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Abstract We consider the scattering of elastic waves by highly oscillating anisotropic
periodic media with bounded support. Applying the two-scale homogenization,
we first obtain a constant coefficient second-order partial differential elliptic equa-
tion that describes the wave propagation of the effective or overall wave field.
We further pursue a higher-order homogenization with the help of complimentary
boundary correctors and provide a detailed analysis on the rate of higher-order
convergence. Finally we provide preliminary numerical examples to demonstrate
the higher-order homogenization.

Keywords Second-order homogenization · Elastic scattering · Periodic media ·
Wave dispersion · Two-scale homogenization

1 Introduction and summary of results

1.1 Motivation and background

The wave propagation in periodic media is of great interest in cloaking, sub-
wavelength imaging, and noise control, thanks to the underpinning phenomena
of frequency-dependent anisotropy and band gaps [19,22,28]. Away from averag-
ing techniques, the effective wave motion can also be obtained using the two-scale
method [5] with a perturbation parameter that signifies the ratio between the
unit cell of periodicity and wavelength. In the regime of long-wavelength and low-
frequency, the leading-order homogenization in particular gives the quasi-static
model by a second-order partial differential equation, where the elastic tensor and
density are replaced by constant effective elastic tensor and density respectively
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[5,26]. To gain further understanding of the wave dispersion, a higher-order ho-
mogenization has been taken into account. A higher-order homogenization was de-
rived for the scalar wave equation in [11,12,9,21,27,15], where a fourth-order par-
tial differential equation was formally derived and the dispersive effect was hence
demonstrated. [8] considered a higher-order homogenization of the elastic wave for
non-periodic layered media that transcends the usual quasi-staic regime. Alterna-
tively a dispersive model for scalar wave equation was derived using Floquet-Bloch
theory and higher-order asymptotic of the Bloch variety [24]. The higher-order
homogenization in particular sheds light on sensing the microstructure through
dispersion [18]. In the case that the periodic structure was only supported in a
bounded domain, contrary to the case that the periodic structure occupies the
whole space, the boundary correctors played a role in the homogenization [7]. Our
contribution is to investigate the scattering of elastic waves by highly oscillating
anisotropic periodic media with bounded support.

The homogenization problem for the second-order elliptic equations or systems
with periodic coefficients has been well studied in the literature, for example, see
[2,3,5,10,16,17,23,26]. Concerning about the regularity estimates, the authors in
[2,3] introduced a famous three-steps compactness method to prove the Hölder
estimates for solutions of divergence and non-divergence elliptic systems. Further-
more, in [2], the authors studied the Green function and the Poisson kernel to
establish Lp theory of the elliptic homogenization problem. The authors in [17]
investigated the asymptotic behaviour of the Green and Neumann functions and
derived optimal convergence rates in Lp and W 1,p for solutions with Dirichlet or
Neumann boundary conditions. They further studied the convergence rates in L2

of solutions of the elliptic systems in Lipschitz domains in [16]. We refer to [26]
for an excellent lecture note for the survey on this research area.

1.2 The elastic scattering problem

Let Ω ⊂ Rd be a bounded simply connected domain with a C∞-smooth boundary
∂Ω for d = 2, 3. We remark that our study still holds in one dimension where
all the tensors become scalar. Let ε > 0 be a small parameter and Y := [0, 1]d

be the unit cell. Let C = C(y) be an anisotropic elastic fourth-order tensor with
C = (Cijk`)1≤i,j,k,`≤d. In this paper, we assume that the elastic tensor C = C(y)
satisfies the following conditions.

– Periodicity: The elastic tensor C = C(y) is Y -periodic,

C(y + z) = C(y), for any y ∈ Rd and z ∈ Zd.

– Strong convexity:

d∑
i,j,k,`=1

Cijk`(y)aijak` ≥ c0
d∑

i,j=1

a2ij , for any y ∈ Rd, (1)

with some constant c0 > 0 and for any constant symmetric matrix (aij)1≤i,j≤d.
– Smoothness: Cijk`(y) ∈ C∞(Rd), for all 1 ≤ i, j, k, ` ≤ d.
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– Symmetry: The elastic tensor C = (Cijk`)1≤i,j,k,`≤d satisfies major and minor
symmetric condition, that is,

Cijk` = Ck`ij and Cijk` = Cij`k, for all 1 ≤ i, j, k, ` ≤ d.

The symmetric property of the elastic tensor C = C(y) plays an important role
in the study of the asymptotic analysis of the scattering homogenization problem
(see Section 2 and Section 3). Next, let ρ = ρ(y) ∈ C∞(Rd) be the density of
the medium and ω ∈ R be the interrogating frequency. We also assume ρ(y) is
Y -periodic, i.e., ρ(y+z) = ρ(y) for any y ∈ Rd and z ∈ Zd. In the exterior domain
Rd\Ω, the medium is homogeneous, isotropic where ρ = 1 and the elastic tensor
is a constant fourth-order tensor C(0) = (C(0)

ijk`)1≤i,j,k,`≤d given by

C(0)

ijk` = λδijδk` + µ(δikδj` + δi`δjk), (2)

where λ and µ are Lamé constants satisfying the strong convexity condition (1),
and it is equivalent to

µ > 0 and dλ+ 2µ > 0 where d = 2, 3.

Now let us consider the elastic scattering by highly oscillating periodic media
with bounded support. Let u(x) = (u`(x))d`=1 be the displacement vector field,
the time-harmonic elastic scattering is modeled by

∇ ·
(
C(

x

ε
)∇u

)
+ ω2ρ(

x

ε
)u = 0 in Ω,

∆∗us + ω2us = 0 in Rd\Ω,
us + ui = u on ∂Ω,

Tν(us + ui) = (C(
x

ε
)∇u) · ν on ∂Ω,

where
(
∇ · (C(

x

ε
)∇u)

)
j

=
∑d
i,k,`=1

∂

∂xi

(
Cijk`(

x

ε
)
∂u`
∂xk

)
for 1 ≤ j ≤ d,

∆∗ = µ∆+ (λ+ µ)∇(∇·) = ∇ · (C(0)∇·),

and ν is the unit outward normal on ∂Ω, us is the scattered field, and uin is an
incident field; the operator Tν stands for the boundary traction operator of the
isotropic elasticity system (from the exterior domain), which is

Tνu =


2µ
∂u

∂ν
+ λν∇ · u + µνT (∂2u1 − ∂1u2), when d = 2,

2µ
∂u

∂ν
+ λν∇ · u + µν × (∇× u), when d = 3.

(3)

The equation ∆∗us + ω2us = 0 with constant coefficients is called the Navier’s
equation. In particular we consider an incident field that is either a plane shear
wave

uin(x) = uins (x) := d⊥ exp(iωsx · d),

where d,d⊥ are orthonormal vectors in Rd, or a plane pressure wave

uin(x) = uinp (x) := d exp(iωpx · d),
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where ωs and ωp are constants denoted by ωs =
ω
√
µ

and ωp =
ω√

λ+ 2µ
.

Via the well-known Helmoholtz decomposition in Rd\Ω, one can see that the
scattered field can be decomposed as

us = uscp + uscs ,

with

uscp = − 1

ω2
p
∇(∇ · usc) and uscs =

1

ω2
s

rot(rotusc),

where rot = ∇T represents π
2 clockwise rotation of the gradient if d = 2 and

rot = ∇× stands for the curl operator if d = 3. The vector functions uscp and uscs
are called the pressure (longitudinal) and shear (transversal) parts of the scattered
vector field us, respectively and they satisfy the Helmholtz equation

(∆+ ω2
p)uscp = 0 and rotuscp = 0 in Rd\Ω,

(∆+ ω2
s)uscs = 0 and ∇ · uscs = 0 in Rd\Ω.

Furthermore, for the elastic scattering problem, the scattered field us satisfies the
Kupradze radiation condition

lim
r→∞

(
∂uscp
∂r
− iωpuscp

)
= 0 and lim

r→∞

(
∂uscs
∂r
− iωsuscs

)
= 0, r = |x|, (4)

uniformly in all directions x̂ =
x

|x| .

In summary the elastic scattering by highly oscillating periodic media can be

formulated as: find the solution uε ∈
(
H1
loc(Rd)

)d
to


∇ ·

(
C(

x

ε
)∇uε

)
+ ω2ρ(

x

ε
)uε = 0 in Ω,

∆∗uε + ω2uε = 0 in Rd\Ω,
(uε)+ − (uε)− = f on ∂Ω,

(Tνuε)+ −
(
C(

x

ε
)∇uε

)−
· ν = g on ∂Ω,

(5)

where uε satisfies the Kupradze radiation condition (4) at infinity. Here uε stands
for the solution parametrized by ε and

f := −uin and g := −Tνuin on ∂Ω,

where uin is either a shear wave or a pressure wave given as before. The super-
scripts ”+” or ”−” stand for the limit from exterior or interior on ∂Ω, respectively.
We remark that the highly oscillating periodic media is only supported in Ω.
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1.3 Main results and outline

We are interested in the limit behavior or the overall behavior of the solution uε

as ε → 0, known as homogenization. As ε → 0, we are expecting that uε → u(0),
where u(0) is the solution of the homogenized equation

∇ · (C∇u(0)) + ω2ρu(0) = 0 in Ω,

∆∗u(0) + ω2u(0) = 0 in Rd\Ω,
(u(0))+ − (u(0))− = f on ∂Ω,

(Tνu(0))+ − (C∇u(0))− · ν = g on ∂Ω,

(6)

where C = (Cijk`) is the constant four tensor and ρ is the constant density given
by Cijk` =

∫
Y

(
Cijk` − Cijmn

∂

∂ym
χnk`

)
dy,

ρ =
∫
Y
ρ dy,

and here we have utilized the Einstein summation convention for the repeated
indices; the constant fourth-order tensor C is called the effective fourth-order ten-
sor; the third-order tensor χ = (χnk`)1≤n,k,`≤d with χnk` ∈ H1

per(Y ) is uniquely
determined by the cell problem

∂

∂yi

(
Cijmn − Cijk`

∂

∂yk
χ`mn

)
= 0 in Y,∫

Y
χ`mn(y) dy = 0,

(7)

where we refer to Appendix Section 5 for detailed analysis. H1
per(Y ) denotes the

periodic Sobolev space consists of H1 functions defined on the d-dimensional torus
Rd/Zd where Y = [0, 1]d, we refer readers to [10, Chapter 3] for detailed charac-
terizations.

The constant tensor C also satisfies the strong convexity condition (1) (see
Appendix Section 5), which implies that (6) is a well-posed transmission problem.
Note that from the standard elliptic regularity theory (see [20] for instance), the
corrector χ is C∞-smooth due to the smoothness of C.

Now let us look for ansatz uε

uε = u(0) + εu(1) + ε2u(2) + · · ·

as an asymptotic expansion in terms of ε, where the functions u(j) will be char-
acterized in the following sections for j = 0, 1, 2, · · · . Now, we can state our main
results in this paper.

Theorem 1 (Convergence in L2 and H1) Let uε and u(0) be the solutions of
(5) and (6), respectively. Let u(1) be the bulk corrector given by (21) in Ω with
u(1) = 0 in Rd \Ω. Then for any ball BR with Ω ⊂ BR, we have

‖uε − u(0) − εu(1)‖H1(Ω) + ‖uε − u(0)‖H1(BR\Ω) ≤ CRε
1/2‖u(0)‖H2(Ω), (8)

and
‖uε − u(0)‖L2(BR) ≤ CRε‖u(0)‖H2(Ω), (9)

for some constant CR > 0 independent of ε and u(0).
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Furthermore we have the following higher-order convergent rates between solutions
uε and u(0).

Theorem 2 (Higher-order convergence in L2 and H1) Let uε and u(0) be
the solutions of (5) and (6) respectively. Let u(1) and u(2) be defined by equations
(49) and (55) in Ω, respectively, with u(1) = 0 and u(2) = 0 in Rd \Ω. Let ϕε and
θε be the boundary correctors given by (41) and (64). Then for any ball BR with
Ω ⊂ BR, we have

‖uε − (u(0) + εu(1) + ε2u(2) + εϕε + ε2θε)‖H1(BR) ≤ CRε2‖u(0)‖H4(Ω), (10)

and

‖uε − (u(0) + εu(1) + εϕε)‖L2(BR) ≤ CRε2‖u(0)‖H4(Ω), (11)

where CR > 0 is a constant independent of ε and u(0).

Remark that the above convergence estimates include boundary correctors ϕε

and θε since the periodic media has bounded support, as contrary to the case that
the periodic media occupies Rd.

We also remark that as a by-product we obtained a higher-order homoge-
nization that enables to study the anisotropic dispersion of wave propagation in
periodic media (in the whole space). Formally the averaged wave field U of uε up
to order ε2 is governed by the fourth-order equation in Ω

∇ ·
(
C∇U

)
+ ω2ρU = −ε

(
F : ∇3U + ω2G : ∇U

)
− ε2

(
D : ∇4U + ω2E : ∇2U

)
+O(ε3), (12)

where D is a sixth-order tensor, E is a fourth-order tensor, F is a fifth-order tensor
and G is a third-order tensor respectively (see Section 3.3 for the definitions and de-
tails). The fourth-order partial differential equation (12) in Ω formally introduces
the dispersion as is seen from the right hand side of (12). In the low-frequency
long-wavelength regime for wave propagation in periodic media, the wave disper-
sion has been demonstrated by a fourth-order partial differential equation for the
acoustic case [7]. In the particular case that the periodic media occupies Rd, (12)
models the wave propagation and transcends the quasi-static regime. In the case
that the periodic media has bounded support, the boundary correctors play a
role. This is a key difference between homogenization in the whole space and in a
bounded domain.

This article is further structured as follows. In Section 2, we study the asymp-
totic analysis for the elastic homogenization problem. From the analysis, we can
prove the L2 convergent rates for the elastic homogenization problem, which shows
Theorem 1. In Section 3, we develop the higher-order asymptotic analysis. This
gives us important information about the higher-order convergent rates between
solutions uε and its approximations, and we can use it to prove Theorem 2. As
a by-product, we formally provide in Section 3.3 a second-order homogenized
model for the elastic scattering in periodic media (that occupies in Rd), where
the anisotropic dispersion was demonstrated. In Section 4, we provide preliminary
numerical examples to illustrate our higher-order homogenization. In Appendix 5,
for self-contained proofs, we offer fundamental materials which is used to demon-
strate our homogenization theory for the elastic scattering problem.
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1.4 Notation

1. We use sub-index to represent the component of a tensor, in particular the
i1i2 · · · in component of a n-th order tensor χ is represented by χi1i2···in .

2. We use Einstein summation convention for the repeated indices.
3. · denotes the standard inner product and : denotes the standard contraction

between two tensors.
4. C∞c (Ω) denotes the space consists of C∞ functions that are compactly sup-

ported in Ω.

Acknowledgements The work was initiated when the authors participated the annual pro-
gram on “Mathematics and Optics” (2017–2018) at the Institute for Mathematics and its
Applications (IMA) at the University of Minnesota. Y.-H. Lin would like to thank the support
from IMA for his stay at the University of Minnesota.

2 Asymptotic analysis of the transmission problem

To begin with, we recall the two-scale homogenization method for the elasticity
scattering in periodic media.

2.1 Basic asymptotic analysis

Let us consider x and y =
x

ε
that are the slow and fast variables, respectively. Let

uε be a solution of (5) and we rewrite (5) to a first-order systemvε − C(
x

ε
)∇uε = 0,

∇ · vε + ω2ρ(
x

ε
)uε = 0,

for x ∈ Ω. (13)

Note that uε = (uεi)1≤i≤d is a vector-valued function and vε = (vεij)1≤i,j≤d is a
matrix-valued function. The two-scale homogenization method begins with ansatz
uε = uε(x, y) and vε = vε(x, y) such that

uε(x, y) = u(0)(x, y) + εu(1)(x, y) + ε2u(2)(x, y) + · · · =
∞∑
k=0

εku(k)(x, y),

vε(x, y) = v(0)(x, y) + εv(1)(x, y) + ε2v(2)(x, y) + · · · =
∞∑
k=0

εkv(k)(x, y). (14)

Furthermore since there are no microstructure in the exterior domain Rd\Ω, the
asymptotic expansions of uε and vε are nothing but

uε = u(0)(x) and vε = v(0)(x).

Proceeding with the ansatz, we consider x and y =
x

ε
as independent variables

and correspondingly

∇ = ∇x +
1

ε
∇y. (15)
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Use the formal expansion and combine (13), (14) and (15), then we have
∑∞
m=0 ε

mv(m)(x, y)− C(y)
(
∇x +

1

ε
∇y
)(∑∞

m=0 ε
mu(m)(x, y)

)
= 0,(

∇x +
1

ε
∇y
)
·
(∑∞

m=0 ε
mv(m)(x, y)

)
+ ω2ρ(y)

∑∞
m=0 ε

mu(m)(x, y) = 0.

(16)
By collecting the εm terms in equation (16) with m = −1, 0, 1 · · · ,

O(ε−1) : C∇yu(0) = 0, (17)

∇y · v(0) = 0. (18)

O(1) : v(0) −C
(
∇xu(0) +∇yu(1)

)
= 0, (19)(

∇x · v(0) +∇y · v(1)
)

+ ω2ρu(0) = 0. (20)

Via (17), we get u(0) = u(0)(x). From (18), (19) and the cell function χ`mn solving
(7), we can find that the bulk corrector u(1) = (u(1)

` )1≤`≤d is given component-
wisely by

u(1)

` (x, y) = −χ`mn(y)
∂u(0)

n

∂xm
(x). (21)

We call u(1)(x, y) the first-order corrector for the periodic homogenization problem.
Plugging equation (21) directly into (19) yields

v(0)

ij (x, y) =
(
C(y)

(
∇xu(0)(x) +∇yu(1)(x, y)

))
ij

= Cijkl(y)
∂u(0)

`

∂xk
− Cijkl

∂χ`mn
∂yk

∂u(0)
n

∂xm
, (22)

and consequently the Y -average of v0 is

〈v(0)〉 := v(0) =

∫
Y

v(0)(x, y)dy = C∇u(0).

In order to solve v(1), we introduce the following partial differential equation
in the unit cell. Let q(x, y) be a solution to

roty(q) = v(0) −C∇u(0), (23)

where q(x, y) is{
q = (q1, q2) when d = 2 and qi’s are scalar functions for i = 1, 2,

q = (q1, q2, q3) when d = 3 and qi’s are column vectors for i = 1, 2, 3,

where each component of q(x, y) belongs to H1
per(Y ) as a function of the y variable.

Let γ(y) ∈
(
H1
per(Y )

)d×d
solve the following equation
∂

∂yi

(
Cijk`

∂γm`
∂yk

)
=
(
ρ− ρ

)
δjm,∫

Y
γm`(y)dy = 0.

(24)

We remark that the right hand side of (24) has zero mean (i.e.,
∫
Y

(ρ− ρ) dy = 0),
and then compatibility condition is satisfied, which means (24) is solvable.
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From (23), (24), (20) and note that ∇y · (rotxq(x, y)) = −∇x · (rotyq(x, y)),
one candidate for v(1) is ṽ(1) = (ṽ(1)

ij )1≤i,j≤d defined by

ṽ(1)

ij (x, y) := (rotx(q(x, y)))ij + ω2Cijk`(y)
∂γm`
∂yk

(y)u(0)

m (x), for 1 ≤ i, j ≤ d. (25)

We remark that the function ṽ(1) in the form (25) is convenient in proving Theorem
1, and we will choose another form of ṽ(1) to derive higher-order estimate.

2.2 Rates of convergence in H1 and L2

Now let us introduce the boundary corrector ϕ̃ε that solves

∇ ·
(
C(

x

ε
)∇ϕ̃ε

)
+ ω2ρ(

x

ε
)ϕ̃ε = 0 in Ω,

∆∗ϕ̃ε + ω2ϕ̃ε = 0 in Rd \Ω,
(ϕ̃ε)+ − (ϕ̃ε)− = u(1) on ∂Ω,

(Tνϕ̃
ε)+ − (C(

x

ε
))∇ϕ̃ε)− · ν =

(
v(0) − v(0)

ε
+ ṽ(1)

)
· ν on ∂Ω,

(26)

where ϕ̃ε satisfies the Kupradze radiation condition (4). By plugging (21) and (25)
into (26), one can see that the transmission conditions on ∂Ω is

((
ϕ̃ε
)+ − (ϕ̃ε)−)

j
= −χjmn(y)

∂u(0)
n

∂xm
, for 1 ≤ α ≤ d on ∂Ω

(Tνϕ̃
ε)+ − (C(

x

ε
))∇ϕ̃ε)− · ν =

[
rot q + ω2(C : ∇γ)(y)u(0)

]
· ν on ∂Ω,

(27)

where rot = rotx + 1
ε roty.

Before proceeding with the following lemma, we remark that the solution u(0)

to (6) is sufficiently smooth, since (6) is a well-posed transmission problem and
moreover the tensor C and density ρ are constants and the boundary data is
sufficiently smooth.

Lemma 1 Let uε and u(0) be the solutions of (5) and (6), respectively. Let u(1)

be the bulk corrector given by (21) in Ω with u(1) = 0 in Rd \ Ω and ϕ̃ε be the
boundary corrector given by (26). Then for any ball BR with Ω ⊂ BR, we have

‖uε − (u(0) + εu(1) + εϕ̃ε)‖H1(BR) ≤ CRε‖u(0)‖H2(Ω), (28)

where CR > 0 is a constant independent of ε and u(0).

Proof Consider the error functions in D given by

wε := uε − u(0) − εu(1), (29)

and

ζε := C(
x

ε
)∇uε − v(0) − εṽ(1), (30)



10 Yi-Hsuan Lin, Shixu Meng .

where wε is a vector-valued function and ζε is a matrix-valued function. From
straightforward calculations, we can get

C(
x

ε
)∇wε − ζε = ε

(
ṽ(1) −C(y)∇xu(1)

)
,

(∇ · ζε)j + ω2ρ(y)wεj = −εω2
(
ρ(y)u(1)

j + Cijk`(y)
∂γm`
∂yk

∂u(0)
m

∂xi

)
, for 1 ≤ j ≤ d,

(31)

which is a first order differential system of (wε, ζε) such that their right hand sides
are of order O(ε).

While outside Ω we simply consider the error functions wε := uε − u(0) and
ζε := C(0)∇wε, and then they satisfy

−∇ · ζε = ω2wε.

Let BR be a sufficiently large ball that contains Ω and φ ∈
(
C∞c (BR)

)d
be a

vector-valued test function, we shall derive an estimate for∫
BR

(wε − εϕ̃ε) · φdx. (32)

To estimate the above quantity we consider another auxiliary function Φε ∈(
H1
loc(Rd)

)d
by 

∇ · (C(
x

ε
)∇Φε) + ω2ρ(

x

ε
)Φε = φ in Ω,

∆∗Φε + ω2Φε = φ in Rd \Ω,
(Φε)+ − (Φε)− = 0 on ∂Ω,

(TνΦ
ε)+ − (C(

x

ε
))∇Φε)− · ν = 0 on ∂Ω,

(33)

where φ is the test function as we mentioned before and Φε further satisfies the
Kupradze radiation condition (4) at infinity. Now we replace φ in (32) by (33)

∫
BR

(wε − εϕ̃ε) · φdx =

∫
Ω

(wε − εϕ̃ε) ·
(
∇ · (C(

x

ε
)∇Φε) + ω2ρ(

x

ε
)Φε

)
dx

+

∫
BR\Ω

(wε − εϕ̃ε) · (∆∗Φε + ω2Φε)dx

=−
∫
Ω

(
C(

x

ε
)∇wε) : ∇Φεdx+ ε

∫
Ω

(
C(

x

ε
)∇ϕ̃ε

)
: ∇Φεdx

+

∫
Ω

ω2ρ(
x

ε
)(wε − εϕ̃ε) ·Φεdx+

∫
∂Ω

Tν(wε − εϕ̃ε)+ ·ΦεdS

+

∫
∂BR

(wε − εϕ̃ε) · TνΦεdS −
∫
∂BR

Tν(wε − εϕ̃ε) ·ΦεdS,

(34)

where we used the integration by parts formula once for the interior Ω and twice
for the exterior BR \ Ω, and the function wε − εϕ̃ε has no jumps across ∂Ω.
Furthermore the last two terms of (34) are zero, due to the Kupradze radiation
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condition; indeed from equations (91), (92) in Appendix 5.1 on the discussion of
Kupradze radiation condition, a direct calculation yields∫

∂BR

(wε − εϕ̃ε) · TνΦεdS −
∫
∂BR

Tν(wε − εϕ̃ε) ·ΦεdS = 0.

Now we have∫
BR

(wε − εϕ̃ε) · φdx =−
∫
Ω

(
C(

x

ε
)∇wε) : ∇Φεdx+ ε

∫
Ω

(
C(

x

ε
)∇ϕ̃ε

)
: ∇Φεdx

+

∫
Ω

ω2ρ(
x

ε
)(wε − εϕ̃ε) ·Φεdx+

∫
∂Ω

Tν(wε − εϕ̃ε)+ ·ΦεdS.

Since ϕ̃ε satisfies equation (26), then from integration by parts∫
BR

(wε − εϕ̃ε) · φdx =−
∫
Ω

(
C(

x

ε
)∇wε) : ∇Φεdx+ ε

∫
∂Ω

(
C(

x

ε
)∇ϕ̃ε

)−
ν ·Φεdx

+ ω2

∫
Ω

ρ(
x

ε
)wε ·Φεdx+

∫
∂Ω

(
Tν(wε − εϕ̃ε)

)+ ·ΦεdS.
From (26), (31) and integration by parts we can further obtain∫

BR

(wε − εϕ̃ε) · φdx

=−
∫
Ω

ζε · ∇Φεdx+ ω2

∫
Ω

ρ(
x

ε
)wε ·Φεdx+

∫
∂Ω

(Tνwε)+ ·ΦεdS

+ ε

∫
Ω

(
− ṽ(1) + C(

x

ε
)∇xu(1)

)
: ∇Φεdx+

∫
∂Ω

(v(0) − v(0) − εṽ(1))ν ·ΦεdS

=− εω2

∫
Ω

(
ρ(
x

ε
)u(1)

j + Cijk`(
x

ε
)
∂γm`
∂yk

∂u(0)
m

∂xi

)
Φεjdx

+ ε

∫
Ω

(
−ṽ(1) + C(

x

ε
)∇xu(1)

)
: ∇Φεdx

+

∫
∂Ω

(
(v(0) − v(0) − εṽ(1))− · ν)− (ζε)− · ν + (Tνwε)+

)
·ΦεdS.

From equations (5), (6), (26), (29) and (30) we can obtain that the the last term
in the above equality is zero. Thus,∫

BR

(wε − εϕ̃ε) · φdx

=− εω2

∫
Ω

(
ρ(
x

ε
)u(1)

j + Cijk`(
x

ε
)
∂γm`
∂yk

∂u(0)
m

∂xi

)
Φεjdx

+ ε

∫
Ω

(
− ṽ(1) + C(

x

ε
)∇xu(1)

)
: ∇Φεdx, (35)

Note that the function q solves (23), then one can choose q such that

sup
y∈Y
|ṽ(1)| ≤ C

2
∑
i,j

∣∣∣∣ ∂u(0)

∂xi∂xj

∣∣∣∣+ |u(0)|

 ,
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where C > 0 is a constant independent of ε. Recall that u(1) is represented by (21),
then we obtain ∥∥∥∥ρu(1)

j + Cijk`
γm`
∂yk

∂u(0)
m

∂xi

∥∥∥∥
L2(Ω)

≤ C‖u(0)‖H2(Ω)∥∥∥∥Cijk` ∂u(1)

`

∂xk

∥∥∥∥
L2(Ω)

≤ C‖u(0)‖H2(Ω),

where the first inequality holds for 1 ≤ j ≤ d and the second inequality holds for
1 ≤ i, j ≤ d. Appling the Cauchy-Schwartz inequality to (35) we can obtain∣∣∣∣∫

BR

(wε − εϕ̃ε) · φdx
∣∣∣∣ ≤ Cε‖u(0)‖H2(Ω)‖Φε‖H1(Ω),

for some constant C > 0 independent of ε. Finally from the standard estimate for
the elliptic system (see [20] for instance),

‖Φε‖H1(Ω) ≤ C‖φ‖H−1(BR),

where C > 0 is a constant depends on the coefficients and R. Finally the proof
follows from the duality argument. ut

Now we can have the following theorem.

Theorem 3 Let uε and u(0) be the solutions of (5) and (6), respectively. Let u(1)

be the bulk correction given by (21) in Ω with u(1) = 0 in Rd \Ω, then we have

‖uε − u(0) − εu(1)‖H1(Ω) + ‖uε − u(0)‖H1(BR\Ω) ≤ CRε
1/2‖u(0)‖H2(Ω),

for some constant CR > 0 independent of ε and u(0).

Proof From the elastic transmission problem (26), the function ϕ̃ε satisfies the
following H1 estimate (see Theorem 7 in Appendix Section 5),

‖ϕ̃ε‖H1(Ω) + ‖ϕ̃ε‖H1(BR\Ω)

≤CR
(
‖u(1)‖H1/2(∂Ω) +

∥∥∥∥(v(0) − v(0)

ε
− ṽ(1)

)
· ν
∥∥∥
H−1/2(∂Ω)

)
, (36)

for some constant CR > 0 independent of ε. Recall that u(1)

` (x,
x

ε
) = χ`mn(

x

ε
)
∂u(0)

n

∂xm
(x),

by a standard argument of the trace theorem and cutoff techniques in the homog-
enization theorem (see [10, Chapter 7] for instance), we have

‖u(1)‖H1/2(∂Ω) ≤ Cε
−1/2‖u(0)‖H2(Ω), (37)

where C > 0 is a constant independent of ε and u(0). From equations (26) and
(27), (

v(0) − v(0)

ε
− ṽ(1)

)
· ν =

(
rot q + ω2C(y)∇γ(y)u(0)

)
· ν,

where O(
1

ε
) term is absorbed.



Homogenization of an elastic scattering problem 13

Now let φ be any arbitrary smooth vector-valued test function, then when
d = 2, we have∫

∂Ω

rot(qj) · νφ dS = −
∫
∂Ω

qj rot(φ) · ν dS, for j = 1, 2,

and when d = 3,∫
∂D

rot(qj) · νφ dS = −
∫
∂D

(qj ×∇φ) · ν dS, for j = 1, 2, 3.

From the governing equation (23) of qj(y) for 1 ≤ j ≤ d, we can see that the
H1
per(Y )-norm of q = (qj)1≤j≤d is bounded by ‖u(0)‖H2(Ω). From the trace theo-

rem we can obtain

‖qj‖L2(∂Ω) ≤ C‖u(0)‖H2(Ω) and ‖qj‖H1(∂Ω) ≤ Cε−1‖u(0)‖H2(Ω), for 1 ≤ j ≤ d,

where C > 0 is a constant independent of ε. Then from the above inequalities and
the duality argument,∥∥∥(v(0) − v(0)

ε
+ ṽ(1)

)
· ν
∥∥∥
H−1(∂Ω)

≤ C‖u(0)‖H2(Ω), (38)

and ∥∥∥(v(0) − v(0)

ε
+ ṽ(1)

)
· ν
∥∥∥
L2(∂Ω)

≤ Cε−1‖u(0)‖H2(Ω), (39)

where C > 0 is a constant independent of ε. Therefore by interpolating between
(38) and (39), and combining with (36), (37), we obtain

‖ϕ̃ε‖H1(Ω) + ‖ϕ̃ε‖H1(BR\Ω) ≤ CRε
−1/2‖u(0)‖H2(Ω), (40)

for some constant CR > 0 independent of ε. Finally from (28) and (40) we obtain

‖uε − u(0) − εu(1)‖H1(Ω) + ‖uε − u(0)‖H1(BR\Ω) ≤ CRε
1/2‖u(0)‖H2(Ω),

where CR > 0 is some constant independent of ε and this completes the proof.
This also proves (8) in Theorem 1. ut

Consider another boundary corrector function as follows. Let ϕε ∈
(
H1
loc(Rd)

)d
be a boundary corrector that solves the following equation

∇ ·
(
C(

x

ε
)∇ϕε

)
+ ω2ρ(

x

ε
)ϕε = 0 in Ω,

∆∗ϕε + ω2ϕε = 0 in Rd \Ω,
(ϕε)+ − (ϕε)− = u(1) on ∂Ω,

(Tνϕ
ε)+ −

(
C(

x

ε
)∇ϕε · ν

)−
=
(v(0) − v(0)

ε
+ v(1)

)
· ν on ∂Ω,

(41)

where ϕε further satisfies the Kupradze radiation condition (4) and v(1) is the
function given in the asymptotic expansion (14). Here we remark that v(1) might
not be the same function as ṽ(1).
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Lemma 2 Let BR be an arbitrary ball in Rd such that Ω ⊂ BR. Let u(0) ∈
H2(BR) be the solution of (6) and ϕε be the solution of (41), then we have

‖ϕε‖L2(BR) ≤ CR‖u(0)‖H2(Ω),

for some constant CR > 0 independent of ε.

Proof Let us consider a test function φ ∈
(
L2(BR)

)d
such that φ ≡ 0 outside BR

and let Φε be the solution to the transmission problem (33). We begin with the
estimate of ϕ̃ε. It is similar to the proof of Lemma 1 and indeed we can obtain∫

BR

ϕ̃ε · φdx =−
∫
Ω

(
C(

x

ε
)∇ϕ̃ε

)
: ∇Φεdx+ ω2

∫
Ω

ρ(
x

ε
)ϕ̃ε ·Φεdx

+

∫
∂Ω

((
C(

x

ε
)∇Φε

)− · ν) · (ϕ̃ε)−dS
+

∫
∂Ω

((
∇ϕ̃ε

)+ · ν) · (Φε)+dS − ∫
∂Ω

((
∇Φε

)+ · ν) · (ϕ̃ε)+dS.
By using the integration by parts in Ω, the equation for ϕ̃ε, Kupradze radiation
condition (4) for ϕ̃ε and continuous transmission boundary conditions for Φε (see
(33) again), we can derive∫

BR

ϕ̃ε · φdx

=

∫
∂Ω

((v(0) − v(0)

ε
+ ṽ(1)

)
· ν
)
· (Φε)+dS −

∫
∂Ω

u(1) ·
((
∇Φε

)+ · ν)dS
=

∫
∂Ω

(((
rotq

)
ij

+ ω2Cijk`(y)
∂γm`
∂yk

(y)u(0)

m

)
νi

)
· (Φεj)+dS

+

∫
∂Ω

χ`mn(
x

ε
)
∂u(0)

n

∂xm

((
∇Φε

)+ · ν)
`
dS.

Let Φ(0) be the solution of the leading-order homogenized transmission problem

with respect to Φε, and Φ(1)

` (x, y) = χ`mn(y)
∂Φ(0)

n

∂xm
(x) be the first order corrector

term corresponding to Φε. Furthermore let Ψ ε be the bulk corrector of Φε as the
role of ϕ̃ε playing for uε. Following the same proof of Lemma 1, we can derive that

‖Φε − (Φ(0) + εΦ(1) + εΨ ε)‖H1(BR) ≤ CRε‖Φ(0)‖H2(Ω),

where CR > 0 is a constant independent of ε and Φ(0). Since the bulk correction
of Φε is zero outside Ω, then in particular we have

‖Φε − (Φ(0) + εΨ ε)‖H1(BR\Ω) ≤ CRε‖Φ
(0)‖H2(Ω).

From the definitions of Φε, Φ(0) and Ψ ε in BR \ Ω, we know that ∇ · (C(0)∇Φε),
∇ · (C(0)∇Φ(0)) and ∇ · (C(0)∇Ψ ε) belong to L2(BR \ Ω), then from Appendix
Section 5∥∥∥∇((Φε)+ − (Φ(0)

)+ − ε(Ψ ε)+) · ν∥∥∥
H−1/2(∂Ω)

≤ CRε‖Φ(0)‖H2(Ω). (42)
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Therefore we can now obtain∣∣∣∣∫
∂Ω

(((
rotq

)
ij

+ ω2Cijk`(y)
∂γm`
∂yk

(y)u(0)

m

)
νi

)
· (Φ(0)

j )+dS

∣∣∣∣
≤ C‖q‖H−1(∂Ω)‖∇Φ(0)‖H1(∂Ω) + ω2

∣∣∣∣∫
∂Ω

Cijk`(y)
∂γm`
∂yk

(y)u(0)

m νi (Φ(0)

j )+dS

∣∣∣∣
≤ C‖u(0)‖H2(Ω)‖Φ(0)‖H2(Ω), (43)

where we have used ‖qj‖H−1(∂Ω) ≤ C‖u(0)‖H2(Ω) with the constant C > 0 inde-

pendent of ε (by (23)) and Cijk`
∂γm`
∂yk

is bounded in H1/2(∂Ω) independent of ε

for all 1 ≤ i, j,m ≤ d (see (24)). We also know that

‖u(1)‖L2(∂Ω) ≤ C‖u(0)‖H2(Ω),

for some constant C > 0 independent of ε and hence,∣∣∣∣∫
∂Ω

(
(∇Φ(0))+ · ν

)
· u(1)dS

∣∣∣∣ ≤ C‖u(1)‖L2(∂Ω)‖∇Φ(0)‖L2(∂Ω)

≤ C‖u(0)‖H2(Ω)‖Φ(0)‖H2(Ω). (44)

To proceed, we can use similar arguments as before to get

‖Ψ ε‖H1/2(∂Ω) ≤ Cε
−1/2‖Φ(0)‖H2(Ω),

and ∥∥∥∥v(0) − v(0)

ε
+ ṽ(1)

∥∥∥∥
H−1/2(∂Ω)

≤ Cε−1/2‖u(0)‖H2(Ω),

which implies that∣∣∣∣∫
∂Ω

(
v(0) − v(0)

ε
+ ṽ(1)

)
· εΨ εdS

∣∣∣∣ ≤ C‖u(0)‖H2(Ω)‖Φ(0)‖H2(Ω), (45)

where C > 0 is a constant independent of ε. Similar arguments give

ε

∣∣∣∣∫
∂Ω

u(1) · ((∇Ψ ε)+ · ν)dS

∣∣∣∣ ≤ C‖u(0)‖H2(Ω)‖Φ(0)‖H2(Ω), (46)

for some constant C > 0 independent of ε, where we have utilized the fact that

‖u(1)‖H1/2(∂Ω) =
∥∥∥χ(

x

ε
)∇u(0)

∥∥∥
H1/2(∂Ω)

≤ Cε−1/2‖u(0)‖H2(Ω).

Finally from (40) we can obtain that

ε
∣∣∣− ∫

Ω

(
C(

x

ε
)∇ϕ̃ε

)
: ∇Ψ εdx+ ω2

∫
Ω

ρ(
x

ε
)ϕ̃ε · Ψ εdx

+

∫
∂Ω

(
(C(

x

ε
)(∇Ψ ε)−) · ν

)
· ϕ̃εdS

+

∫
∂Ω

((∇ϕ̃ε)+ · ν) · (Ψ ε)+dS −
∫
∂Ω

((∇Ψ ε)+ · ν) · (ϕ̃ε)+dS
∣∣∣

≤ Cε‖ϕε‖H1(BR)‖Ψ ε‖H1(BR) ≤ C‖u(0)‖H2(Ω)‖Φ(0)‖H2(Ω), (47)
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for some constants C > 0 independent of ε, u(0) and Φ(0). Then by combining
(43)-(47) and the remainder term of (42) if of order ε

‖ϕ̃ε‖L2(BR)‖φ‖L2(BR) ≤ C‖u(0)‖H2(Ω)‖Φ(0)‖H2(Ω).

Furthermore since ‖Φ(0)‖H2(Ω) ≤ C‖φ‖L2(BR), then there exists a constant C > 0
independent of ε such that

‖ϕ̃ε‖L2(BR) ≤ C‖u(0)‖H2(Ω). (48)

Finally since the difference between ϕ̃ε and ϕε only appears in the jump conormal
derivative across the boundary ∂D (see equations (26) and (41)), this proves the
theorem. ut

Now, we are ready to prove the rates of convergence of ‖uε − u(0)‖L2(BR).

Proof (Proof of Theorem 1) It is easy to see that

‖u(1)‖L2(BR) = ‖u(1)‖L2(Ω) ≤ C‖u(0)‖H2(Ω),

by using the definition of u(1) and the smoothness of χ(y). From (28) and (48),
one can see that

‖uε − u(0)‖L2(BR) ≤ CRε‖u(0)‖H2(Ω) + ε‖u(1)‖L2(BR) + ε‖ϕ̃ε‖L2(BR)

≤ CRε‖u(0)‖H2(Ω),

for some constant CR > 0 independent of ε and u(0). This completes the proof. ut

3 Higher-order asymptotic analysis of the transmission problem

There are recent interests on higher-order two-scale homogenization of wave prop-
agation in periodic meida [1,7,9,21,27]. In the case that the periodic structure was
only supported in a bounded domain, contrary to the case that the periodic struc-
ture occupies Rd, the boundary correctors played a role both in the leading-order
and second-order homogenization as demonstrated in [7] for scalar wave equation.
In this section we study the higher-order homogenization of the elastic scattering
problem where the periodic media has bounded support.

3.1 Higher-order asymptotic expansion

Recall in asymptotic expansion (16) the first order term u(1) was given by (21), in
this section we consider a more general form of u(1) = u(1)(x, y) given by

u(1)

` (x, y) = −χ`mn(y)
∂u(0)

n

∂xm
(x) + ũ(1)

` (x). (49)

From the ansatz we further obtain

O(ε) : v(1) −C(y)
(
∇xu(1) +∇yu(2)

)
= 0, (50)(

∇x · v(1) +∇y · v(2)) + ω2ρ(y)u(1) = 0. (51)
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Now we first derive a representation for u2. Applying divergence ∇y· to equa-
tion (50) and using (20) yield

∇y ·
(
C(y)∇yu(2)

)
+∇y ·

(
C(y)∇xu(1)

)
= ∇y · v(1) = −∇x · v(0) − ω2ρ(y)u(0).

(52)

From equations (49), (52), (22) and direct computations, we obtain the governing
equation for u(2)

∂

∂yi

(
Cijk`(y)

∂u(2)

`

∂yk

)
=
(
− Cijk` + Cijmn

∂χnk`
∂ym

+
∂

∂ym

(
χni`Cmjkn

)
+ Cijk`

) ∂2u(0)

`

∂xk∂xi

− Cijk`
∂yi

∂ũ(1)

`

∂xk
+ ω2(ρ− ρ)u(0)

j . (53)

Let us set

bijk` = −Cijk` + Cijmn
∂χnk`
∂ym

+
∂

∂ym

(
χni`Cmjkn

)
,

and note that
∫
Y
bijk` dy = −Cijk`. Besides, due to the symmetric properties of

Cijk`, we know that bijk` also has the major and minor symmetry.
Now we introduce higher-order cell functions χik`q ∈ H1

per(Y ) that is Y -
periodic and solves

∂

∂yα

(
Cαjβq(y)

∂χik`q
∂yβ

)
= bijk` −

∫
Y

bijk` dy. (54)

In addition with the help of the cell functions χ`mn defined by (7) and γm` defined
by (24), one can directly obtain from equation (53) that

u(2)

p = χmnqp
∂2u(0)

q

∂xn∂xm
− χpmn

∂ũ(1)
n

∂xm
+ ω2γmp(y)u(0)

m + ũ(2)

p (x), for 1 ≤ p ≤ d,

(55)

where the function ũ(2)
p will be determined later. It is not hard to see that u(2) is

a solution of (50) (due to ∇yũ(2)(x) = 0). From (50)

v(1) = C(y)
(
∇xu(1) +∇yu(2)

)
, (56)

then applying the divergence ∇x· to (56) and note that u(1) and u(2) are given by
(49) and (55) respectively,

(∇x · v(1))j =

(
−Cijn`χ`mq + Cijk`

∂χmnq`
∂yk

)
∂3u(0)

q

∂xi∂xm∂xn

+ ω2Cmjk`
∂γn`
∂yk

∂u(0)
n

∂xm
+

(
Cijk` − Cijmn

∂χnk`
∂ym

)
∂2ũ(1)

`

∂xi∂xk
. (57)

Applying the divergence ∇x· to (56) and then averaging that over Y yield∫
Y

∇x · v(1)dy −
∫
Y

∇x ·
(
C(y)

(
∇xu(1) +∇yu(2)

))
dy = 0,
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note that u(1), u(2) and ∇x ·v(1) are given by (49), (55) and (57) respectively, then
a direct calculation yields

Cijk`
∂2ũ(1)

`

∂xi∂xk
+ ω2ρũ(1)

j = −
(

∂3u(0)
q

∂xi∂xm∂xn

)∫
Y

(
−Cijn`χ`mq + Cijk`

∂χmnq`
∂yk

)
dy

−ω2 ∂u
(0)
n

∂xm

∫
Y

(
−ρχjmn + Cmjk`

∂γn`
∂yk

)
dy. (58)

We will show that the function ũ(1)(x) cannot be chosen as zero in the elastic
homogenization case, which is different from the scalar case [7] (the function ũ(1)

can be taken by zero in the scalar case). Via integration by parts and periodic
conditions of Cijk`, χmnq` and the cell problem (7), one can see that

∫
Y

Cijk`
∂

∂yk
χmnq`dy = −

∫
Y

χmnq`
∂

∂yk
Ck`ijdy

=−
∫
Y

χmnq`
∂

∂yk

(
Ck`αβ

∂

∂yα
χβij

)
dy = −

∫
Y

χβij
∂

∂yα

(
Ck`αβ

∂

∂yk
χmnq`

)
dy,

where we have used integration by parts twice in the last equality. From the
symmetric condition of the fourth-order tensor Ck`αβ = Cαβk` and equation (54),
we can get

∫
Y

Cijk`
∂

∂yk
χmnq`dy = −

∫
Y

χβij
∂

∂yα

(
Cαβk`

∂

∂yk
χmnq`

)
dy

=−
∫
Y

χβij(bmβnq −
∫
Y

bmβnq dy)dy

=−
∫
Y

χβij

(
−Cmβnq + Cmβαγ

∂χγnq
∂yα

+
∂

∂yα
(χγmqCαβnγ) + Cmβnq

)
dy

=

∫
Y

χβijCmβnqdy −
∫
Y

χβijCmβαγ
∂χγnq
∂yα

dy +

∫
Y

χγmqCαβnγ
∂χβij
∂yα

dy, (59)

where we used the integration by parts and
∫
Y
χβijdy = 0 in the last equality.

Therefore from (59) we can obtain

(
∂3u(0)

q

∂xi∂xm∂xn

)(∫
Y

Cijk`
∂

∂yk
χmnq`dy −

∫
Y

Cijn`χ`mqdy

)
=

(
∂3u(0)

q

∂xi∂xm∂xn

)∫
Y

(
− χ`mqCijn` + χβijCmβnq − χβijCmβαγ

∂χγnq
∂yα

+ χγmqCαβnγ
∂χβij
∂yα

)
dy.

From the above representation, it is easy to see that the above quantity may not
be zero, since the index q induces non-symmetry among the indices q, i,m, n even
though the indices i,m, n can be interchanged freely.
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For the second term in the right hand side of (58), from equation (24) governing
γ and integration by parts, we have∫

Y

Cmjk`
∂

∂yk
γn`dy = −

∫
Y

γn`
∂

∂yk
Cmjk`dy = −

∫
Y

γn`
∂

∂yk
Ck`mjdy

=−
∫
Y

∂

∂yk

(
Ck`pq

∂

∂yp
χqmj

)
γn`dy = −

∫
Y

∂

∂yp

(
Ck`pq

∂

∂yk
γn`
)
χqmjdy

=−
∫
Y

∂

∂yp

(
Cpqk`

∂

∂yk
γn`
)
χqmjdy = −

∫
Y

χqmj(ρ− ρ)δqndy =

∫
Y

ρχnmjdy,

whereby ∫
Y

(
−ρχjmn + Cmjk`

∂

∂yk
γn`

)
dy =

∫
Y

(−ρχjmn + ρχnmj) dy.

The fact that χjmn has symmetries with respect to m and n may not yield the
above quantity to be zero. Note that for the scalar case (see [7]), the right hand
side of (58) is zero, thus one can choose ũ(1) = 0 without loss of generality in
the scalar case, but for the elastic case, we simply keep ũ(1)(x) in the following
analysis.

Now let us seek for the a formula for v(2) and we denote such a function by
v̂(2) in this section. In particular from equation (51)

∇y · v(2) = −∇x · v(1) − ω2ρ(y)u(1).

From equations (49), (55) and (56), one can derive the equation for v(2)

(∇y · v(2))j =
(
Cijn`χ`mq − Cijk`

∂χmnq`
∂yk

) ∂3u(0)
q

∂xi∂xm∂xn

+ ω2
(
− Cmjk`

∂γn`
∂yk

+ ρχjmn
)∂u(0)

n

∂xm

+
(
− Cijkq + Cijmn

∂χnkq
∂ym

) ∂2ũ(1)
q

∂xk∂xi
− ω2ρũ(1)

j .

From the governing equation (58) for ũ1, one can further simplify the above equa-
tion to

(∇y · v(2))j =
(
Cijn`χ`mq − Cijk`

∂χmnq`
∂yk

−
∫
Y

(
Cijn`χ`mq − Cijk`

∂χmnq`
∂yk

)
dy
) ∂3u(0)

q

∂xi∂xm∂xn

+ ω2
(
− Cmjk`

∂γn`
∂yk

+ ρχjmn −
∫
Y

(
− Cmjk`

∂γn`
∂yk

+ ρχjmn
)
dy
)∂u(0)

n

∂xm

+
(
− Cijkq + Cijmn

∂χnkq
∂ym

−
∫
Y

(
−Cijkq + Cijmn

∂χnkq
∂ym

)
dy
) ∂2ũ(1)

q

∂xk∂xi

− (ρ− ρ)ω2ũ(1)

j . (60)
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Now we introduce the following higher-order cell function to construct v(2) such
that equation (60) holds. In particular we construct χ̂inmq`, γ̂ikq` and γ̂`mn that
belong to H1

per(Y ) and solve

∂

∂yα

(
Cαjβ`(y)

∂χ̂inmq`
∂yβ

)
= dijnmq −

∫
Y
dijnmq dy,

∂

∂yα

(
Cαjβ`(y)

∂γ̂ikq`
∂yβ

)
= −Cijkq + Cijmn

∂χnkq
∂ym

−
∫
Y

(
−Cijk` + Cijmn

∂χnkq
∂ym

)
dy,

∂

∂yα

(
Cαjβ`(y)

∂γ̂`mn
∂yβ

)
= −Cmjk`

∂γn`
∂yk

+ ρχjmn

−
∫
Y

(
−Cmjk`

∂γn`
∂yk

+ ρχjmn

)
dy,

(61)

where dijnmq is defined by

dijnmq = Cijn`χ`mq − Cijk`
∂χmnq`
∂yk

. (62)

Now let us construct a solution v̂(2) to (60) whose αβ-th component is given by

v̂(2)

αβ =Cαβk`

(∂χ̂inmq`
∂yk

∂3u(0)
q

∂xi∂xm∂xn
+
∂γ̂ipq`
∂yk

∂2ũ(1)
q

∂xi∂xp
(63)

+ ω2 ∂γ̂`mn
∂yk

∂u(0)
n

∂xm
+ ω2 ∂γm`

∂yk
ũ(1)

m

)
.

Then from equation (58), (61) and (62), one can directly verify that v̂(2) satisfies
equation (51).

Now let us introduce the boundary corrector function θε ∈
(
H1
loc(Rd)

)d
that

solves 
∇ ·

(
C(

x

ε
)∇θε

)
+ ω2ρ(

x

ε
)θε = 0 in Ω,

∆∗θε + ω2θε = 0 in Rd \Ω,
(θε)+ − (θε)− = u(2) on ∂Ω,

(Tνθ
ε)+ − (C(

x

ε
))∇θε)− · ν = v̂(2) · ν on ∂Ω,

(64)

where θε satisfies the Kupradze radiation condition (4).

3.2 Rates of convergence in L2 and H1: The higher-order case

Via previous discussions on higher-order asymptotic analysis, we have

Theorem 4 Let uε and u(0) be the solutions of (5) and (6) respectively. Let u(1)

and u(2) be defined by equations (49) and (55), respectively, with u(1) = 0 and
u(2) = 0 in Rd \ Ω. Let ϕε and θε be the boundary correctors given by (41) and
(64). Then for any ball BR with Ω ⊂ BR, we have

‖uε − (u(0) + εu(1) + ε2u(2) + εϕε + ε2θε)‖H1(BR) ≤ CRε2‖u(0)‖H4(Ω),

where CR > 0 is a constant independent of ε.
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Proof The proof is similar to the proof of Theorem 1. Again consider error func-
tions in D defined by

wε := uε − u(0) − εu(1) − ε2u(2),

and
ζε := C(

x

ε
)∇uε − v(0) − εv(1) − ε2v̂(2),

where v(1), v̂(2) are defined by (56), (63) with v(1) = 0 and v̂(2) = 0 in Rd \Ω. Here
wε is a vector-valued function and ζε is a matrix-valued function. In this proof we
conveniently use the same notations as in the proof of Theorem 1, since it is clear
from the context. From straightforward computations, we can get{

C(
x

ε
)∇wε − ζε = ε2(v(2) −C(y)∇xu(2)),

∇ · ζε + ω2ρ(y)wε = −ε2
[
ω2ρu(2) +∇x · v̂(2)

]
,

(65)

and moreover

∇ · ζε + ω2ρwε = −ε2
(
∇x · v̂(2) + ω2ρu(2)

)
. (66)

Outside D we simply define the error functions by wε := uε − u(0) and ζε :=
∇wε, this directly gives

−∇ · ζ(ε) = ω2wε.

Let φ ∈
(
C∞c (BR)

)d
be a vector-valued test function and consider an auxiliary

function Φε ∈
(
H1
loc(Rd)

)d
that solves

∇ ·
(
C(

x

ε
)∇Φε

)
+ ω2ρ(

x

ε
)Φε = φ in Ω,

∆∗Φε + ω2Φε = φ in Rd \Ω,
(Φε)+ − (Φε)− = 0 on ∂Ω,

(TνΦ
ε)+ − (C(

x

ε
))∇Φε)− · ν = 0 on ∂Ω,

(67)

where Φε satisfies the Kupradze radiation condition (4). Thus from the same ar-
gument as in the proof of Theorem 1, one can get

∫
BR

(wε − εϕε − ε2θε) · φdx

=

∫
Ω

(wε − εϕε − ε2θε) ·
(
∇ · (C(

x

ε
)∇Φε) + ω2ρ(

x

ε
)Φε

)
dx

+

∫
BR\Ω

(wε − εϕε − ε2θε) · (∆∗Φε + ω2Φε)dx

=−
∫
Ω

(
C(

x

ε
)∇wε) : ∇Φεdx+ ε

∫
Ω

(
C(

x

ε
)∇ϕε

)
: ∇Φεdx

+ ε2
∫
Ω

(
C(

x

ε
)∇θε

)
: ∇Φεdx+

∫
Ω

ω2ρ(
x

ε
)(wε − εϕε − ε2θε) ·Φεdx

+

∫
∂Ω

Tν(wε − εϕε − ε2θε)+ ·ΦεdS.
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From integration by parts, one can further obtain∫
BR

(wε − εϕε − ε2θε) · φdx

=−
∫
Ω

(
C(

x

ε
)∇wε) : ∇Φεdx+ ε

∫
∂Ω

(
C(

x

ε
)(∇ϕε)− · ν

)
·ΦεdS +

∫
Ω

ω2ρ(
x

ε
)wε ·Φεdx

+ ε2
∫
∂Ω

(
C(

x

ε
)(∇θε)− · ν

)
·ΦεdS +

∫
∂Ω

Tν(wε − εϕε − ε2θε)+ ·ΦεdS.

Then from equations (41), (64), (65) and (66), and integration by parts one can
obtain∫

BR

(wε − εϕε − ε2θε) · φdx

=−
∫
Ω

ζε : ∇Φεdx+ ω2

∫
D

ρ(
x

ε
)wε ·Φεdx− ε

∫
∂Ω

(
(Tνϕ

ε)+ −C(
x

ε
)(∇ϕε)− · ν

)
·ΦεdS

+

∫
∂Ω

Tνwε+ ·ΦεdS − ε2
∫
∂Ω

(
(Tνθ

ε)+ −C(
x

ε
)(∇θε)− · ν

)
·ΦεdS

− ε2
∫
Ω

(
v̂(2) −C(

x

ε
)∇xu(2)

)
: ∇Φεdx

=− ε2
∫
Ω

(
v̂(2) −C(

x

ε
)∇xu(2)

)
: ∇Φεdx− ε2

∫
Ω

(
∇x · v̂(2) + ω2ρu(2)

)
dx. (68)

From the equations of u(1), u(2), v(1) and v̂(2) defined by (49), (55), (56) and (63),
one can obtain ∥∥∥v̂(2) −C(

x

ε
)∇xu(2)

∥∥∥
L2(Ω)

≤ C‖u(0)‖H4(Ω),∥∥∥∇x · v̂(2) + ω2ρu(2)

∥∥∥
L2(Ω)

≤ C‖u(0)‖H4(Ω),

where C is a constant. Furthermore apply the Cauchy-Schwartz inequality on (68),
then we obtain∣∣∣∣∫

BR

(wε − εϕε − ε2θε) · φdx
∣∣∣∣ ≤ Cε2‖u(0)‖H4(Ω)‖Φε‖H1(Ω),

for some constant C > 0 independent of ε. Again we utilize the standard estimate
for the elliptic system (67) (see [20] for instance), then we can obtain

‖Φε‖H1(Ω) ≤ C‖φ‖H−1(BR),

where C > 0 is a constant depends on the coefficients and R, but independent
of ε. By the duality arguments in the Sobolev space, then we complete the proof.
This proves (10) in Theorem 2. ut

Recall that u(1) = 0, u(2) = 0, v(1) = 0 and v̂(2) = 0 in Rd \Ω, without loss of
generality, we can choose ũ(1) solves the constant coefficient elliptic system (58)
in Ω with ũ(1) = 0 on ∂Ω. Therefore, ũ(1) is a smooth solution in Ω, by using
the elliptic estimate of (58) again, then we obtain ‖ũ(1)‖L2(BR) = ‖ũ(1)‖L2(Ω) ≤
C‖u(0)‖H4(Ω) for some constant C > 0.

Now, we are ready to prove Theorem 2.
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Proof (Proof of Theorem 2) By using the same reason and arguments as before,
one can easily see that

‖u(2)‖L2(BR) ≤ CR‖u(0)‖H4(Ω) and ‖θε‖L2(BR) ≤ CR‖u(0)‖H4(Ω),

for some constants CR > 0 independent of ε. Therefore, the proof is nothing but a
straightforward corollary by combining previous lemmas. Therefore, we prove (11)
and complete our proof of Theorem 2. ut

3.3 A second-order homogenization and wave dispersion

As a by-product of our higher-order homogenization in highly oscillating anisotropic
media, in this section we illustrate formally the higher-order effective wave equa-
tion that can demonstrate dispersion of wave propagation in periodic media that
occupies the whole space. To begin with let us recall from asymptotic expansion
(16), we get

O(ε2) : v(2) −C(y)
(
∇xu(2) +∇yu(3)

)
= 0, (69)(

∇x · v(2) +∇y · v(3)) + ω2ρ(y)u(2) = 0. (70)

Here we seek for a v(2) different from equation (63). This is to be realized by finding
u(3) first. Indeed taking the divergence of equation (69) respect to the y variable
and noting (51),

∇y ·
(
C(y)∇yu(3)

)
+∇y ·

(
C(y)∇xu(2)

)
= ∇y · v(2) = −∇x · v(1) − ω2ρ(y)u(1).

With the help of (49), (55) and (56), A direct calculation yields

∂

∂yα

(
Cαjβ`(y)

∂u(3)

`

∂yβ

)
=
(
− ∂

∂yp

(
Cpji`χmnq`

)
+
(
Cijn`χ`mq − Cijk`

∂χmnq`
∂yk

)
−
∫
Y

(
Cijn`χ`mq − Cijk`

∂χmnq`
∂yk

)
dy
) ∂3u(0)

q

∂xi∂xm∂xn

+
( ∂

∂ym

(
Cmjknχniq

)
+
(
− Cijkq + Cijmn

∂χnkq
∂ym

)
−
∫
Y

(
−Cijkq + Cijmn

∂χnkq
∂ym

)
dy
) ∂2ũ(1)

q

∂xk∂xi

+ ω2
(
− ∂

∂yp

(
Cpjm`γn`

)
+
(
− Cmjk`

∂γn`
∂yk

+ ρχjmn
)

−
∫
Y

(
− Cmjk`

∂γn`
∂yk

+ ρχjmn
)
dy
)∂u(0)

n

∂xm

− ∂Cijkq
∂yi

∂ũ(2)
q

∂xk
− (ρ− ρ)ω2ũ(1)

j (71)
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Let us introduce the higher-order cell functions χinmq` and γ`mn that belong to
H1
per(Y ) and solve

∂

∂yα

(
Cαjβ`(y)

∂χinmq`
∂yβ

)
= − ∂

∂yp

(
Cpji`χmnq`

)
+
(
Cijn`χ`mq − Cijk`

∂χmnq`
∂yk

)
−
∫
Y

(
Cijn`χ`mq − Cijk`

∂χmnq`
∂yk

)
dy (72)

∂

∂yα

(
Cαjβ`(y)

∂γ`mn
∂yβ

)
= − ∂

∂yp

(
Cpjm`γn`

)
+
(
− Cmjk`

∂γn`
∂yk

+ ρχjmn
)

−
∫
Y

(
−Cmjk`

∂γn`
∂yk

+ ρχjmn
)
dy. (73)

By changing the index one can see that the governing equation (54) for χikq` can
be written as

∂

∂yα

(
Cαjβ`(y)

∂χikq`
∂yβ

)
=

∂

∂ym

(
Cmjknχniq

)
+
(
− Cijkq + Cijmn

∂χnkq
∂ym

)
−
∫
Y

(
−Cijkq + Cijmn

∂χnkq
∂ym

)
dy. (74)

From (71), (72), (73) and (74), one can obtain that

u(3)

` = χinmq`
∂3u(0)

q

∂xi∂xm∂xn
+ χikq`

∂2ũ(1)
q

∂xi∂xk
+ ω2γ`mn(y)

∂u(0)
n

∂xm

− χ`kq
∂ũ(2)

q

∂xk
+ ω2γm`ũ

(1)

m . (75)

Now we have from equation (69) that

v(2) = C(y)
(
∇xu(2) +∇yu(3)

)
,

then from the representation of u(2) and u(3) in equations (55) and (75) respectively,
one can obtain

v(2)

αβ = Cαβk`
(∂χinmq`

∂yk
+ χmnq`δki

) ∂3u(0)
q

∂xi∂xm∂xn

+ Cαβk`
(∂χimq`

∂yk
− χ`mqδki

) ∂2ũ(1)
q

∂xi∂xm

+ ω2Cαβk`
(∂γ`mq
∂yk

+ γq`δmk
)∂u(0)

q

∂xm
+ Cαβk`

(
− ∂χ`mq

∂yk
+ δq`δmk

)∂ũ(2)
q

∂xm

+ ω2Cαβk`
∂γq`
∂yk

ũ(1)

q . (76)

Taking the Y -average of equation (70) yields∫
Y

∇x · v(2)dy + ω2

∫
Y

ρu(2)dy = 0,
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note further that v(2) and u(2) are given by (76) and (55) respectively, then from
a direct calculation one can obtain the following equation for ũ(2)

Cαβmq
∂2ũ(2)

q

∂xα∂xm
+ ω2ρũ(2)

β

=−
∂4u(0)

q

∂xα∂xi∂xm∂xn

∫
Y

(
Cαβk`

∂χinmq`
∂yk

+ Cαβi`χmnq`
)
dy

− ω2 ∂2u(0)
q

∂xα∂xm

(∫
Y

(
Cαβk`

∂γ`mq
∂yk

+ Cαβm`γq`
)
dy

+

∫
Y

ρχmαqβ dy − (ρ)−1Cαjmq

∫
Y

ργmβ dy
)

−
∂3ũ(1)

q

∂xα∂xi∂xm

∫
Y

(
Cαβk`

∂χimq`
∂yk

− Cαβi`χ`mq
)
dy.

+ ω2 ∂ũ
(1)
q

∂xm

∫
Y

(
ρχβmq − Cmβk`

∂γq`
∂yk

)
dy (77)

Now let us recall that the solution uε to (13) has the following anstaz

uε(x, y) = u(0)(x, y) + εu(1)(x, y) + ε2u(2)(x, y) + · · · =
∞∑
k=0

εku(k)(x, y).

Note that all the cell functions are Y -periodic and their averages over Y are zero,
then from equations (6), (58) and change of index, we can summarize the governing
equations for u(0) and u(1) in Ω, where u(0), u(1) are the averages of u(0) and u(1)

respectively in the unit cell Y (recall that u(0)(x, y) = u(0)(x) so that u(0) = u(0)),

∇ · (C∇u(0)) + ω2ρu(0) = 0, (78)

Cijk`
∂2u(1)

`

∂xi∂xk
+ ω2ρu(1)

j = −
(

∂3u(0)
q

∂xi∂xm∂xn

)∫
Y

(
−Cijn`χ`mq + Cijk`

∂

∂yk
χmnq`

)
dy

−ω2 ∂u
(0)
n

∂xm

∫
Y

(
−ρχjmn + Cmjk`

∂

∂yk
γn`

)
dy. (79)

Let U := u(0) + εu(1) + ε2u(2). Now multiply equation (77) and equation (79)
by ε2 and ε respectively, and sum them with equation (78), then it is seen that
U = (Uβ)1≤β≤d satisfies the following fourth-order partial differential equation



26 Yi-Hsuan Lin, Shixu Meng .

Cαβmq
∂2Uq

∂xα∂xm
+ ω2ρUβ

=− ε2
∂4u(0)

q

∂xα∂xi∂xm∂xn

∫
Y

(
Cαβk`

∂χinmq`
∂yk

+ Cαβi`χmnq`
)
dy

− ε2ω2 ∂2u(0)
q

∂xα∂xm

(∫
Y

(
Cαβk`

∂γ`mq
∂yk

+ Cαβm`γq`
)
dy

+

∫
Y

ρχmαqβ dy − (ρ)−1Cαjmq

∫
Y

ργmβ dy
)

− ε
∂3(εũ(1)

q + u(0)
q )

∂xα∂xi∂xm

∫
Y

(
Cαβk`

∂χimq`
∂yk

− Cαβi`χ`mq
)
dy.

+ εω2 ∂(εũ(1)
q + u(0)

q )

∂xm

∫
Y

(
ρχβmq − Cmβk`

∂γq`
∂yk

)
dy,

and therefore the governing equation of U up to order ε3 reads

Cαβmq
∂2Uq

∂xα∂xm
+ ω2ρUβ

=− ε2 ∂4Uq

∂xα∂xi∂xm∂xn

∫
Y

(
Cαβk`

∂χinmq`
∂yk

+ Cαβi`χmnq`
)
dy

− ε2ω2 ∂2Uq

∂xα∂xm

(∫
Y

(
Cαβk`

∂γ`mq
∂yk

+ Cαβm`γq`
)
dy

+

∫
Y

ρχmαqβ dy − (ρ)−1Cαjmq

∫
Y

ργmβ dy
)

− ε
∂3Uq

∂xα∂xi∂xm

∫
Y

(
Cαβk`

∂χimq`
∂yk

− Cαβi`χ`mq
)
dy.

− εω2 ∂U
q

∂xm

∫
Y

(
− ρχβmq + Cmβk`

∂γq`
∂yk

)
dy +O(ε3).

Hence the fourth-order equation can be conveniently casted as

∇ ·
(
C∇U

)
+ ω2ρU

=− ε2
(
D : ∇4U + ω2E : ∇2U

)
− ε
(
F : ∇3U + ω2G : ∇U

)
+O(ε3), (80)

where D = (Dβαimnq) is a sixth-order tensor, E = (Eβαmq) is a fourth-order
tensor, F = (Fβαimq) is a fifth-order tensor and G = (Gβmq) is a third-order
tensors, respectively defined by
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Dβαimnq =

∫
Y

(
Cαβk`

∂χinmq`
∂yk

+ Cαβi`χmnq`
)
dy,

Eβαmq =

∫
Y

(
Cαβk`

∂γ`mq
∂yk

+ Cαβm`γq`
)
dy +

∫
Y

ρχmαqβ dy

−(ρ)−1Cαjmq

∫
Y

ργmβ dy,

Fβαimq =

∫
Y

(
Cαβk`

∂χimq`
∂yk

− Cαβi`χ`mq
)
dy,

Gβmq =

∫
Y

(
− ρχβmq + Cmβk`

∂γq`
∂yk

)
dy.

The fourth-order partial differential equation (80) in Ω formally introduce the
dispersion as is seen from the right hand side of (80). We remark that our formal
derivation holds for C and ρ that belong to L∞(Ω). In the low-frequency long-
wavelength regime for wave propagation in periodic media, the dispersive wave
equation has been demonstrated by a fourth-order partial differential equation for
the acoustic case [7].

In the particular case that the periodic media occupies Rd, (80) models the
wave propagation that transcends the quasi-static regime. For more details we can
recast the higher-order homogenization result in [11,12] when the one-dimensional
unit cell Y = (0, 1) is composed of two homogeneous phases:

ρ(x) = ρ̃1, C(x) = C̃1 for 0 < x < α,

ρ(x) = ρ̃2, C(x) = C̃2 for α < x < 1,

where C̃1, C̃2, ρ̃1, ρ̃2 are all constants, and 0 < α < 1. With these notations,
the elastic scattering problem in a one-dimensional domain Ω = (0, L), where the
homogenized constants ρ, C, are given by [11,12]

ρ = αρ̃1 + (1− α)ρ̃2 and C =
C̃1C̃2

αC̃2 + (1− α)C̃1

.

Furthermore, constants D, E, F , and G can be explicitly calculated as

D =
α2(1− α)2C(C̃1 − C̃2)(C̃1ρ̃1 − C̃2ρ̃2)

12ρ(αC̃2 + (1− α)C̃1)2
,

E =
α2(1− α)2C(ρ̃1 − ρ̃2)(C̃2ρ̃2 − C̃1ρ̃1)

12ρC̃2C̃1

,

F = G = 0.

Therefore, for the one-dimensional case, (80) can be read as a second order constant
coefficients ordinary differential equation:

C
∂2U

∂2x
+ ω2ρU = −ε2

(
D
∂4U

∂x4
+ ω2E

∂2U

∂x2

)
+O(ε3), (81)

where constants C, ρ, D, E are given as above. Equation (81) is the time-harmonic
analog to the higher-order homogenization in both space and time [11,12].
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To further understand the high-order homogenization for periodic media in
bounded domains where boundary correctors play an important role, we provide
in the next section the numerical study in one dimension.

4 Numerical examples

In this section, we illustrate the higher-order asymptotics by examples in one
dimension. We do not use bold symbols throughout this section. We consider the
one dimensional periodic structure where ρ and C are Y -periodic with Y = (0, 1).
In the unit cell Y , ρ and C are given by:

ρ(x) = ρ̃1, C(x) = C̃1 for 0 < x < α, (82)

ρ(x) = ρ̃2, C(x) = C̃2 for α < x < 1, (83)

where C̃1, C̃2 are constants, while ρ̃1, ρ̃2 are constants or functions, and 0 < α < 1.
Such examples has been studies in [11,12] where the periodic media occupies the
whole space. The periodic structure only occupies in a bounded domain Ω = (0, L)
in our case, and it will be shown that the boundary correctors play an important
role. With these notations, the elastic scattering problem in a one-dimensional
domain Ω is

∂
∂x

(
C(xε )∂u

ε

∂x

)
+ ω2ρ(xε )uε = 0 in Ω,

∂2

∂x2 u
ε + ω2uε = 0 in R\Ω,

(uε + ui)+ = (uε)− at x = 0 and x = L,(
∂
∂x (uε + ui) · ν

)+
=
(
C(xε )∂u

ε

∂x · ν
)−

at x = 0 and x = L,

(84)

where uε satisfies the radiation condition at ∞. Here uε restricted in Ω represents
the total wave field, while uε restricted in R\Ω represents the scattered wave field.
Recall that the solution uε has the following asymptotic expansion

uε = u(0) + εu(1) + ε2u(2) + · · · .

Following from equation (6), we first write down the governing equation for
u(0) 

∂
∂x

(
C ∂u(0)

∂x

)
+ ω2ρu(0) = 0 in Ω,

∂2

∂x2 u
(0) + ω2u(0) = 0 in R\Ω,

(u(0) + ui)+ = (u(0))− at x = 0 and x = L,(
∂
∂x (u(0) + ui) · ν

)+
=
(
C ∂u(0)

∂x · ν
)−

at x = 0 and x = L,

(85)

where the constants of homogenization ρ and C can be seen from [11,12] as

ρ =

∫
Y

ρ(y)dy, C =
C̃1C̃2

αC̃2 + (1− α)C̃1

.

From Theorem 1 we have that

‖uε − u(0)‖L2(BR) ≤ CRε‖u(0)‖H2(Ω), (86)

where Ω ⊂ BR.



Homogenization of an elastic scattering problem 29

Let us further write down the expressions of u(1) and the boundary corrector
ϕε. In the case when C̃1 = C̃2 = C, the function χ given by equation (7) is zero,
and consequently u(1) defined by (49) is zero since ũ(1) is zero in one dimension.
Now the governing equation (41) for the boundary corrector ϕε can be simplified
to



∇ ·
(
C ∂ϕε

∂x

)
+ ω2ρ(xε )ϕε = 0 in Ω,

∂2

∂x2ϕ
ε + ω2ϕε = 0 in R \Ω,

( ϕε)+ − (ϕε)− = 0 at x = 0 and x = L,

( ∂∂xϕ
ε · ν)+ −

(
C ∂
∂xϕ

ε · ν
)−

= ω2C ∂γ(0)
∂x u(0)(0) · ν at x = 0,

( ∂∂xϕ
ε · ν)+ −

(
C ∂
∂xϕ

ε · ν
)−

= ω2C ∂γ(1)
∂x u(0)(1) · ν at x = L,

(87)

where γ is given by equation (24), i.e.


∂

∂y

(
C
∂γ

∂y

)
=
(
ρ− ρ

)
in Y,∫

Y
γ(y)dy = 0.

(88)

From Theorem 2 we have that

‖uε − u(0) − εu(1) − εϕε‖L2(BR) ≤ CRε2‖u(0)‖H4(Ω), (89)

where Ω ⊂ BR.

In the following we illustrate the performance of our higher-order homogeniza-
tion. We use NGSolve [25] to compute the exact solution uε to (84), the leading-
order approximation u(0) to (85), and the boundary corrector ϕε to (87). In all the
numerical examples we choose Ω = (0, 1), ε = 0.1, α = 1

2 , ω = 1, and C̃1 = C̃2 = 1.
We choose BR = (−1, 2), and the computational domain is (−2, 3) where PML
was implemented in (−2,−1)∪ (2, 3). For the computation of γ to (88), we impose
periodic boundary conditions on Y and compute it using NGSolve.

We plot the exact solution uε, leading-order approximation u(0), and higher-
order approximation u(0) +εu(1) +εϕε in the domain Ω = (0, 1). The first numerical
example (Fig. 1) is for ρ̃1 = 2.4 and ρ̃2 = 0.8, the computed error for the leading-
order approximation is ‖uε − u(0)‖L2(BR) = 1.78e− 2, and the computed error for
the higher-order approximation is ‖uε−u(0)− εu(1)− εϕε‖L2(BR) = 1.90e− 4. This
agrees with the ε-convergence in the leading-order homogenization as indicated
by (86) and ε2-convergence in the higher-order homogenization as indicated by
(89). The second numerical example (Fig. 2) is for ρ̃1 = 2 + sin(2πx)/2 and ρ̃2 =
2 + sin(2πx)/2, the computed error for the leading-order approximation is ‖uε −
u(0)‖L2(BR) = 6.36e−3, and the computed error for the higher-order approximation
is ‖uε−u(0)−εu(1)−εϕε‖L2(BR) = 7.76e−05. The third numerical example (Fig. 3) is
for ρ̃1 = 1 and ρ̃2 = 0.4, the computed error for the leading-order approximation
is ‖uε − u(0)‖L2(BR) = 7.84e − 3, and the computed error for the higher-order
approximation is ‖uε − u(0) − εu(1) − εϕε‖L2(BR) = 7.37e− 05.
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ρ̃1 = 2.4, ρ̃2 = 0.8

Fig. 1 ρ̃1 = 2.4 and ρ̃2 = 0.8. Red: exact solution uε; Blue: leading-order approximation u(0);
Green: higher-order approximation u(0) + εu(1) + εϕε.

We also remark that the boundary corrector ϕε can be approximated by its
leading-order approximation ϕ(0) satisfying



∇ ·
(
C ∂ϕ(0)

∂x

)
+ ω2ρϕ(0) = 0 in Ω,

∂2

∂x2ϕ
(0) + ω2ϕ(0) = 0 in R \Ω,

( ϕ(0))+ − (ϕ(0))− = 0 at x = 0 and x = L,

( ∂∂xϕ
(0) · ν)+ −

(
C ∂
∂xϕ

(0) · ν
)−

= ω2C ∂γ(0)
∂x u(0)(0) · ν at x = 0,

( ∂∂xϕ
(0) · ν)+ −

(
C ∂
∂xϕ

(0) · ν
)−

= ω2C ∂γ(1)
∂x u(0)(1) · ν at x = L,

(90)

We illustrate this approximation by the fourth numerical example (Fig. 4), where
all the setup is the same as the first example except that we approximate ϕε by
ϕ(0), the computed error for the leading-order approximation is ‖uε−u(0)‖L2(BR) =
1.78e−2, and the computed error for the higher-order approximation is ‖uε−u(0)−
εu(1) − εϕ(0)‖L2(BR) = 3.41e− 4. These preliminary examples clearly demonstrate
the performance of our high-order homogenization.

5 Appendix

In the end of this paper, we offer basic materials in analysing the elastic scattering
in periodic media.
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ρ̃1 = 2 + sin(2πx)/2, ρ̃2 = 2 + sin(2πx)/2
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Fig. 2 ρ̃1 = 2+sin(2πx)/2 and ρ̃2 = 2+sin(2πx)/2. Red: exact solution uε; Blue: leading-order
approximation u(0); Green: higher-order approximation u(0) + εu(1) + εϕε.
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Fig. 3 ρ̃1 = 1 and ρ̃2 = 0.4. Red: exact solution uε; Blue: leading-order approximation u(0);
Green: higher-order approximation u(0) + εu(1) + εϕε.
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ρ̃1 = 2.4, ρ̃2 = 0.8
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Fig. 4 ρ̃1 = 2.4 and ρ̃2 = 0.8. Red: exact solution uε; Blue: leading-order approximation u(0);
Green: higher-order approximation u(0) + εu(1) + εϕ(0).

5.1 The Dirichlet to Neumann map

Let u satisfy the Navier’s equation in the exterior domain

∆∗u + ω2u = 0 in Rd\Ω,

and u has a decomposition that satisfies the Kupradze radiation condition. Let
BR be a sufficiently large ball such that Ω ⊂ BR. In the case that Ω ⊂ R3, we
introduce the polar coordinates r, θ, φ and the unit vectors r̂, θ̂, φ̂. The θ coordi-
nate corresponds to the angle from the z-axis, θ ∈ [0, π], and the φ coordinate
corresponds to the angle in the (x, y)-plane, φ ∈ [0, 2π]. Let Ynm be the spherical
harmonic

Ynm(θ, φ) =

√
(2n+ 1)(n− |m|)!

4π(n+ |m|!) P |m|n (cos θ)eimφ, n ≥ 0, |m| < n.

Now we let Unm and Vnm be the vector spherical harmonics defined by

Unm(θ, φ) =
1√
λn

(∂Ynm
∂θ

θ̂ +
1

sin θ

∂Ynm
∂φ

φ̂
)
, n ≥ 1,

Vnm(θ, φ) = r̂ × Unm =
1√
λn

(
− 1

sin θ

∂Ynm
∂φ

θ̂ +
∂Ynm
∂θ

φ̂
)
, n ≥ 1,

where λn = n(n+ 1). The vectors Ynmr̂, Unm, Vnm form an orthonormal basis for
L2(S) where S denotes the unit sphere. Then u on ∂BR has the following series
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expansion

u =
∞∑
n=0

∑
|m|<n

(
(u|∂BR , Vnm)Vnm + (u|∂BR , Unm)Unm (91)

+ (u|∂BR , Ynmr̂)Ynmr̂
)
,

where (·, ·) denotes the L2(S) inner product. One can correspondingly express Tνu
on ∂BR as (see [13])

Tνu =
∞∑
n=0

∑
|m|<n

(
an(u|∂BR , Vnm)Vnm +

[
bn(u|∂BR , Unm) + cn(u|∂BR , Ynmr̂)

]
Unm

+
[
cn(u|∂BR , unm) + dn(u|∂BR , Ynmr̂)

]
Ynmr̂

)
on BR. (92)

The coefficients an, bn, cn, dn are given by

an = µ0(γs −
1

R
),

bn =
(

2µ0

√
λn(γp −

1

R
)
)B(1,1)

n

R
+ µ0

(
2γs +Rω2

s + 2(1− λn)
1

R

)B(2,1)
n

R
,

cn =
(

2µ0

√
λn(−γs +

1

R
)
)B(2,1)

n

R
+
(

2µ0(−2γp +
λn
R

)
) B

(1,1)
n

R− µ0ω2
s
,

dn = −
(

2µ0

√
λn(−γs +

1

R
)
)B(1,1)

n

R
+
(

2µ0(−2γp +
λn
R

)
) B

(1,2)
n

R− µ0ω2
s
,

where

γs = ωs
h
′

n(ωsR)

hn(ωsR)
, γp = ωp

h
′

n(ωpR)

hn(ωpR)
, B(1,1)

n = −
√
λnR

Rγp(Rγs + 1)− λn
,

B(1,2)
n =

R(1 +Rγs)

Rγp(Rγs + 1)− λn
, B(1,1)

n = − R2γp
Rγp(Rγs + 1)− λn

.

Now for any functions w and u that satisfy the Kupradze radiation condition (4),
one can directly obtain from (91) and (92) that∫

∂BR

Tνu ·wdS −
∫
∂BR

Tνw · udS = 0.

We remark that when Ω ⊂ R2, the above equality can be derived in a similar way
[4].

Let BR ⊂ Rd be a ball of radius R > 0, then the Dirichlet to Neumann (DN)
map was given by [4].

Definition 1 For any g ∈
(
H1/2(∂BR)

)d
, the DN map

Λ :
(
H1/2(∂BR)

)d → (
H−1/2(∂BR)

)d
with Λg|∂BR = Tνu|∂BR , (93)

where u ∈
(
H1
loc(Rd \BR)

)d
is a solution of the Navier’s equation ∆∗u +ω2u = 0

in Rd \BR and u satisfies the Kupradze radiation condition (4) at infinity.

Notice that the DN map Λ is a bounded operator, so that it helps to reduce
the scattering problem in unbounded domain to a bounded domain, and we refer
readers to [4, Section 2] for detailed discussions.
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5.2 Derivation of the homogenized equation

Consider the simplest linear elliptic system of the homogenization theory. The
periodic homogenization theory was studied by [10,14] and we refer readers to
these references for the comprehensive study. We are concerned with the divergence
form second order elliptic operators with rapidly oscillating periodic coefficients,

Lε := −∇ ·
(
A(

x

ε
)∇
)

= − ∂

∂xi

(
aijk`(

x

ε
)
∂

∂xk

)
, ε > 0.

We assume the coefficients A(y) = (aijk`(y)) with 1 ≤ i, j, k, ` ≤ d for the dimen-
sion d ≥ 2 is real, bounded and measurable such that A satisfies

ellipticity: µ
d∑

i,j=1

|εij |2 ≤ aijk`(y)εijεk` ≤
1

µ

d∑
i,j=1

|εij |2, (94)

for all symmetric matrix (εij)1≤i,j≤d, and

Y-periodicity: A(y + z) = A(y) for all y ∈ Rd, z ∈ Y := [0, 1]d,

for some constant µ > 0.

Given F ∈
(
H−1(Ω)

)d
, let uε ∈

(
H1

0 (Ω)
)d

be a solution of

Lεuε = F in Ω, (95)

where Ω is a bounded Lipschitz domain in Rd. By the Lax-Milgram theorem, we
have

‖uε‖H1
0 (Ω) ≤ C‖F‖H−1(Ω),

where the constant C independent of ε. Note that uε ∈
(
H1

0 (Ω)
)d

is a weak

solution of (95) if for all ϕ ∈
(
H1

0 (Ω)
)d

, we have∫
Ω

(
A(

x

ε
)∇uε

)
: ∇ϕdx = 〈F,ϕ〉H−1(Ω)×H1

0 (Ω) .

Next, we want to derive the homogenized equation by using the following
asymptotic analysis. We consider uε to be the perturbation of u(0) with respect
to ε-parameter. Moreover, by observing the elliptic operator Lε, we introduce the
famous two-scale homogenization method in the homogenization theory: Let us

regard x = x, and y =
x

ε
as two independent parameters. Let

uε := u(0) + εu(1) + ε2u(2) + · · ·

be the asymptotic expansion of uε, where

u(j) := u(j)(x, y) = u(j)(x,
x

ε
).

In addition,

∇u(j) = ∇xu(j)(x, y) +
1

ε
∇yu(j)(x, y), as y =

x

ε
,
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which means under our two-scaled method, the operator∇ = ∇x+
1

ε
∇y. Therefore,

(95) will become

−
(
∇x +

1

ε
∇y
)
·

{
A(y)

[(
∇x +

1

ε
∇y

)(
u(0) + εu(1) + ε2u(2) + · · ·

)]}
= F(x) in Ω.

(96)
We point out that the derivation of the homogenized equation did not need to take
care of the boundary condition of certain equations. Expand (96) and compare it
with the same εN -orders (for N = 0,−1,−2), so we get

O(
1

ε2
) : −∇y · (A(y)∇yu(0)(x, y)) = 0,

O(
1

ε
) : −∇y · (A(y)∇yu(1)(x, y)) = ∇y · (A(y)∇xu(1)) +∇x · (A(y)∇yu(0)),

(97)

O(1) : −∇y · (A(y)∇yu(2)(x, y)) = ∇y · (A(y)∇xu(1)) +∇x · (A(y)∇yu(1))

+∇x · (A(y)∇xu(0)) + F(x).

Recall that for the periodic elliptic equation

−∇ · (A(y)∇v(y)) = h(y), whenever A(y) is Y-periodic,

then we have ∫
Y

h(y)dy = 0,

by using the divergence theorem. For O(
1

ε2
) term, this equation is solvable because

the right hand side is zero. In further, we multiply u(0)(x, y) on both sides and
integrate by parts, which will imply

0 =

∫
Y

(
A(y)∇yu(0)

)
: ∇yu(0) ≥ µ

∫
Y

|∇yu(0)(x, y)|2dy ≥ 0,

which gives us the information that

u(0)(x, y) ≡ u(0)(x)

and we know that u0 is independent of y.

Now, for the second term O(
1

ε
), the second term on the right hand side should

be zero since ∇yu(0)(x) = 0. Solve the equation

−∇y · (A(y)∇yu(1)(x, y)) = ∇y · (A(y)∇xu(0)) = (∇y ·A(y))(∇xu(0))

formally. Note that since A(y) is Y -periodic, then the equation is solvable for u(1)

if ∫
Y

(∇y ·A(y)) · (∇xu(0))dy =

∫
∂Y

(A(y)∇xu(0)) · ν(y)dS(y) = 0.

By using the separation of variables, we put the ansatz

u(1)(x, y) = χ(y) · (∇xu(0)(x))
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with u(1) = (u(1)
α )1≤α≤d such that

u(1)

α (x, y) = χαjβ(y)
∂u(0)

β

∂xj
(x).

Moreover, the corrector χαjβ is Y -periodic and solves the cell problem
∂

∂yi

(
aijmn − aijk`

∂

∂yk
χ`mn

)
= 0 in Y,∫

Y
χ`mn(y)dy = 0,

and plug u(1) to the O(
1

ε
) equation (97) to obtain

−∇ · (A(y)∇yχ(y))(∇xu(0)) = (∇y ·A(y))(∇xu(0)).

Finally plug u(1)(x, y) = χ(y)∇xu(0) into the O(1) equation and examine the
solvability condition for u(2)(x, y), we have

0 =

∫
Y

[
∇y · (A(y)∇xu(1)) +∇x · (A(y)∇yu(1)) +∇x · (A(y)∇xu(0)) + F(x)

]
dy

= ∇x ·
{[∫

Y

A(y)(∇yχ(y))dy

]
∇xu(0)

}
+∇x ·

{[∫
Y

A(y)dy

]
∇xu(0)

}
+ F(x),

where the first term vanishes by the periodicity of A and χ. Thus, we can obtain

that u(0) ∈
(
H1

0 (Ω)
)d

is a solution of

Lu(0) := −∇ · (A∇u(0)) = F(x) in Ω, (98)

where

A =

∫
Y

{A(y) + A(y)(∇yχ(y))} dy,

where A is the (constant) homogenized operator and we call (98) to be the ho-
mogenized equation. In addition, A = (aijk`)1≤i,j,k,`≤d and

aijk` =

∫
Y

(
aijk` − aijmn

∂

∂ym
χnk`

)
dy. (99)

For the rigorous derivation of the homogenized equation, we need to use a famous
result, which is called the Div-Curl lemma. We skip the rigorous analysis here and
refer readers to the lecture note [26] for more details.

Note that L := −∇ · (A∇) is the homogenized second order elliptic operator
with respect to A and we want to prove L is an elliptic operator with constant
coefficients.

Theorem 5 The homogenized operator L satisfies that
1. L is an elliptic operator, which means

µ1

d∑
i,j=1

|εij |2 ≤ aijk`(y)εijεk` ≤
1

µ1

d∑
i,j=1

|εij |2, (100)

for some constant µ1 > 0.
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2. The effective coefficient aijk` is major and minor symmetric provided aαβγδ
is major and minor symmetric.

Proof It is easy to see that |aijk`| ≤ C by using (99) and the ellipticity of A(y), for

some constant C > 0. It remains to show aijk`εijεk` ≥ µ1
∑d
i,j=1 |εij |

2 for some
constant µ1 > 0. We can rewrite (99) as

aijk` =

∫
Y

∂

∂yα
{δβjyi + χβij} · aαβγδ ·

∂

∂yγ
{δδ`yk + χδk`} dy,

where δsα is the standard Kronecker delta (i.e., δsα = 1 if s = α, and δsα = 0
otherwise). Hence, for ε = (εij) ∈ Rd×d, we have

aijk`εijεk` =

∫
Y

∂

∂yα
{δβjyiεij + χβijεij} · aαβγδ ·

∂

∂yγ
{δδ`ykεk` + χδk`εk`} dy

≥ µ
d∑

β=1

∫
Y

|∇(yiεiβ + χβijεij)|2dy ≥ 0.

If aijk`εijεk` = 0 for some ε = (εij) ∈ Rd×d, then yiεiβ+χβij must be a constant.
Recall that χβij(y) is Y -periodic, so this implies that ε = 0. This means that there
exists µ1 > 0 such that (100) holds. ut

5.3 Tools and estimates

In the last part, for the completeness of this paper, we provide some elliptic es-
timate where we have utilized in previous sections. The following theorem was
proved in [6, Theorem 5.7] for the scalar case. It will hold for the vector case. For
completeness, we provide the theorem and its proof as follows.

Theorem 6 (Trace Theorem) Let A = (aijk`)1≤i,j,k,`≤d be a four tensor sat-
isfying the ellipticity condition (100) and Ω ⊂ Rd be a bounded domain with a

C∞-smooth boundary, for d ≥ 2. The (cornormal) mapping Tr : u → ∂u

∂νA
:=

(A∇u) ·ν defined in C∞(Ω) can be continuously extended to a linearly continuous
mapping (still denote by Tr) from H1(Ω,A) to H−1/2(∂Ω), where H1(Ω,A) is
the space equipped with the graph norm

‖u‖2H1(Ω,A) := ‖u‖2H1(Ω) + ‖∇ · (A∇u)‖2L2(Ω).

Proof Let ϕ ∈
(
C∞(Ω)

)d
be a test function and u ∈ C∞(Ω;Rd). The integration

by parts formula gives∫
∂Ω

(A∇u · ν) · ϕ dS =

∫
Ω

(A∇u) : ∇ϕdx+

∫
Ω

∇ · (A∇u) · ϕ dx.

By the standard density arguments, the above equation holds for ϕ ∈
(
H1(Ω)

)d
so that ∣∣∣∣∫

∂Ω

(A∇u · ν) · ϕdS
∣∣∣∣ ≤ C‖u‖H1(Ω,A)‖ϕ‖H1(Ω), (101)
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for any ϕ ∈
(
H1(Ω)

)d
, u ∈

(
C∞(Ω)

)d
, where constant C > 0 is a constant

independent of ϕ and u. Let g ∈
(
H1/2(∂D)

)d
, by using the trace theorem, then

there exists a function ϕ ∈
(
H1(Ω)

)d
such that γ∂Ωϕ = f , where γ∂Ω stands for

the trace operator. Continuing the inequality (101) and the trace theorem,∣∣∣∣∫
∂Ω

(A∇u · ν) · fdS
∣∣∣∣ ≤ C‖u‖H1(Ω,A)‖f‖H1/2(∂Ω),

for any f ∈
(
H1/2(∂)

)d
, u ∈

(
C∞(Ω)

)d
.

Hence, the mapping

f →
∫
∂Ω

(A∇u · ν) · fdS, for any f ∈
(
H1/2(∂Ω)

)d
defines a continuous linear operator and from the duality argument,

‖(A∇) · ν‖H−1/2(∂Ω) ≤ C‖u‖H1(Ω,A).

Therefore, the linear mapping Tr : u → (A∇u) · ν defined on
(
C∞(Ω)

)d
is

continuous under the norm H1(Ω,A). Thus, the assertion follows from the density
arguments. ut

Let C = (Cijk`) be an anisotropic elastic four tensor and C0 be a constant isotropic
elastic tensor defined by (2), which satisfy all the conditions given in Section 1.
Next, we provide the stability estimate for the following transmission problem.
The scalar case was demonstrated in [6, Section 5] and here we generalize the
result to a system version.

Theorem 7 Let Ω ⊂ Rd be a bounded C∞-smooth domain. Given f ∈
(
H1/2(∂Ω)

)d
and g ∈

(
H−1/2(∂Ω)

)d
. Let u ∈

(
H1(Ω)

)d
and v ∈

(
H1
loc(Rd \Ω)

)d
be the solu-

tions of the following transmission problem
∇ · (C∇u) + ω2ρu = 0 in Ω,

∆∗v + ω2v = 0 in Rd \Ω,
u− v = f on ∂Ω,

Tνu− (C∇u) · ν = g on ∂Ω,

(102)

where Tν is the boundary traction operator given by (3), ω ∈ R is not an eigenvalue
of the transmission problem (102) and v satisfies the Kupradze radiation condition
(4). Then for any ball BR with Ω ⊂ BR, there exists a constant CR > 0 such that

‖u‖H1(Ω) + ‖v‖H1(BR\Ω) ≤ CR
{
‖f‖H1/2(∂Ω) + ‖g‖H−1/2(∂Ω)

}
. (103)

Proof Firstly, by using similar arguments in [4, Section 2] and [6, Section 5], the
elastic scattering problem (102) is equivalent to the following transmission prob-

lem: Let u ∈
(
H1(Ω)

)d
and v ∈

(
H1(BR \Ω)

)d
be the solutions of

∇ · (C∇u) + ω2ρu = 0 in Ω,

∆∗v + ω2v = 0 in BR \Ω,
u− v = f on ∂Ω,

Tνu− (C∇u) · ν = g on ∂Ω,

Tνv = Λv on ∂BR,

(104)
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where Λ is the DN map defined by (93) on ∂BR. Furthermore, by using [4, Lemma
2.8], the DN map Λ is a bounded operator and Λ can decomposed into Λ = Λ1+Λ2,

where −Λ1 is a positive operator and Λ2 is a compact operator from
(
H1/2(∂BR)

)d
to
(
H−1/2(∂BR)

)d
.

Next, let vf ∈
(
H1(BR \Ω)

)d
be the unique solution of the Navier’s equation

in the exterior domain 
∆∗vf + ω2vf = 0 in BR \Ω,
vf = f on ∂Ω,

vf = 0 on ∂BR.

By straight forward calculation, it is not hard to see that the variational formula
of (104) can be written as follows: Find a function w ∈ H1(BR) such that∫

Ω

(
(C∇w) : ∇φ− ω2ρw · φ

)
dx+

∫
BR\Ω

(
(C0∇w) : ∇φ− ω2w · φ

)
dx

−
∫
∂BR

φ · Tνw dS +

∫
∂BR

φ · Tνvf dS

=

∫
∂Ω

g · φ dS +

∫
BR\Ω

(
(C0∇vf ) : ∇φ− ω2vf · φ

)
dx, (105)

for any test function φ ∈
(
H1(BR)

)d
, where C0 is a constant elastic tensor defined

by (2). By using the integration by parts, one can easily see that u = w|Ω and
v = w|BR\Ω − vf satisfy (104).

Now, let us consider two bilinear forms

b1(ψ,φ) :=

∫
Ω

((C∇ψ) : ∇φ+ ψ · φ) dx+

∫
BR\Ω

((C0∇w) : ∇φ+ w · φ) dx

−
∫
∂BR

φ · (Λ1ψ) dS,

b2(ψ,φ) :=−
∫
Ω

(
ω2ρ+ 1

)
φ · ψdx−

∫
BR\Ω

(ω2 + 1)φ · ψdx

−
∫
∂BR

φ · (Λ2ψ) dS, for all φ,ψ ∈
(
H1(BR)

)d
,

and

F (φ) :=

∫
∂Ω

g · φ dS −
∫
∂BR

φ · Tνvf dS +

∫
BR\Ω

(
(C0∇vf ) : ∇φ− ω2vf · φ

)
dx.

Then we can rewrite the problem (105) as finding a function w ∈
(
H1(BR)

)d
such

that

b1(w,φ) + b2(w,φ) = F (φ), for any φ ∈
(
H1(BR)

)d
.

Since −Λ1 is a positive operator, one can conclude that b1(·, ·) is strictly coer-
cive. Therefore, from the Lax-Milgram theorem, one can see that the operator

A :
(
H1(BR)

)d → (
H1(BR)

)d
defined by b1(w,φ) = (Aw,φ)H1(BR) is invertible

and has a bounded inverse. On the other hand, since Λ2 is a compact operator
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from
(
H1/2(∂BR)

)d → (
H−1/2(∂BR)

)d
and

(
H1(BR)

)d → (
L2(BR)

)d
is a com-

pact embedding, then it is not hard to see that the operator B :
(
H1(BR)

)d →(
H1(BR)

)d
defined by b2(w,φ) = (Bw,φ)H1(BR) is compact. Hence, by using

[6, Theorem 5.16], one can derive that the existence of the transmission problem
(104) from the uniqueness of (104) and the stability estimate (103) holds auto-
matically. ut
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