödinger
operator log(−∆ + 1), as a comparison function. The operator log(−∆ + 1) is a
singular integral operator with kernel function

z 7→ ℓ(z) = CnKn/2(|z|) |z|
−n/2

,

for some constant Cn depending only on n ∈ N, where Kν denotes the modified
Bessel function of second kind with index ν (see e.g. [Feu23Feu23, Section 1]). As a
consequence, for every ϕ ∈ L2(Rn) we have

(2.17)

ˆ
Rn

log(1 + |ξ|2)|ϕ̂(ξ)|2 dξ =
ˆ
Rn×Rn

ℓ(|x− z|) (ϕ(x)− ϕ(z))
2
dxdz,

where the finiteness of one side of this equality implies the finiteness of the other.
We also note that, by the positivity of Kν and its asymptotics at z = 0 (see e.g.
[Feu23Feu23, Section 1] again), we have

ℓ(z)

C0
≤ |z|−n ≤ C0ℓ(z), for z ∈ B1(0) \ {0} with a constant C0 > 0.

Therefore, for every ϕ ∈ H0(Ω) ⊂ H(Rn), we now have the estimate
ˆ
|x−z|≤1

(ϕ(x)− ϕ(z))
2

|x− z|n
dxdz ≤ C

ˆ
Rn×Rn

ℓ(|x− z|) (ϕ(x)− ϕ(z))
2
dxdz

= C

ˆ
Rn

log(1 + |ξ|2)|ϕ̂(ξ)|2 dξ

≤ C

ˆ
Rn

(1 +
∣∣log |ξ|∣∣)|ϕ̂(ξ)|2 dξ

= C∥ϕ∥2H(Rn).

(2.18)

Moreover, by (2.172.17) we have

∥ϕ∥2H(Rn) =

ˆ
Rn

(1 + |log |ξ||)|ϕ̂(ξ)|2 dξ

≤
ˆ
Rn

(
1− 1B1(0)(ξ) log |ξ|+ log(1 + |ξ|2)

)
|ϕ̂(ξ)|2 dξ

≤ ∥ϕ̂∥2L2(Rn) + ∥ϕ̂∥2L∞(B1(0)

ˆ
B1(0)

(− log |ξ|)dξ

+ C

ˆ
Rn×Rn

ℓ(|x− z|) (ϕ(x)− ϕ(z))
2
dxdz

≤ ∥ϕ∥2L2(Ω) + C∥ϕ∥2L1(Ω) + C

ˆ
|x−z|≤1

(ϕ(x)− ϕ(z))
2

|x− y|n
dxdz

+ C

ˆ
|x−z|>1

ℓ(x− z)
(
ϕ2(x) + ϕ2(z)

)
dxdz

≤ C
(
∥ϕ∥2L2(Ω) + ∥ϕ∥2H0(Ω) + ∥ϕ∥2L2(Rn)

ˆ
Rn\B1(0)

ℓ(y) dy
)

≤ C
(
∥ϕ∥2L2(Ω) + ∥ϕ∥2H0(Ω)

)
,

where 1B1(0)(ξ) =

{
1 for ξ ∈ B1(0)

0 otherwise
is the characteristic function. Here we used

the assumption that Ω has finite measure |Ω| ∈ (0,∞), such that the Hölder in-
equality

∥ϕ∥L1(Ω) ≤ |Ω|1/2∥ϕ∥L2(Ω)
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holds. Combining the above estimates with the obvious bound

∥ϕ∥L2(Ω) = ∥ϕ∥L2(Rn) = ∥ϕ̂ ∥L2(Rn) ≤ ∥ϕ∥H(Rn) for ϕ ∈ H0(Ω),

we deduce that

ϕ 7→ ∥ϕ∥∗ :=
(
∥ϕ∥2L2(Ω) + ∥ϕ∥2H0(Ω)

) 1
2

is an equivalent norm to ∥ · ∥H(Rn) on H0(Ω). Moreover, by [JW20JW20, Theorem 1.2],

the embedding (H0(Ω), ∥ ·∥∗) ↪→ L2(Ω) is compact. From this compactness and the
fact that ∥ϕ∥H0(Ω) > 0 for all ϕ ∈ H0(Ω) \ {0}, it follows by a standard argument
that ∥ϕ∥L2(Ω) ≤ C∥ϕ∥H0(Ω) for all ϕ ∈ H0(Ω), so the norms ∥ · ∥∗ and ∥ · ∥H0(Ω) are

equivalent on H1
0 (Ω). This proves the result. □

We also have the following useful estimate.

Lemma 2.2. For α > 0, we have Cα
c (Rn) ⊂ H(Rn). Moreover, for every nonempty

bounded open set W ⊂ Rn, there exists a constant C = C(W,α) > 0 with

(2.19) ∥f∥H(Rn) ≤ C∥f∥Cα(W ) for all f ∈ Cα
c (W ).

Proof. It clearly suffices to prove (2.192.19). SinceW ⊂ BR(0) for R chosen sufficiently
large, we may assume without loss of generality that W = BR(0) for some R > 1.
Since ∥·∥H(Rn) is equivalent to ∥·∥H0(W ) on H0(W ), it suffices, by approximation, to
prove the estimate with ∥·∥H0(W ) in place of ∥·∥H(Rn).

Let f ∈ Cα
c (W ), then we can write, similar to [CW19CW19, Proposition 3.2],

∥f∥2H0(W ) =

ˆ
x,z∈W

|x−z|<1

(f(x)− f(z))2

|x− z|n
dxdz + 2

ˆ
W

|f(x)|2κW (x) dx(2.20)

with

(2.21) κW (x) =

ˆ
(Rn\W )∩B1(x)

|y − x|−n dx.

It is easy to compute that

κW (x) ≤
∣∣Sn−1

∣∣ [log 1

dist(x, ∂Ω)

]
+
≤

∣∣Sn−1
∣∣ [log 1

R− |x|

]
+
,

for x ∈W = BR(0), which implies thatˆ
W

|f(x)|2κW (x) dx ≤ |Sn−1|∥f∥2L∞(W )

ˆ
BR(0)

[
log

1

R− |x|

]
+
dx

≤ |Sn−1|2∥f∥2Cα(W )

ˆ R

R−1

rn−1 log
1

R− r
dr

≤ C∥f∥2Cα(W ),

(2.22)

with a constant C = C(W ) > 0. Moreover, we have
ˆ

x,z∈W

|x−z|<1

(f(x)− f(z))2

|x− z|n
dxdz ≤ ∥f∥2Cα(W )

ˆ
x,z∈W

|x−z|<1

|x− z|α−n dxdz

≤ |W |∥f∥2Cα(W )

ˆ
B1(0)

|y|α−n dy

≤ |W ||Sn−1|
α

∥f∥2Cα(W ).

(2.23)

Combining (2.202.20), (2.222.22) and (2.232.23), we obtain (2.192.19) with a constant C = C(W,α) >
0. This proves the assertion. □
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Throughout the remainder of this paper, let us denote the L2-inner product by

(2.24) (ϕ, ψ)L2(A) :=

ˆ
A

ϕψ dx,

for any ϕ, ψ ∈ L2(A) and for any A ⊂ Rn.

2.2. The energy form of the logarithmic Schrödinger type operator. Let
Ω ⊂ Rn be a bounded open set with Lipschitz boundary and q ∈ L∞(Ω). We
consider the bilinear form associated with the operator L∆ + q given by

Bq : H(Rn)×H(Rn) → R,
Bq(v, w) := B0(v, w) + (qv, w)L2(Ω) ,

(2.25)

where B0 is defined in (2.122.12). We recall that the variational characterization of
λ1(Ω), the first Dirichlet-eigenvalue of L∆ on Ω, is then given by

(2.26) λ1(Ω) = inf
u∈H0(Ω)

u̸=0

B0(u, u)

∥u∥2L2(Ω)

.

Hence the eigenvalue condition, if satisfied, implies that

(2.27) Bq(u, u) ≥ λ0∥u∥2L2(Ω) for all u ∈ H0(Ω).

We also note the following useful estimates.

Lemma 2.3. Let Bq(·, ·) be the bilinear form given by (2.252.25), then we have

(2.28) |Bq(u, v)| ≤ (2 + ∥q∥L∞(Ω))∥u∥H(Rn)∥v∥H(Rn) for u, v ∈ H(Rn).

and

(2.29) Bq(u, u) ≥ 2∥u∥2H(Rn) − C∥u∥2L2(Ω) for u ∈ H0(Ω)

with a constant C > 0. If moreover (1.91.9) holds, then

(2.30) Bq(u, u) ≥ C∥u∥2H(Rn) for u ∈ H0(Ω)

with a constant C > 0.

Proof. For u, v ∈ H(Rn) we have, by (2.132.13),

|Bq(u, v)| ≤ |B0(u, v)|+ | (qv, w)L2(Ω) |

≤ 2

ˆ
Rn

| log |ξ|||û(ξ)||v̂(ξ)|dξ + ∥q∥L∞(Ω)∥u∥L2(Ω)∥v∥L2(Ω)

≤ 2∥u∥H(Rn)∥v∥H(Rn) + ∥q∥L∞(Ω)∥u∥L2(Rn)∥v∥L2(Rn)

≤ (2 + ∥q∥L∞(Ω))∥u∥H(Rn)∥v∥H(Rn),

as claimed in (2.282.28). Moreover, we have

B0(u, u) = 2

ˆ
Rn

log |ξ||û(ξ)|2 dξ

= 2

ˆ
Rn

(1 +
∣∣log |ξ|∣∣)|û(ξ)|2 dξ − 2

ˆ
Rn

|û(ξ)|2 dξ

+ 4

ˆ
B1(0)

(log |ξ|)|û(ξ)|2 dξ

≥ 2∥u∥2H(Rn) − 2∥u∥2L2(Ω) + 4∥û∥2L∞(Rn)

ˆ
B1(0)

log |ξ| dξ

≥ 2∥u∥2H(Rn) − 2∥u∥2L2(Ω) − C∥u∥2L1(Ω)

≥ 2∥u∥2H(Rn) − C∥u∥2L2(Ω), for u ∈ H0(Ω).
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Here we used again the fact that ∥u∥L1(Ω) ≤ C∥u∥L2(Ω) thanks to Ω has finite
measure. We conclude that

Bq(u, u) ≥ B0(u, u)− ∥q∥L∞(Ω)∥u∥2L2(Ω) ≥ 2∥u∥2H(Rn) − C∥u∥2L2(Ω),

for u ∈ H0(Ω), as claimed in (2.292.29).
Finally, if (1.91.9) holds, then by (2.272.27) and (2.292.29) we have, for u ∈ H0(Ω) and

ϵ ∈ (0, 1),

Bq(u, u) = (1− ϵ)Bq(u, u) + ϵBq(u, u)

≥ (1− ϵ)λ0∥u∥2L2(Ω) + ϵ
(
2∥u∥2H(Rn) − C∥u∥2L2(Ω)

)
= 2ϵ∥u∥2H(Rn) +

(
(1− ϵ)λ0 − Cϵ

)
∥u∥2L2(Ω).

Since λ0 > 0, we can then choose ϵ ∈ (0, 1) such that (1 − ϵ)λ0 − Cϵ ≥ 0. Then
(2.302.30) holds with C = 2ϵ. This concludes the proof. □

3. The forward problem

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, and let q ∈ L∞(Ω)
satisfy (1.91.9). In this section, we study the forward Dirichlet problem for the log-
arithmic Schrödinger type equation (L∆ + q)u = F in Ω. For this, we need some
preparations. We define the trace space

HT (Ωe) :=
{
f
∣∣
Ωe

: f ∈ H(Rn)
}
.

To define a suitable norm on HT (Ωe), we note the following result.

Lemma 3.1. For every function f ∈ HT (Ωe), the infimum

(3.1) cf := inf{∥g∥H(Rn) : g ∈ H(Rn), g
∣∣
Ωe

= f}

admits a minimizer f̃ ∈ H(Rn). Moreover, f̃ is uniquely determined by the property
that

(3.2)
〈
f̃ , h

〉
H(Rn)

= 0 for all h ∈ H0(Ω),

and the map f 7→ f̃ is linear.

Proof. Let f ∈ HT (Ωe) By definition of HT (Ωe), the set

Mf :=
{
g ∈ H(Rn) : g

∣∣
Ωe

= f
}

is nonempty. Let (fk)k∈N be a minimizing sequence in Mf for the infimum in
(3.13.1). Since fk is bounded in H(Rn), we may pass to a subsequence such that

fk ⇀ f̃ ∈ H(Rn) and therefore

∥f̃∥H(Rn) ≤ lim
k→∞

∥fk∥H(Rn) = cf .

Moreover, we have hk := fk − f1 in H0(Ω) for all k ∈ N, and hk ⇀ f̃ − f1. Since

H0(Ω) ⊂ H(Rn) is a closed subspace, it follows that f̃ − f1 ∈ H0(Ω), hence f̃ ∈Mf

and f̃ is a minimizer for (3.13.1). It then follows that for any h ∈ H0(Ω) we have

0 ≤ lim
t→0

1

t

(
∥f̃ ± th∥2H(Rn) − ∥f̃∥2H(Rn)

)
= ±2⟨f̃ , h⟩H(Rn)

and therefore (3.23.2) follows. Moreover, if f̃∗ ∈ Mf is another function satisfying

(3.23.2), then f̃ − f̃∗ ∈ H0(Ω) ∩
(
H0(Ω)

)⊥
= {0} and therefore f̃ = f̃∗. This shows

that f̃ is uniquely determined by (3.23.2), and from this, the linearity of the map

f → f̃ follows. This proves the assertion □
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Lemma 3.13.1 shows that a norm ∥ · ∥HT (Ωe) is well-defined by setting

∥f∥HT (Ωe) := ∥f̃∥H(Rn) = inf{∥g∥H(Rn) : g ∈ H(Rn), g
∣∣
Ωe

= f},(3.3)

for f ∈ HT (Ωe).

3.1. The Dirichlet problem. For f ∈ HT (Ωe) and F ∈ L2(Ω), we now consider
the Dirichlet problem

(3.4)

{
(L∆ + q)u = F in Ω,

u = f in Ωe.

To define the notion of weak solutions, we use the bilinear form Bq defined in (2.252.25).

Definition 3.2 (Weak solutions). Let Ω ⊂ Rn be a bounded open set with Lipschitz
boundary. Given f ∈ HT (Ωe) and F ∈ L2(Ω), a function u ∈ H(Rn) is called a
weak solution to (3.43.4) if u ≡ f in Ωe and

(3.5) Bq(u, φ) = (F,φ)L2(Ω) , for any φ ∈ H0(Ω).

We then have the following well-posedness result.

Lemma 3.3 (Well-posedness). Let Ω ⊂ Rn be a bounded open set with Lipschitz
boundary, and q ∈ L∞(Ω) satisfy (1.91.9). Then, for any f ∈ HT (Ωe) and F ∈ L2(Ω),
there exists a unique weak solution u ∈ H(Rn) to (3.43.4). In addition, there holds

(3.6) ∥u∥H(Rn) ≤ C
(
∥F∥L2(Ω) + ∥f∥HT (Ωe)

)
,

for some constant C > 0 independent of u, F , f .

Proof of Lemma 3.33.3. Let f̃ be the ∥ · ∥H(Rn)-minimizing extension of f given by

Lemma 3.13.1, which satisfies ∥f̃∥H(Rn) = ∥f∥HT (Ωe). Then u ∈ H(Rn) is a weak

solution to (3.43.4) if and only if v = u− f̃ ∈ H0(Ω), and v satisfies

(3.7) Bq(v, φ) = (F,φ)L2(Ω) −Bq(f̃ , φ), for any φ ∈ H0(Ω).

The existence of a unique v ∈ H0(Ω) with this property follows from the Lax-
Milgram theorem, since, by Lemma 2.32.3, Bq is a continuous bilinear form on H0(Ω)
satisfying (2.302.30). This shows the existence of a unique weak solution u ∈ H(Rn) to

(3.43.4), and u = v + f̃ with v ∈ H0(Ω) as above. Moreover, by (2.302.30) and (2.282.28) we
have, with a constant C > 0,

∥v∥2H(Rn) ≤ CBq(v, v)

= C
(
(F, v)L2(Ω) −Bq(f̃ , v)

)
≤ C

(
∥v∥L2(Ω)∥F∥L2(Ω) + ∥f̃∥H(Rn)∥v∥H(Rn)

)
≤ C∥v∥H(Rn)

(
∥F∥L2(Ω) + ∥f̃∥H(Rn)

)
and therefore

(3.8) ∥v∥H(Rn) ≤ C
(
∥F∥L2(Ω) + ∥f̃∥H(Rn)

)
.

Consequently,

∥u∥H(Rn) ≤ ∥v∥H(Rn) + ∥f̃∥H(Rn)

≤ C
(
∥F∥L2(Ω) + ∥f̃∥H(Rn)

)
= C

(
∥F∥L2(Ω) + ∥f∥HT (Ωe)

)
,

as claimed. □
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Corollary 3.4. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary, let
q ∈ L∞(Ω) satisfy (1.91.9), and let W ⊂ Ωe be a nonempty bounded open set. Then
for every f ∈ Cα

c (W ), there exists a unique weak solution u ∈ H(Rn) to (3.43.4). In
addition, there holds

(3.9) ∥u∥H(Rn) ≤ C
(
∥F∥L2(Ω) + ∥f∥Cα(W )

)
,

for some constant C > 0 independent of u, F , f .

Proof. The result follows by combining Lemma 2.22.2 and Lemma 3.33.3, since f ∈
Cα

c (W ) ⊂ H(Rn) and∥∥f ∣∣
Ωe

∥∥
HT (Ωe)

≤ ∥f∥H(Rn) ≤ C∥f∥Cα(W )

by definition of ∥ · ∥HT (Ωe). □

3.2. The DN map. With Theorem 3.33.3 at hand, the DN map of (1.71.7) can be
defined rigorously via the bilinear form Bq defined in (2.252.25).

Lemma 3.5 (The DN map). Let Ω ⊂ Rn be a bounded Lipschitz domain, and let
q ∈ L∞(Ω) fulfill (1.91.9). Define

⟨Λqf, g⟩ := Bq(uf , vg),(3.10)

for any f, g ∈ HT (Ωe), where uf ∈ H(Rn) is the solution to (1.71.7), and vg ∈ H(Rn)
can be any representative function with vg|Ωe

= g. Then

(3.11) Λq : HT (Ωe) → HT (Ωe)
∗

is a bounded linear operator, which satisfies the symmetry property

(3.12) ⟨Λqf, g⟩ = ⟨Λqg, f⟩ for any f, g ∈ HT (Ωe).

Proof. First, if there are two functions vg, ṽg ∈ H(Rn) such that vg|Ωe
= ṽg|Ωe

,

then vg − ṽg ∈ H0(Ω). Therefore, by the linearity of Bq(uf , ·), one has

(3.13) Bq(uf , ṽg) = Bq(uf , vg) +Bq(uf , ṽg − vg) = Bq(uf , vg)︸ ︷︷ ︸
since uf solves (1.71.7) and ṽg−vg∈H0(Ω)

,

which shows (3.103.10) is well-defined. To show the boundedness of Λq, we let g̃ ∈
H(Rn) be the ∥ · ∥H(Rn)-minimizing extension of g ∈ HT (Ωe) given by Lemma 3.13.1,
so that ∥g̃∥H(Rn) = ∥g∥HT (Ωe). Then, by Lemma 2.32.3 and (3.63.6) applied with F = 0,
we have

|⟨Λqf, g⟩| = |Bq(uf , g̃)| ≤ C∥uf∥H(Rn)∥g̃∥H(Rn) ≤ C∥f∥HT (Ωe)∥g∥HT (Ωe).

This shows that Λq : HT (Ωe) → HT (Ωe)
∗ is bounded. Now, the symmetry of the

DN map can be seen from the symmetry of the bilinear form Bq. This proves the
assertion. □

We can also derive the integral identity.

Lemma 3.6 (Integral identity). Let Ω ⊂ Rn be a bounded Lipschitz domain, and
let qj ∈ L∞(Ω) satisfy (1.91.9) for j = 1, 2. For any f1, f2 ∈ HT (Ωe), we then have

(3.14) ⟨(Λq1 − Λq2) f1, f2⟩ =
ˆ
Ω

(q1 − q2)uf1uf2 dx,

where ufj is the unique weak solution to

(3.15)

{
(L∆ + qj)ufj = 0 in Ω,

ufj = fj in Ωe,

for j = 1, 2.
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Proof. Via (3.123.12), one can obtain

⟨(Λq1 − Λq2) f1, f2⟩ = ⟨Λq1(f1), f2⟩ − ⟨f1,Λq2(f2)⟩
= Bq1(uf1 , uf2)−Bq2(uf1 , uf2)

=

ˆ
Ω

(q1 − q2)uf1uf2 dx,

(3.16)

where we used (2.142.14) in the last equality. □

4. Proof of Theorem 1.11.1

As we discussed before, in solving nonlocal inverse problems, one usually needs
the Runge approximation for nonlocal operators. The proof of the (qualitative)
Runge approximation for L∆ is based on the following unique continuation property
(UCP) for the logarithmic Laplacian. Recall the definition of the space L1

0(Rn)
given in (2.102.10).

Proposition 4.1 ([CHW23CHW23, Theorem 5.1]). Let D ⊂ Rn be a nonempty open set.
If u ∈ L1

0(Rn) satisfies

(4.1) u = L∆u = 0 in D in distributional sense,

then u ≡ 0 in Rn.

Let Ω ⊂ Rn be a bounded nonempty Lipschitz domain, and let q ∈ L∞(Ω)
satisfy (1.91.9). Then the solution operator associated with (1.71.7) is defined as

(4.2) Pq : HT (Ωe) → H(Rn), f 7→ uf ,

where uf ∈ H(Rn) is the solution to (1.71.7), so the solution of (3.43.4) with F = 0.
With Proposition 4.14.1 at hand, we can show the Runge approximation.

Proposition 4.2 (Runge approximation). Let Ω ⊂ Rn be a bounded Lipschitz
domain, let q ∈ L∞(Ω) satisfy (1.91.9), and consider the solution operator Pq given
by (4.24.2). Then for every nonempty open set W ⋐ Ωe, the set

(4.3) R :=
{
Pqf

∣∣
Ω
: f ∈ C∞

c (W )
}
,

is dense in L2(Ω).

Proof. By the Hahn-Banach theorem, it suffices to show that for any w ∈ L2(Ω),
which satisfies

(4.4) (Pqf, w)L2(Ω) = 0 for any f ∈ C∞
c (W ),

it results that w ≡ 0. Let φ ∈ H0(Ω) be the solution to

(4.5)

{
(L∆ + q)φ = w in Ω,

φ = 0 in Ωe.

The well-posedness of the above equation was guaranteed in Section 33. Hence, we
have

Bq(φ, f) = Bq(φ, f − Pqf) = (w, f − Pqf)L2(Ω) = − (w,Pqf)L2(Ω) = 0,(4.6)

for any f ∈ C∞
c (W ), where we used (4.44.4) in the last identity. Hence for any

f ∈ C∞
c (W ) we have, since f ≡ 0 in Ω,ˆ

Rn

φL∆f dx = 2

ˆ
Rn

(log |ξ|)φ̂(ξ)f̂(ξ) dξ

= Bq(φ, f) +

ˆ
Ω

q(x)φ(x)f(x) dx

= 0.
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This yields that L∆φ ≡ 0 in W in distributional sense, while also φ ≡ 0 in W . Note
that φ ∈ L1

0(Rn) since H0(Ω) ⊂ L1
0(Rn), and this allows us to apply the UCP of

Proposition 4.14.1. Therefore, Proposition 4.14.1 implies that φ ≡ 0 in Rn and therefore
w ≡ 0 as desired. This concludes the proof. □

Remark 4.3. As we have mentioned earlier in Section 11, the logarithmic Laplacian
is a near zero-order operator, so we do not expect that the above-mentioned Runge
approximation possesses a higher regularity approximation property.

We are now ready to prove the global uniqueness result by using the Runge
approximation.

Proof of Theorem 1.11.1. With the condition (1.111.11), the symmetry of the operators
Λqi and integral identity (3.143.14) implyˆ

Ω

(q1 − q2)ufug dx = 0 for all f ∈ C∞
c (W1), g ∈ C∞

c (W2),(4.7)

where uf = Pq1f and ug = Pq2g ∈ H(Rn) are the solutions to

(4.8)

{
(L∆ + q1)uf = 0 in Ω,

uf = f in Ωe,

and

(4.9)

{
(L∆ + q2)ug = 0 in Ω,

ug = g in Ωe,

respectively. By the Runge approximation in Proposition 4.24.2, given any h ∈ L2(Ω),
there exist sequences of functions fk ∈ C∞

c (W1), gk ∈ C∞
c (W2) with Pq1fk → h

and Pq2gk → 1 in L2(Ω) as k → ∞. By (4.74.7), we then conclude that

(4.10)

ˆ
Ω

(q1 − q2)h dx = lim
k→∞

ˆ
Ω

(q1 − q2) (Pq1fk)(Pq2gk) dx = 0.

Due to the arbitrariness of h ∈ L2(Ω), there must hold q1 = q2 a.e. in Ω. This
proves the assertion. □

Remark 4.4. It would be interesting to ask if one can prove Theorem 1.11.1 using
a single measurement. It is clear that if the potential q is regular enough (e.g.
continuous potentials), one may directly apply the existing UCP of Proposition 4.14.1
for L∆. However, for the rough potential case, one needs to study a measurable
UCP result for the logarithmic Laplacian, i.e., the UCP for L∆ holds on a set of
positive measures.

5. Constructive uniqueness

To prove Theorem 1.41.4, we will utilize the monotonicity method combined with
the localized potentials for (1.71.7). This shows that increasing the potential q in-
creases the DN map Λq in the sense of quadratic forms, and vice versa. To accom-
plish the complete arguments, we need the following localized potentials.

5.1. Localized potentials. With the Runge approximation at hand, we can im-
mediately derive the existence of the localized potentials.

Lemma 5.1 (Localized potentials). Let Ω ⊂ Rn be a bounded Lipschitz domain
q ∈ L∞(Ω), and W ⋐ Ωe be a nonempty open set. For every measurable set
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M ⊂ Ω, there exists a sequence fk ∈ C∞
c (W ), such that the corresponding solutions

uk ∈ H(Rn) of

(5.1)

{
(L∆ + q)uk = 0 in Ω,

uk = fk in Ωe,

for all k ∈ N, satisfy that
ˆ
M

∣∣uk∣∣2 dx→ ∞ and

ˆ
Ω\M

∣∣uk∣∣2 dx→ 0 as k → ∞.

Proof. Applying the Runge approximation of Proposition 4.24.2, we find a sequence

of functions f̃k ∈ C∞
c (W ) so that the corresponding solutions ũk

∣∣
Ω

converge to
χM√´
M

1 dx
in L2(Ω), and

∥∥ũk∥∥2
L2(M)

=

ˆ
M

∣∣ũk∣∣2 dx→ 1, and
∥∥ũk∥∥2

L2(Ω\M)
=

ˆ
Ω\M

∣∣ũk∣∣2 dx→ 0

as k → ∞. We may assume for all k ∈ N that ũk ̸≡ 0 without loss of generality,
so that

∥∥ũ(k)∥∥
L2(Ω\M)

> 0 follows from the UCP of Proposition 4.14.1 for L∆. Taking

normalizing

fk :=
f̃k

∥ũk∥1/2L2(Ω\M)

,

the sequence of corresponding solutions uk ∈ H(Rn) of (5.15.1) possesses the desired
property

∥∥uk∥∥2
L2(M)

=

∥∥ũk∥∥2
L2(M)

∥ũk∥L2(Ω\M)

→ ∞, and
∥∥uk∥∥2

L2(Ω\M)
=

∥∥ũk∥∥
L2(Ω\M)

→ 0,

as k → ∞. This completes the proof. □

5.2. Monotonicity relations. Here we complete the proof of Theorems 1.21.2 and
1.41.4.

Lemma 5.2 (Monotonicity relations). Let Ω ⊂ Rn be a bounded open Lipschitz
domain and f ∈ HT (Ωe). Moreover, for j = 1, 2, let qj ∈ L∞(Ω) satisfy (1.91.9), and
let uj ∈ H(Rn) be the unique solutions of

(5.2)

{
(L∆ + qj)uj = 0 in Ω,

uj = f in Ωe.

Then we have the monotonicity relations

(5.3) ⟨(Λq2 − Λq1) f, f⟩ ≤
ˆ
Ω

(q2 − q1) |u1|2 dx,

and

⟨(Λq2 − Λq1f, f⟩ ≥
ˆ
Ω

(q2 − q1) |u2|2 dx.(5.4)

Proof. The definition of the DN map (3.103.10) implies that

⟨Λq1f, f⟩ = Bq1(u1, u1) and ⟨Λq2f, f⟩ = Bq2(u2, u2) = Bq2(u2, u1).
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By the symmetry property of the bilinear form, we thus have

0 ≤ Bq2(u2 − u1, u2 − u1)

= Bq2(u2, u2)− 2Bq2(u2, u1) +Bq2(u1, u1)

= −⟨Λq2f, f⟩+Bq2(u1, u1)

= ⟨(Λq1 − Λq2) f, f⟩+Bq2(u1, u1)−Bq1(u1, u1)

= ⟨(Λq1 − Λq2) f, f⟩+
ˆ
Ω

(q2 − q1) |u1|2 dx,

(5.5)

which proves (5.35.3). Interchanging q1 and q2 in the above computations yields (5.45.4).
This proves the assertion. □

Proof of Theorem 1.21.2. We have to show the equivalence of Properties (i)–(iii). Sup-
pose first that (i) holds, i.e., we have q1 ≤ q2 a.e. in Ω. Then (5.45.4) readily implies
that ⟨(Λq2 − Λq1) f, f⟩ ≥ 0 for every f ∈ HT (Ωe), so (ii) holds. From (ii) it di-
rectly follows that (1.121.12) holds for any nonempty bounded open set W ⋐ Ωe, since
C∞

c (W ) ⊂ HT (Ωe). Therefore (ii) implies (iii). Finally, let us show the implication
(iii) =⇒ (i). So we assume that (1.121.12) holds for any nonempty bounded open set
W ⋐ Ωe for some nonempty bounded open set W ⋐ Ωe, and we need to show that
q1 ≤ q2 a.e. in Ω. Arguing by contradiction, let us assume that q1 ≤ q2 does not
hold a.e. in Ω. Then there exists δ > 0 and a positive measurable set M ⊂ Ω such
that q1 − q2 ≥ δ > 0 on M ⊆ Ω. Using the sequence of localized potentials from
Lemma 5.15.1 for the coefficient q1, and the monotonicity inequality from Lemma 5.25.2,
one can get〈

(Λq2 − Λq1) f
k, fk

〉
≤
ˆ
Ω

(q2 − q1)
∣∣uk1∣∣2 dx

≤ ∥q2 − q1∥L∞(Ω\M)

∥∥uk1∥∥2L2(Ω\M)
− δ

∥∥uk1∥∥2L2(M)

→ −∞, as k → ∞,

(5.6)

which contradicts (1.121.12). Therefore, the assertion is proved. □

Finally, let us prove Theorem 1.41.4.

Proof of Theorem 1.41.4. By [HL19HL19, Lemma 4.4], it is known that given any nonneg-
ative q ∈ L∞(Ω), then one has

(5.7) q(x) = sup {φ(x) : φ ∈ Σ+,0, φ ≤ q} for a.e. x ∈ Ω.

Moreover, since we assume that λ1(Ω) > 0, the relation (1.91.9) is satisfied, and it is
also satisfied for φ in place of q if φ ∈ Σ+,0. We may therefore combine (5.75.7) with
Theorem 1.21.2, applied to q1 = φ ∈ Σ+,0 and q2 = q, to complete the proof. □

Remark 5.3. With the if-and-only-if monotonicity relations, inverse problems
have more possible applications. For instance, one can also study inverse obsta-
cle problems, which recover the unknown inclusion via the monotonicity test (see
e.g. [HL19HL19, HPS19HPS19]). The stability result could also be interesting (see e.g. [HL20HL20]).
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