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Abstract We consider the scattering of elastic waves by highly oscillating anisotropic
periodic media with bounded support. Applying the two-scale homogenization,
we first obtain a constant coefficient second-order partial differential elliptic equa-
tion that describes the wave propagation of the effective or overall wave field.
We further pursue a higher-order homogenization with the help of complimentary
boundary correctors and provide a detailed analysis on the rate of higher-order
convergence. Finally we provide preliminary numerical examples to demonstrate
the higher-order homogenization.

Keywords Second-order homogenization - Elastic scattering - Periodic media -
Wave dispersion - Two-scale homogenization

1 Introduction and summary of results
1.1 Motivation and background

The wave propagation in periodic media is of great interest in cloaking, sub-
wavelength imaging, and noise control, thanks to the underpinning phenomena
of frequency-dependent anisotropy and band gaps [19,22,28]. Away from averag-
ing techniques, the effective wave motion can also be obtained using the two-scale
method [5] with a perturbation parameter that signifies the ratio between the
unit cell of periodicity and wavelength. In the regime of long-wavelength and low-
frequency, the leading-order homogenization in particular gives the quasi-static
model by a second-order partial differential equation, where the elastic tensor and
density are replaced by constant effective elastic tensor and density respectively
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[5,26]. To gain further understanding of the wave dispersion, a higher-order ho-
mogenization has been taken into account. A higher-order homogenization was de-
rived for the scalar wave equation in [11,12,9,21,27,15], where a fourth-order par-
tial differential equation was formally derived and the dispersive effect was hence
demonstrated. [8] considered a higher-order homogenization of the elastic wave for
non-periodic layered media that transcends the usual quasi-staic regime. Alterna-
tively a dispersive model for scalar wave equation was derived using Floquet-Bloch
theory and higher-order asymptotic of the Bloch variety [24]. The higher-order
homogenization in particular sheds light on sensing the microstructure through
dispersion [18]. In the case that the periodic structure was only supported in a
bounded domain, contrary to the case that the periodic structure occupies the
whole space, the boundary correctors played a role in the homogenization [7]. Our
contribution is to investigate the scattering of elastic waves by highly oscillating
anisotropic periodic media with bounded support.

The homogenization problem for the second-order elliptic equations or systems
with periodic coefficients has been well studied in the literature, for example, see
[2,3,5,10,16,17,23,26]. Concerning about the regularity estimates, the authors in
[2,3] introduced a famous three-steps compactness method to prove the Holder
estimates for solutions of divergence and non-divergence elliptic systems. Further-
more, in [2], the authors studied the Green function and the Poisson kernel to
establish L? theory of the elliptic homogenization problem. The authors in [17]
investigated the asymptotic behaviour of the Green and Neumann functions and
derived optimal convergence rates in LP and WP for solutions with Dirichlet or
Neumann boundary conditions. They further studied the convergence rates in L?
of solutions of the elliptic systems in Lipschitz domains in [16]. We refer to [26]
for an excellent lecture note for the survey on this research area.

1.2 The elastic scattering problem

Let 2 C R be a bounded simply connected domain with a C'*°-smooth boundary
0f2 for d = 2,3. We remark that our study still holds in one dimension where
all the tensors become scalar. Let ¢ > 0 be a small parameter and Y := [0,1]%
be the unit cell. Let C = C(y) be an anisotropic elastic fourth-order tensor with
C = (Cijke)1<i,j,k,e<d- In this paper, we assume that the elastic tensor C = C(y)
satisfies the following conditions.

— Periodicity: The elastic tensor C = C(y) is Y-periodic,
C(y+ z) = C(y), for any y € R% and z € Z%.

— Strong convexity:

d d
> Cijee(y)aizare > co Y aij, for any y € R, (1)
i ok e=1 ij=1

with some constant ¢ > 0 and for any constant symmetric matrix (ai;)1<i,j<d-
— Smoothness: C;jre(y) € C™ (RY), for all 1 <i,7j,k, £ < d.
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— Symmetry: The elastic tensor C = (Cjjke)1<i,j,k,e<d Satisfies major and minor
symmetric condition, that is,

Cijkg = Ckeij and Cijkg = Cijgk, forall 1 <i,j,k, ¢ <d.

The symmetric property of the elastic tensor C = C(y) plays an important role
in the study of the asymptotic analysis of the scattering homogenization problem
(see Section 2 and Section 3). Next, let p = p(y) € C(R?%) be the density of
the medium and w € R be the interrogating frequency. We also assume p(y) is
Y -periodic, i.e., p(y +z) = p(y) for any y € R? and z € Z?. In the exterior domain
Rd\ﬁ, the medium is homogeneous, isotropic where p = 1 and the elastic tensor
is a constant fourth-order tensor C® = (C;;)ke)lgi’j,k’ggd given by

tike = A0ijOke + p(8ikbje + Siedjn), (2)

where A and p are Lamé constants satisfying the strong convexity condition (1),
and it is equivalent to

>0 and di+2u >0 where d=2,3.

Now let us consider the elastic scattering by highly oscillating periodic media
with bounded support. Let u(z) = (u¢(z))¢_; be the displacement vector field,
the time-harmonic elastic scattering is modeled by

V- (C(%)Vu) + w2p(%)u =0 in {2,
A*u® 4+ w?u® =0 in R\ 2,
u+u=u on 012,
T, (0® +u') = (C(%)Vu) v ondR,

where

z _ya 9 (B Om :
(V- (eETw) =T o (Com DGt ) mr1<i<a

A* = pA+ (A + p)V(V) = V- (COVY),

and v is the unit outward normal on 82, u® is the scattered field, and u'® is an
incident field; the operator T, stands for the boundary traction operator of the
isotropic elasticity system (from the exterior domain), which is

2ua—u + AWV -u+ pv? (Gour — drus), when d =2,
Tou = v (3)
2u%+AuV-u+uux(qu), when d = 3.
The equation A*u® 4+ w?u® = 0 with constant coefficients is called the Navier’s
equation. In particular we consider an incident field that is either a plane shear
wave . .
u'"(z) = u™(z) := d* exp(iwsz - d),

where d,d* are orthonormal vectors in R?, or a plane pressure wave

u'™(z) = u)(z) := dexp(iwpz - d),
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w

VT2
Via the well-known Helmoholtz decomposition in Rd\ﬁ, one can see that the
scattered field can be decomposed as

w
where ws and w, are constants denoted by ws = \7 and wp =
m

S sc sc
u =u, +ug,

with

1 1
u,’ = fW—%V(V -u®?) and ui® = w—grot(rotusc),

where rot = V7 represents 5 clockwise rotation of the gradient if d = 2 and
rot = VX stands for the curl operator if d = 3. The vector functions u;® and uz*
are called the pressure (longitudinal) and shear (transversal) parts of the scattered

vector field u®, respectively and they satisfy the Helmholtz equation

(A +w2)ui® = 0 and rotu® = 0 in RN\,

(A4 wHui®=0and V- ui® =0 in RN\ .

Furthermore, for the elastic scattering problem, the scattered field u® satisfies the
Kupradze radiation condition

8 sc sc
lim (& - z'wpuff> =0and lim (8115 - iwsuﬁ’:) =0, r=lz|, (4)

r—oo \ Or r—oo \ Or

uniformly in all directions T = ﬁ
x

In summary the elastic scattering by highly oscillating periodic media can be
formulated as: find the solution u® € (Hlloc(]Rd))d to

V- <C(%)Vué) +u)2p(§)u€ =0 in £,

A*uc + w?u =0 in R\ 12,

(uHt —(u)" =f on 02, (5)
(Tyu®)™ — <C(%)Vu5)7 v=g ondf,

where u® satisfies the Kupradze radiation condition (4) at infinity. Here u® stands
for the solution parametrized by e and

mn

and g:=-T,u on 012,

f.= _uin

where u'” is either a shear wave or a pressure wave given as before. The super-
scripts 7 +” or 7 —” stand for the limit from exterior or interior on 92, respectively.
We remark that the highly oscillating periodic media is only supported in 2.
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1.3 Main results and outline

We are interested in the limit behavior or the overall behavior of the solution u®
as € — 0, known as homogenization. As ¢ — 0, we are expecting that u® — u'®,
where u'® is the solution of the homogenized equation

V- (CVu?) 4 w?pu® =0 in 2,
A*u® 4+ w?u® =0 in R4\ 2, (©)
()t — ()" =f on 012,

(T,u®)T — (CVu®)” -v=g ondn,

where C = (Cjjx¢) is the constant four tensor and p is the constant density given
by

— 0
Cijre = [y | Cijre — CijmnTXnk:E dy,

Ym

p= fy pdy,
and here we have utilized the Einstein summation convention for the repeated
indices; the constant fourth-order tensor C is called the effective fourth-order ten-
sor; the third-order tensor X = (Xnke)1<n,k,e<d With Xnke € H;ET(Y) is uniquely
determined by the cell problem

0 0

a szn_cz YA~ Zmn)ZOinYa

Oy ( ! IR Dy ©

Jy Xemn(y) dy =0,

(7)

where we refer to Appendix Section 5 for detailed analysis. H;eT(Y) denotes the
periodic Sobolev space consists of H! functions defined on the d-dimensional torus
R?/Z? where Y = [0,1]¢, we refer readers to [10, Chapter 3] for detailed charac-
terizations.

The constant tensor C also satisfies the strong convexity condition (1) (see
Appendix Section 5), which implies that (6) is a well-posed transmission problem.
Note that from the standard elliptic regularity theory (see [20] for instance), the
corrector x is C*°-smooth due to the smoothness of C.

Now let us look for ansatz u®

2
u =u” 4 eu” +fu® 4 -

as an asymptotic expansion in terms of €, where the functions u”’ will be char-
acterized in the following sections for j = 0,1,2,---. Now, we can state our main
results in this paper.

Theorem 1 (Convergence in L? and H') Let u® and u® be the solutions of
(5) and (6), respectively. Let u be the bulk corrector given by (21) in 2 with
u® =0 in R?\ 2. Then for any ball Br with 2 C Br, we have

(0)

€ € 1/2
[u® —u™ — 611(1)“H1(Q) + [lu® - U(U>||H1(BR\ﬁ) < CRe / ||u(0)||H2(Q)7 (8)

and
u® — a2,y < Crellu”||g2(0), (9)

for some constant Cr > 0 independent of € and u®.
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Furthermore we have the following higher-order convergent rates between solutions
u® and u®.

Theorem 2 (Higher-order convergence in L? and H') Let u® and u® be
the solutions of (5) and (6) respectively. Let u” and u® be defined by equations
(49) and (55) in 2, respectively, with u® =0 and u® =0 in R\ 2. Let ¢° and
0°¢ be the boundary correctors given by (41) and (64). Then for any ball Br with
{2 C Bgr, we have

lu® = + e + u? + e + €0°) | ur(my) < Cre [0 | mi(y,  (10)

and
€

[u® — (u® + eu® + )| 125y < CrENU || r1(2)s (11)

where Cr > 0 is a constant independent of € and u'®.

Remark that the above convergence estimates include boundary correctors ¢°©
and 0° since the periodic media has bounded support, as contrary to the case that
the periodic media occupies R?.

We also remark that as a by-product we obtained a higher-order homoge-
nization that enables to study the anisotropic dispersion of wave propagation in
periodic media (in the whole space). Formally the averaged wave field U of ue up
to order €2 is governed by the fourth-order equation in £2

V- (CVU) +w’pU = —¢(F : V’U + w’G : VU)
—&(D: VU +W’E: VU) + 0(¢%), (12)

where D is a sixth-order tensor, E is a fourth-order tensor, F is a fifth-order tensor
and G is a third-order tensor respectively (see Section 3.3 for the definitions and de-
tails). The fourth-order partial differential equation (12) in §2 formally introduces
the dispersion as is seen from the right hand side of (12). In the low-frequency
long-wavelength regime for wave propagation in periodic media, the wave disper-
sion has been demonstrated by a fourth-order partial differential equation for the
acoustic case [7]. In the particular case that the periodic media occupies R?, (12)
models the wave propagation and transcends the quasi-static regime. In the case
that the periodic media has bounded support, the boundary correctors play a
role. This is a key difference between homogenization in the whole space and in a
bounded domain.

This article is further structured as follows. In Section 2, we study the asymp-
totic analysis for the elastic homogenization problem. From the analysis, we can
prove the L? convergent rates for the elastic homogenization problem, which shows
Theorem 1. In Section 3, we develop the higher-order asymptotic analysis. This
gives us important information about the higher-order convergent rates between
solutions u¢ and its approximations, and we can use it to prove Theorem 2. As
a by-product, we formally provide in Section 3.3 a second-order homogenized
model for the elastic scattering in periodic media (that occupies in Rd), where
the anisotropic dispersion was demonstrated. In Section 4, we provide preliminary
numerical examples to illustrate our higher-order homogenization. In Appendix 5,
for self-contained proofs, we offer fundamental materials which is used to demon-
strate our homogenization theory for the elastic scattering problem.
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1.4 Notation

1. We use sub-index to represent the component of a tensor, in particular the
142 - - - i, component of a n-th order tensor x is represented by Xi,iy.--4,-

2. We use Einstein summation convention for the repeated indices.

3. - denotes the standard inner product and : denotes the standard contraction
between two tensors.

4. CZ°(£2) denotes the space consists of C° functions that are compactly sup-
ported in (2.

Acknowledgements The work was initiated when the authors participated the annual pro-
gram on “Mathematics and Optics” (2017-2018) at the Institute for Mathematics and its
Applications (IMA) at the University of Minnesota. Y.-H. Lin would like to thank the support
from IMA for his stay at the University of Minnesota.

2 Asymptotic analysis of the transmission problem

To begin with, we recall the two-scale homogenization method for the elasticity
scattering in periodic media.

2.1 Basic asymptotic analysis

Let us consider z and y = — that are the slow and fast variables, respectively. Let
€

u‘ be a solution of (5) and we rewrite (5) to a first-order system

ve— C’(E)VuE =0,
€, for x € £2. (13)
V-vi4w ,O(E)uE =0,

Note that u® = (ug)1<i<dq is a vector-valued function and v = (v{;)1<i j<a is a
matrix-valued function. The two-scale homogenization method begins with ansatz
u® = u‘(z,y) and v = v®(x, y) such that

u(2,y) = u(2,y) + @ (@y) + Fu®(@,y) + = 3 Fu(a,y),
k=0

vi(a,y) = VO (@) + v (@) + EVI e y) o= 3 V(). (14)
k=0

Furthermore since there are no microstructure in the exterior domain R%\ {2, the
asymptotic expansions of u® and v® are nothing but

u® =u”(z) and v = v’ ().

Proceeding with the ansatz, we consider z and y = — as independent variables
€

and correspondingly
1
V:VerEVy. (15)
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Use the formal expansion and combine (13), (14) and (15), then we have

o €7V (2, y) = C(y) (Voc + %Vy) ( o g€t (x, y)) =0,
(Ve + 290) - (250 €9 (@) + 0%p(0) S35 €0 (2, ) = 0.

(16)
By collecting the €™ terms in equation (16) with m = —1,0,1---,
o : ¢Cvyu” =o, (17)
Vy v =0. (18)
o1): v —-C(Veu” +v,u?) =0, (19)
(Ve v+, -v®P) +u’pu® = 0. (20)
Via (17), we get u'® = u”(x). From (18), (19) and the cell function X¢mn solving
(7), we can find that the bulk corrector u” = (u}")1<¢<q is given component-
wisely by
o ouY
m

We call u™(z, y) the first-order corrector for the periodic homogenization problem.
Plugging equation (21) directly into (19) yields
’Ul(g) (1:7 y) = (C(y) (vﬂcu(O) (1‘) + Vyu“) (1‘7 y)))w

ouy” X emn Ouy
= Cijkl(y)ai;k — Clijri i;eyk o

R (22)

and consequently the Y-average of v is
(v =¥ = / v (z,y)dy = CVu”.
Y

In order to solve v*’, we introduce the following partial differential equation

in the unit cell. Let q(x,y) be a solution to
roty(q) = v — CvVu'”, (23)
where q(z,y) is

q = (q1,q2) when d = 2 and ¢;’s are scalar functions for i = 1,2,
q=(q1,92,q3) when d = 3 and ¢;’s are column vectors for i = 1,2, 3,

where each component of q(z,y) belongs to Hp.,.(Y') as a function of the y variable.
Let v(y) € (H;ET(Y))dXd solve the following equation

0 OYm _
Tw(cijkeﬁlf> = (P - P)5jma
Jy ¥me(y)dy = 0.

We remark that the right hand side of (24) has zero mean (i.e., [,.(p—p) dy = 0),
and then compatibility condition is satisfied, which means (24) is solvable.

(24)
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From (23), (24), (20) and note that V, - (rotzq(z,y)) = —V - (rotyq(z,y)),
one candidate for v* is vV = (51(-;-))19,]‘91 defined by

8’7m€
Oy,

05 (2,) = (rota(q(2,9)));; + w?Cijne(y) (y)u, (z), for 1 <i,j <d. (25)

We remark that the function v¢* in the form (25) is convenient in proving Theorem
1, and we will choose another form of v* to derive higher-order estimate.

2.2 Rates of convergence in H' and L?

Now let us introduce the boundary corrector ¢° that solves

T T\ e .
v. (C(;)Vgo ) +wip(D)§ =0 in 0,
AP+ WP =0 in RY\ 2,
@)t — () =u® on 812, (26)

V(U) _ V(U)

(1,3 — (C(%))V&:E)* v= ( + vw) v on R,

€

where ¢ satisfies the Kupradze radiation condition (4). By plugging (21) and (25)
into (26), one can see that the transmission conditions on 02 is

~€ ~€\ — a ’(V;))
((so )" - (&) )jz—xjmn(y)(;;—, for 1 <a<d on 02
(T,5°)" — (C(%))V?oe)_ v = [rot g+ w?(C: V) (y)u®] -v  on 4,

(27)

where rot = rot, + %roty.

Before proceeding with the following lemma, we remark that the solution u‘®
to (6) is sufficiently smooth, since (6) is a well-posed transmission problem and
moreover the tensor C and density p are constants and the boundary data is

sufficiently smooth.

Lemma 1 Let u® and u'® be the solutions of (5) and (6), respectively. Let u™
be the bulk corrector given by (21) in 2 with u® = 0 in R\ 2 and @° be the
boundary corrector given by (26). Then for any ball Br with {2 C Br, we have

[u® = (0" + eu™ + €@ a1 (Br) < Crellu || m2(0), (28)
where Cr > 0 is a constant independent of ¢ and u'®.
Proof Consider the error functions in D given by
€

wei=u — u(u) — 611(1), (29)

and
¢ = C(OVu — v — v, (30)
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where w* is a vector-valued function and ¢¢ is a matrix-valued function. From
straightforward calculations, we can get

C(%)wa —¢F = €¢(¥ = C(y)VLu),
67m£ 8un’z
Oy, Ox;

), for1<j<d,
(31)

(V-¢9)j + 0 p(y)wf = —ew® (p(y)ug-” + Cijne(y)

which is a first order differential system of (w*, () such that their right hand sides
are of order O(e).

While outside £2 we simply consider the error functions w® := u® — u‘” and
¢ := CPVw*, and then they satisfy

—V (= wiwh

Let Br be a sufficiently large ball that contains {2 and ¢ € (CgO(BR))d be a
vector-valued test function, we shall derive an estimate for

/ (WE — €3°) - . (32)
Br
To estimate the above quantity we consider another auxiliary function ¢ €

(Hloe(RY)" by
V(CEWVE) +w?p(D)8 =6 in 2,
A*PE + 2P = ¢ in RY\ 2,
(&) — ()" =0 on 912,
(T, &) — (C(%))V@E)_ v=0 ondR,

(33)

where ¢ is the test function as we mentioned before and @€ further satisfies the
Kupradze radiation condition (4) at infinity. Now we replace ¢ in (32) by (33)

/BR(WE —7) - pda :/Q(WE ~ ) (V- (v +wtp(D)8 ) da
s ) (e e
Br\ 2

:_/ (C(%)VWE) ;vqfd:c+e/ (C(f)vae) L V& da

Q
2 x € ~€ € € ~e\+ €
+/ wip(=) (W —€ep®) - P dx+/ T, (W —ep®)" - PdS
2 € 202
+ / (W — %) Ty @dS — | Tu(w" — @) - B°dS,
dBr dBr
(34)

where we used the integration by parts formula once for the interior {2 and twice
for the exterior Bgr \ {2, and the function w® — ep® has no jumps across 0f2.
Furthermore the last two terms of (34) are zero, due to the Kupradze radiation



Homogenization of an elastic scattering problem 11

condition; indeed from equations (91), (92) in Appendix 5.1 on the discussion of
Kupradze radiation condition, a direct calculation yields

/ (WE — &%) - T, BdS f/ Ty (w* — 3°) - 8°dS = 0.
dBRr 9BRr
Now we have
/ (W — @) - pdx = — / (C(E)VWE) : VP dx + e/ (C(f)VgZe) : VP dx

Br (9] € Q €

+/ W p(E) (W — ) - Bda +/ T (w' — )t - 3°dS.
) € a0

Since @° satisfies equation (26), then from integration by parts

/BR(wé_egEé)-dﬂa::—/Q(C(%)VWE) ;W;edHE/ (C(f)véé)’u@ﬁdm

Yo
+w2/ p(z)w€ - Pdx +/ (T (W — eg?ae))+ - PedS.
o € 292

From (26), (31) and integration by parts we can further obtain

(W — @) - pda
Bgr

—/ CE-VSPde—I—wQ/ p(z)we'dsﬁd:v—i—/ (T,w)" . d°dS
7] o € a2

+ e/ ( v 4+ C( )Vmu(l)) :VOdr + ¥ —v? — v - BdS
12, a0
2 (IJ ( ) . f a'le 8u;n) €
— ew /Q (p . +kae(6) Dy O )éjd:r
+e/ ( v+ )Vmu(l)) Vo dx
o)

+/ ((v@ v YT ) () v (Tuw€)+) - °dS.
o0

From equations (5), (6), (26), (29) and (30) we can obtain that the the last term
in the above equality is zero. Thus,

(W® — €p®) - pdx

Bgr
_ ) T\ OVme O, \ e
- / (P + o (1) G G
+e/ (76“ +C(7)qu(1’) Vo da, (35)
0 €

Note that the function q solves (23), then one can choose q such that

u®
693 ;0T

’

sup |[vV| < C
yey

mw

+|u
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where C' > 0 is a constant independent of €. Recall that u'” is represented by (21),
then we obtain

©
&5) Yme O, (0
w;) + Ciige=—— < Clua 2
'p J ¥ ayk axz L2(2) || ||H (2)
oulM
Cijre—-— < Cllu“ | w202,
8xk
L2(£2)

where the first inequality holds for 1 < j < d and the second inequality holds for
1 <4,j < d. Appling the Cauchy-Schwartz inequality to (35) we can obtain

< Cella || g2 () 161 11 (2)

./BRW — ) iz

for some constant C' > 0 independent of €. Finally from the standard estimate for
the elliptic system (see [20] for instance),

12N (2) < Cll@llz-1(Br)

where C' > 0 is a constant depends on the coefficients and R. Finally the proof
follows from the duality argument. a

Now we can have the following theorem.
Theorem 3 Let u® and u'® be the solutions of (5) and (6), respectively. Let u™
be the bulk correction given by (21) in 2 with u® = 0 in R\ 12, then we have

[u® = u® — || g1y + [0 = 0|1 gy < Cre ([0 120,
for some constant Cr > 0 independent of € and u®.

Proof From the elastic transmission problem (26), the function ¢ satisfies the
following H' estimate (see Theorem 7 in Appendix Section 5),

@M1 mr (2) + 1€°1 11 B\

0 __ (0
(u _ vm) v ) o (36)
€ H-1/2(812)

©)
for some constant Cr > 0 independent of e. Recall that u}” (z, E) = Xgmn(f) gu" (2),
€ e’ Ox

SCR(Hu(l)HHl/Z(E)Q) +

by a standard argument of the trace theorem and cutoff techniques in the homog-
enization theorem (see [10, Chapter 7] for instance), we have

[u® | 1200 < Ce 20 |20y, (37)

where C' > 0 is a constant independent of € and u'”. From equations (26) and

(27),

SO _ 4O
<u - V(l)) V= (rot q+ wQC(y)Vq/(y)u(O)) ‘v,

€

where O(l) term is absorbed.
€



Homogenization of an elastic scattering problem 13

Now let ¢ be any arbitrary smooth vector-valued test function, then when
d = 2, we have

/ rot(gj) - vepdS = 7/ gj rot(¢) - v dS, for j =1,2,
an o9

and when d = 3,
/ rot(qj)«ud)dS:—/ (¢j x V@) -vdS, for j =1,2,3.
oD aD

From the governing equation (23) of ¢;(y) for 1 < j < d, we can see that the
H;ET(Y)—norm of q = (Qj)lgjgd is bounded by ||u(0>||H2(Q). From the trace theo-
rem we can obtain

lgillzzo0) < Cllu® a2y and  [lgjllmia0) < Ce a0 g2(a), for 1 <j <d,

where C' > 0 is a constant independent of €. Then from the above inequalities and
the duality argument,

V(O) _ V(O) ) .
SO <C , 38
|(———~+%") uHH%(am_ [0 |22 (38)

and

vO g
— vV
€

where C' > 0 is a constant independent of €. Therefore by interpolating between
(38) and (39), and combining with (36), (37), we obtain

L2(892) = 06_1”11(0)”1_12(9)’ (39)

—1/2

1@ N a1 (2) + 1D N By < Cre™ |12 (02, (40)

for some constant C'r > 0 independent of e. Finally from (28) and (40) we obtain

[u® = u®” = e () + [0 = 0| g1 (53 < Cre 20 |2 (2),

where C'r > 0 is some constant independent of € and this completes the proof.
This also proves (8) in Theorem 1. O

Consider another boundary corrector function as follows. Let ¢ € (H, lloc(Rd))d
be a boundary corrector that solves the following equation

x . T, . .
V- (C(;)V<P ) +W29(;)<P =0 in £2,
A% +wip =0 in R\ 2,
()" = (¢)” =u® on 992, (41)

o) __ V(O)
(Vi

(Typ)t — (C(%)ch6 V) = +v®) v on 0,

€
where ¢ further satisfies the Kupradze radiation condition (4) and v is the
function given in the asymptotic expansion (14). Here we remark that v(* might
not be the same function as v".



14 Yi-Hsuan Lin, Shixu Meng .

Lemma 2 Let Br be an arbitrary ball in R? such that 2 C Bgr. Let u” €
H?(BR) be the solution of (6) and ¢° be the solution of (41), then we have

¢l 2 () < Crllu®lla2(0),
for some constant Cr > 0 independent of e.

Proof Let us consider a test function ¢ € (LQ(BR))d such that ¢ = 0 outside Br
and let @° be the solution to the transmission problem (33). We begin with the
estimate of @°. It is similar to the proof of Lemma 1 and indeed we can obtain

/BR ¢€-¢>dx=—/ﬂ(C(§)V§ée) ZV@edﬁC—‘er/Qp(%)(‘Be.@edx
o[, (eem) vy @ras
+/m ((Wf)+ ~V) (@) 1dS - /an ((vasﬁ)+ : u) (@) ds.

By using the integration by parts in (2, the equation for ¢, Kupradze radiation
condition (4) for ¢ and continuous transmission boundary conditions for @° (see
(33) again), we can derive

/ 7 - o
Br

:/an ((M”m)'”)-@e)*ds— o v ((ve)tv)as

:/39 (((rotq) +w ngke(y) sz( Yu (0)) ) (@5)+d5

x . Oul

+ /m xemn (D) g2 ((wse)+ : y)edS.

Let ¢ be the solution of the leading-order homogenized transmission problem
©

with respect to ®¢, and @\ (z,y) = Xemn (y) ™ _(z) be the first order corrector

term correspondlng to @°¢. Furthermore let 476 be the bulk corrector of @€ as the
role of ¢° playing for u®. Following the same proof of Lemma 1, we can derive that

| — (B + @ + ¥°) | 11 (Br) < Crel|® ]2 (),

where Cr > 0 is a constant independent of € and &, Since the bulk correction
of &€ is zero outside (2, then in particular we have

12 = (8 + )| i1 (5,0 7) < Crel @l 2(2)-

From the definitions of ¢, #© and ¥ in Bg \ {2, we know that V - (C” V&),
V- (COVP) and V - (COVF) belong to L*(Bg \ 2), then from Appendix
Section 5

HV((QSG)+ _ (gp(O))'f‘ _ e(@6)+) VH < Cre||®" )”H?(Q) (42)

H-1/2(002) —
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Therefore we can now obtain

/BQ <((r°tq)w +w?Cijne(y)

Ovm
< Clldllg-—102) IVl 11 (002) +w’ ‘/ Cijre(y) ;yké (Y)um vi (45;0))+d5’
PYe)

< N g2 12| r2(2), (43)

OYme oY, (0)\+
S Jwi ) - (@) ds

where we have used ||g;||g-1(00) < Cllu'®||g2(o) with the constant C' > 0 inde-

pendent of € (by (23)) and Cijkz% is bounded in H'/?(9£2) independent of ¢
Yk

for all 1 <14,j,m < d (see (24)). We also know that

[u®z2002) < Cllu||g2(2),

for some constant C' > 0 independent of € and hence,

/ ((V¢(O))+ 'V) 'U(l)ds‘ < Cllu|L200) IV || L2 (002
a0

< Ol a2 () 18 || 52 (52)- (44)
To proceed, we can use similar arguments as before to get

€ —1/2
1Z| fr1/2 00y < Ce / 12 2 2)5

and ©) ©)
b < C 2 a2,
€ H-1/2(880)
which implies that
v v o ) ©
TV ) ePdS| < Clla™ gz 12 | 72 (2), (45)
o9
where C' > 0 is a constant independent of e. Similar arguments give
€ / u® - (Ve)T- V)dS’ < Cla” a2y 19 | 2 2) (46)
oY)

for some constant C' > 0 independent of €, where we have utilized the fact that

< Ce V2 1q©@ )
H'/2(802) ‘ | =)

1 X
191200y = [x(5)Vu®
Finally from (40) we can obtain that
6‘7/ (C(f)vaj :V!Pedx+w2/ p(X)pt - wda
) € n €
x €\ — ~€
+ [ (eEwe) v) gas
N €
+ ((V¢€)+'V)'(J’E)+d5*/ (Ve -v)- (9T dS
o0 o0

< Cellellar (B 1Tl a1 (B < Cllu” a2 19 52 (2)5 (47)



16 Yi-Hsuan Lin, Shixu Meng .

for some constants C > 0 independent of ¢, u'” and #. Then by combining
(43)-(47) and the remainder term of (42) if of order ¢
1228y 1Dl L2 (Br) < ClU |12 () 1B | 2 (2)-
Furthermore since [|®|| g2(0) < C||@l|12(By), then there exists a constant C' > 0
independent of € such that
18N 22(Br) < Cllu 12(2)- (48)

Finally since the difference between ¢ and ¢ only appears in the jump conormal
derivative across the boundary 0D (see equations (26) and (41)), this proves the
theorem. 0

Now, we are ready to prove the rates of convergence of [[u® —u'”||p2(p,)-
Proof (Proof of Theorem 1) It is easy to see that

a2 = Pl < Clu® sy

by using the definition of u” and the smoothness of x(y). From (28) and (48),
one can see that

[u® —u”l2(Br) < Crella” m20) + el |2 (mg) + el @ N2 (82

< Crellu || m2(0),

for some constant Cr > 0 independent of € and u'”. This completes the proof. O

3 Higher-order asymptotic analysis of the transmission problem

There are recent interests on higher-order two-scale homogenization of wave prop-
agation in periodic meida [1,7,9,21,27]. In the case that the periodic structure was
only supported in a bounded domain, contrary to the case that the periodic struc-
ture occupies R%, the boundary correctors played a role both in the leading-order
and second-order homogenization as demonstrated in [7] for scalar wave equation.
In this section we study the higher-order homogenization of the elastic scattering
problem where the periodic media has bounded support.

3.1 Higher-order asymptotic expansion

Recall in asymptotic expansion (16) the first order term u'” was given by (21), in
this section we consider a more general form of u” = u™(z,y) given by

(0)

g (09) = ~Xorn () G2 ) + T ). (19)

From the ansatz we further obtain

O(e) : v?V = C(y)(Vou" + V,yu?) =0, (50)
(Vo v +V, - v®) + w?p(y)u” = 0. (51)
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Now we first derive a representation for uz. Applying divergence V- to equa-
tion (50) and using (20) yield

Vy - (C(y)Vyu®) + V, - (C(y)Veu®) =V, - v? =~V - v —w?p(y)u®.
(52)

From equations (49), (52), (22) and direct computations, we obtain the governing
equation for u®

0 Ouy” Oxnke | O N A
87‘7/@' (Cukﬁ(y) ayk ) —( - Czjké + Cz]mn aym + 8ym (anfcmjkn) + Czjk@) Bxk(’?xz
Cijre 0Uy” 2, ©
" oy Ozn +w (P — pluy’. (53)
Let us set
OXnke 0
Jke Jke + J aym + 8ym (X £ gk )
and note that fY bijredy = —6ijkg. Besides, due to the symmetric properties of

Cijke, we know that Eijkg also has the major and minor symmetry.
Now we introduce higher-order cell functions xireq € H;QT(Y) that is Y-
periodic and solves

3} X
. <Caqu(y)§Tijq> = bijke — /Ybijke dy. (54)

In addition with the help of the cell functions x¢mn defined by (7) and v.,¢ defined
by (24), one can directly obtain from equation (53) that

@ 32“510) o, 2 © | ~@
U = Xomnap 5o = Xpmn Gt + WP g (U + (@), for 1< p <.
(55)

where the function ﬂ;,” will be determined later. It is not hard to see that u® is

a solution of (50) (due to V,u®(z) = 0). From (50)
v =C(y)(Vzu” + Vyu®), (56)

then applying the divergence V- to (56) and note that u” and u®® are given by
(49) and (55) respectively,

OXmnqt &uy’
oMy — [ B mngq q
(Vm A% )J < Cz]nZXqu + ngk@ 8yk ) 8xl8xmaxn

2. OYne Ouy 3 ke Oy’
+w C’m]ke 8yk 8$m + Cz]ké Cz]mn aym szaxk (57)

Applying the divergence V- to (56) and then averaging that over Y yield

/ V. -vPdy —/ V- (C(y)(ku(1> + Vyu(z’))dy =0,
% Y
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note that u”, u® and V, -v® are given by (49), (55) and (57) respectively, then
a direct calculation yields

_ Pul mnqt
Ci' 4 2—~('1) — _ q / 7Ci'n " Cz mngq d
I 0wy P (3wi8xm8wn) Y gméXtma + Cigkt =5, Y
2 Ouy, / One
- - jmn mj dy.
e ], (TP + Crmijke au ) Y (58)

We will show that the function '’ (z) cannot be chosen as zero in the elastic
homogenization case, which is different from the scalar case [7] (the function u™
can be taken by zero in the scalar case). Via integration by parts and periodic
conditions of Cj;ke, Xmnge and the cell problem (7), one can see that

Yk
1o} 0 0 0
- - mnqgl 5 C aB 5§ ij dy = — ij C «@ mn d 5
/Y Xmnqt ayk < ke ﬁaya XB J) Y /;/ XBij aya < ke ﬂaka lIf) Y

where we have used integration by parts twice in the last equality. From the
symmetric condition of the fourth-order tensor Crapg = Cagre and equation (54),
we can get

0 0
/Y jke 8ka qeay L X qéa keijay

19} 19} 19}
Ci' a5 Xmn dy = — i a. Ca a._ Xmn d
/Y jke D Xmnqe@y /Y XBij S < Bke Aur X qe> Y

:_/ Xﬁij(bmﬁnq_/ bimpng dy)dy
Y Y

OX~n 0 —
= - /Y XBij (_Cmﬂnq + Cinpay g; 4 4+ 7(X7mq0aﬂnw) + Cmﬂnq) dy

Yo

0 Oxpij
:/ Xﬁijcmﬁnqdy*/ XiiCmBa~y X’quy+/ XymqCapny Bjdi% (59)
Y Y OYa Y Yo

where we used the integration by parts and fY Xgijdy = 0 in the last equality.
Therefore from (59) we can obtain

Pl o)
(m) </Y Cijkeaikamnqedy*/YcijnZXqudy)

Pul OX~n
= (81}181;:18%’”) /Y ( - Xémqoijne + X,Bijcmb’nq - Xﬂijcmﬁa'y a;aq

Oxpij
+ X—quCaﬁn'y ayﬂa] )dy

From the above representation, it is easy to see that the above quantity may not
be zero, since the index g induces non-symmetry among the indices g, ¢, m, n even
though the indices 7, m,n can be interchanged freely.
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For the second term in the right hand side of (58), from equation (24) governing
~ and integration by parts, we have

0 0 0
/Y ;keaykW ay /Y’Y eayk jkeady /YW e(’)yk kemjay

0] 0 0 0]
== [, . Cotmg X oty == | 5 ot anc)amst
9 9 / _ /
/Y ayp( queayk’Y ¢)Xamjdy YXq i(P— p)ogndy YPX ity

whereby

0
/ (*pxg'mn + ijkeafvne) dy = / (—=pXjmn + PXnmj) dy-
Y Yk Y

The fact that x;mn has symmetries with respect to m and n may not yield the
above quantity to be zero. Note that for the scalar case (see [7]), the right hand

side of (58) is zero, thus one can choose U = 0 without loss of generality in
the scalar case, but for the elastic case, we simply keep u‘”(z) in the following
analysis.

Now let us seek for the a formula for v®® and we denote such a function by
v® in this section. In particular from equation (51)

Vy-v? = -V, -v?" —u’p(y)u.

From equations (49), (55) and (56), one can derive the equation for v

aanqZ) 83“510)
oYk 0x;0TmO0Tn

0 oul?

(Vy-v®); :(CijneXemq — Clijre

8yk a$m
OXnk %) 2 ~
+ (= oot Cmn Zt ) s = o

From the governing equation (58) for @1, one can further simplify the above equa-
tion to

aXrn,nq[
Oy

(Vy - v?); :(CijnZXqu — Cijke

axmnqz 83'&;0)
—/Y(ngnemmq_cwkf E ) )8xi8xm8$n

oulY

OVn 0Vn
+W2(_ijkéﬂ + PXjmn _/ (_ijkéﬂ +pijn) dy) 9
Y Tm

Oy Oyk

axnk aXnk 826(1)
+ ( — Cijrg + Cijm"qu a /y (=Cigha + Cismn 8qu) dy) c%ckaqxi

—(p - P)u. (60)
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Now we introduce the following higher-order cell function to construct v® such
that equation (60) holds. In particular we construct Xinmqe, Yikge and Jems, that
belong to Hp.,.(Y) and solve

8 ayznm 14
@ Cajﬂ[(y)T;) = dijnmq - fy dijnmq dy,
0 3§ikqe> OXnkq
. Ca' Y)—F :_Ci‘ +szn
o ipe(y) s ska + Cigmn =g~ )
- Jy (—C’z‘jkz + Cijmn gyﬂkq) dy,  (61)
0 8:7\Emn ayn@
B ( ipe(y) B ) jke By + oX;
6’777,2
- fy <_ijk2 ayk +pXj’mn> dy7
where d;jnmq is defined by
a mn
dijnmq = UijneXemq — ijk[%- (62)

Now let us construct a solution v® to (60) whose a3-th component is given by
8>/<\inmq€ 83“510) aaipqé 82&511)
Yy 0x;0xTmOxy, Oy, O0z;0zp

2 8;Y\Zmn 6“;3) 2 8"7m€ ~(1)>
+w Dy Oz w By Uy, ) -

~(2)

Vap =Capie (

(63)

Then from equation (58), (61) and (62), one can directly verify that v*® satisfies
equation (51).

Now let us introduce the boundary corrector function 8¢ € (Hlloc(Rd))d that
solves

v (C(%)VOE) +w?p(2)6° =0 in 0,
A*O° +w?0° =0 in R4\ 12, (64)
O9)t — (69" =u® on 012,

(T, 0" — (C(%))VGE)_ v=9?.1v onodR,

where ¢ satisfies the Kupradze radiation condition (4).

3.2 Rates of convergence in L? and H': The higher-order case

Via previous discussions on higher-order asymptotic analysis, we have

Theorem 4 Let u® and u'® be the solutions of (5) and (6) respectively. Let u™
and u® be defined by equations (49) and (55), respectively, with u” = 0 and
u® =0 in R4\ 2. Let ¢° and 6° be the boundary correctors given by (41) and
(64). Then for any ball B with {2 C Br, we have

[u® — (0 + eu® + €u® + e + €20 | mr1(5,) < Cre’ 0 || 51(0),

where Cr > 0 is a constant independent of €.
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Proof The proof is similar to the proof of Theorem 1. Again consider error func-
tions in D defined by

2
wi=u"—u?” —eu” — €u?,
and
€ x € (0) (1) 25(2)
¢ :=C(=)Vu = v —ev'” — eV,
€

where vV, ¥® are defined by (56), (63) with v = 0 and ¥® = 0 in R\ 2. Here
w* is a vector-valued function and € is a matrix-valued function. In this proof we
conveniently use the same notations as in the proof of Theorem 1, since it is clear
from the context. From straightforward computations, we can get

C(E)VWE _ Ce _ EQ(V(z) _ C(y)vgcu(z))7 (65)
€
V¢ Pply)we = —e*[w?pu® + Vo - v,
and moreover
V- Ce + w?pwe — _62 (Vz @ + w2pu<2>). (66)

Outside D we simply define the error functions by w¢ := u® — u” and ¢ :=
Vw*®, this directly gives
—V ¢ = wPwE.
Let ¢ € (C§° (B R))d be a vector-valued test function and consider an auxiliary
function & € (Hlloc(Rd))d that solves

V- (CE)ve) +utp(D)p = i@,
A*PE + 2P = ¢ in R4\ 12,
()T — ()" =0 on 012,
(T, &) — (C(f))w&e)— v=0 on %,

(67)

where @€ satisfies the Kupradze radiation condition (4). Thus from the same ar-
gument as in the proof of Theorem 1, one can get

/ (WS — e — €26°) - pdx
Br
:/ (W€ — e — €26°) - (V - (C(E)Vsﬁe) +w2p(£)456) dz
o) € €
+ / (W€ — ep® — €20°) - (A* P + WP )dx
Br\2

:_/Q(C(f)wﬁ) :Vsﬁedz—i—e/

z €\ . €
. (C(;)ch ) : Vo dx

+ € /Q (C(%)V@C) . Vo dr + /Qw2p(%)(we — et — €26°) - Ddx

+/ T (W€ — ep — 20°)T - &°dS.
a8
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From integration by parts, one can further obtain
/ (W€ — e — €26°) - ¢dx
Br
x € € x €\ — € 2 X € €
:—/ (C(Z)vw) : v dﬂc—l—e/ (C(E) (Vo) ) @ dS+/ W p(Lywe - Bda
2 € o0 € Q €

+ 62/ (C(E)(V69)™ -v) - &°dS +/ Ty (W€ — ep® — 20T - $°dS.
an € 80
Then from equations (41), (64), (65) and (66), and integration by parts one can
obtain

(W€ — e — €26°) - ¢dx
Br

:_/ QE:VsFde—i—wZ/ p(f)we.gpedx—e/ ((T,,&)*—C(f)(vgoé)*.y) - P°dS
n D € a9 €
+/ T,,w€+-sl5€dS—e2/ ((Tuoe)+—0(f)(v0€)—.y) - $°dS
a0 an €
—62/ (¥® - C(3)Veu®) : Voda
(7]

z
€
=— 62/ (v® - C(E)Vzu(z)) : VP dr — 62/ (Ve -9 +w?pu®)da. (68)
2 € 2
From the equations of u”, u®, v and v defined by (49), (55), (56) and (63),
one can obtain

[~ c()v.u®
€

<C (0) ,
L32) = ™l 4(02)

< Cla| g0,

L2(82)

where C is a constant. Furthermore apply the Cauchy-Schwartz inequality on (68),
then we obtain

/B (W — e — 20°) - pdzx| < CE*|[u || gra()||D || 111 (02),
R

for some constant C' > 0 independent of €. Again we utilize the standard estimate
for the elliptic system (67) (see [20] for instance), then we can obtain

1PN (2) < Cllolla-1(Br)

where C' > 0 is a constant depends on the coefficients and R, but independent
of €. By the duality arguments in the Sobolev space, then we complete the proof.
This proves (10) in Theorem 2. O

Recall that u®” =0, u® =0, v®¥ = 0 and v® = 0 in R%\ 2, without loss of
generality, we can choose 1’ solves the constant coefficient elliptic system (58)
in 2 with 12 = 0 on 9£2. Therefore, " is a smooth solution in {2, by using
the elliptic estimate of (58) again, then we obtain || r2(p,) = 0" ||L2(0) <
C|lu|| a2y for some constant C' > 0.

Now, we are ready to prove Theorem 2.



Homogenization of an elastic scattering problem 23

Proof (Proof of Theorem 2) By using the same reason and arguments as before,
one can easily see that

[0 l22(8r) < CrIU lgs() and  [|0%||L2(B,) < CrIU |5a(0),

for some constants Cr > 0 independent of €. Therefore, the proof is nothing but a
straightforward corollary by combining previous lemmas. Therefore, we prove (11)
and complete our proof of Theorem 2. O

3.3 A second-order homogenization and wave dispersion

As a by-product of our higher-order homogenization in highly oscillating anisotropic
media, in this section we illustrate formally the higher-order effective wave equa-
tion that can demonstrate dispersion of wave propagation in periodic media that
occupies the whole space. To begin with let us recall from asymptotic expansion
(16), we get

0(€%) : v — C(y)(Vou® + Vyu®) =0, (69)
(Vo v® +V, - v®) +w?p(y)u® = 0. (70)

Here we seek for a v® different from equation (63). This is to be realized by finding
u® first. Indeed taking the divergence of equation (69) respect to the y variable
and noting (51),

Vy - (C(y)Vyu®) + Vy - (C(y)Vou®) =V, - v® = =V, - v — w?p(y)u'.

With the help of (49), (55) and (56), A direct calculation yields

0 ) au(;) _ 0 3 - - aXrnnql
@ (Cagﬁf(y) ayﬁ ) —( - @(CszZanqZ) + (Czjnﬂxfmq — Vijke 8yk )
) N
- /y (nganqu - ngké ayk )dy) 8x,8xm8xn
o) Oxn
+ (ayim(omjanniq) + (= Cijrg + Cijmn aynlzq)

 Oxnkg o*uy
/y ( Cigka + Cigmn OYm, ) dy) O0x0x;

0 Ovn
+ w2( - Typ(cpjme'yné> + ( - ijk@% + pijn)

8’)/712 ) 8“"&?)

- L ( - Cmgkf ayk +Pijn) dy) Oz
_ 0C;j1q UG

Oyi  Oxy

~ (- T ()
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Let us introduce the higher-order cell functions xinmgqe and vemn that belong to
H;ET(Y) and solve

8 ) aXinmql _ 8 o . . 8)(”’””1Z
8ya <Ca]52(y) ayﬁ ) = (9yp (CpJManqK) + (CUnZXqu ngk@ ayk )
aXrn,nq[
- /Y (CanZXqu - C@jk@ 8yk )dy (72)

0 OVemn 0 One
@ (Cajﬁe(y) ayﬁ ) = ay ( pjmé'}/n[) +(_Cm3k€ ay +Pijn)

P
_ /Y (—Comie az, + pXjmn) dy. (73)

By changing the index one can see that the governing equation (54) for x;xqe can
be written as

0 IXikqt 2 Oxnk

OXn
f/y(fcijqurcijmn gy;q)dy, (74)

From (71), (72), (73) and (74), one can obtain that

(g) 83u(0) 82ﬂ(1) oulY
Xmmqém + szqéﬁ +w? Yemn (y) .
a"’(z) 0
= Xekq 5 + W YT, . (75)

Now we have from equation (69) that
v® =C(y)(Veu® + Vyu?),

then from the representation of u® and u® in equations (55) and (75) respectively,
one can obtain

Vap = Caﬁke(ax%yzqe + anqeém)%
+ Cagu(a)gmqe xemq‘s’“) 882%
+ WQCQ,Bk YqtOmk) g%%: + Copre( — OXemq + OgeOmi) g%i
+w Caﬂke %?;j ~le) (76)

Taking the Y-average of equation (70) yields

/ Ve vPdy + wQ/ pu®dy =0,
Y Y
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note further that v*® and u® are given by (76) and (55) respectively, then from
a direct calculation one can obtain the following equation for u®®

62"'(2) o
Caﬁmqm +w puﬂ
84u51“> X inmat
= T A A . COL —AImmaT Ca i mn d
axaaxiaxmaxn/y( AR Oy + CagieXmnqe) dy
?ul® 9
2 q F)/Z mq
- a0 9 Ca Ca m d
v 00 0Tm, (/Y( AR + Capmevge) dy
+/ PXmaqpB dy — (ﬁ)_léajmq/ PYmpB dy)
Y Y
83~<1> O imat
T 9 A7 Or CO‘ e COA 7 m d .
020 0%;0Tm A,( Bkt B BitXemq) Ay
oy oy
2 _ ”
+ w oz m/ (pXpma — Cmpre Dur ) dy (77)

Now let us recall that the solution u® to (13) has the following anstaz

u(z,y) = u”(z,y) + eu (z,y) + u? (z,y) + - Z u (z,y).

Note that all the cell functions are Y-periodic and their averages over Y are zero,
then from equations (6), (58) and change of index, we can summarize the governing
equations for ' and a™ in £2, where T, " are the averages of u'® and u®’
respectively in the unit cell Y’ (recall that u“’)(x, y) = u”(z) so that ' = u?),

V- (Cva®) +w’pa® =0, (78)
_ o%u “) 9 P 0
Cz a _ a_ pat” = — / —Cz' in m C@ a8 Xmn d
ke 8:1:18 +w pu; (axiaxmaxn) y jneXemq T Cijke B Xmnqgt | Y
201y, / 0
w Dy PXj + jke ayk’y ¢ | ay (79)

Let U = ™ + ea® + *u®. Now multiply equation (77) and equation (79)
by € and € respectively, and sum them with equation (78), then it is seen that
U = (Ug)1<p<aq satisfies the following fourth-order partial differential equation
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U

Cagmg——— uP
A 19260Tm twp
o*u dxi
2 q Xinmql
= - a. a._ a. o Ca D~ Ca W Xmn d
¢ 020 02;00m 0Ty /y( Akt oYk t Capiex qe) Y

9%u® 0
2 q Yemq
— _— Cq Casm d
e“w axaaxm</y( Bkt Dy + Cap qu) Y

+/ PXmaqp dy — (p)_léajmq/ PYmp dy)
Y Y

*(eud” +u) ximat
— et i) [ (Cpna DGR — Copioxen) dy
d(ciy) +ug) o
27\"% T 7e ) _C aty 4
+ ew pr. /Y (PXBmaq — Cmpne ayk) Y,

and therefore the governing equation of U up to order ¢ reads

d*U

B G 0 OTm,

otU1 OXinmaqt
—_ 2 Yrv ZAwmmagt )
= —€ L0 01,07, 0T /Y (Caﬁkﬂ 8yk + CaBlZanqé) dy

C + w?pU?

8?U? Ve
2 2 mq
— T — Ca Copm d
€“w 8a:a8xm</y( Bk Dy + Cap z’Yqz) Y

+/ PXmaqpB dy — (ﬁ)_léa]’mq/ PYmpB dy)
Y Y

23U X
/ (Capre Ximqt — CapitXtmq) dy.
Y

- ef)xaﬁxiaxm Yk
23Uq/ Ovqe 3
- - m m d N
€w Er. Y( PXBmq + Cmpke 5yk) y 4+ O(e”)

Hence the fourth-order equation can be conveniently casted as

V- (CVU) +w’pU
= (D: VU +w’E: V’U) —¢(F: VU +w’G: VU) + O(e%),  (80)

where D = (Dgaimng) is a sixth-order tensor, E = (Egqmq) is a fourth-order
tensor, F = (Fgaimgq) is a fifth-order tensor and G = (Ggmgq) is a third-order
tensors, respectively defined by
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a inm
Dﬁaimnq = / (Caﬂke% + CaﬁiZanqZ) dy7
Y Yk

e
Eﬁamq = A/ (Caﬁké ay’f:q + Caﬁml’qu) dy + LpXman dy

_(ﬁ)_léajmq/ pPYmp Ay,
Y

8X1m 14
Fﬁaimq = /}; (Caﬁkl aykq - aBilXqu) dy?

_ a’YqZ
Gpmq = /Y (— pXpma + Cmpre o ) dy.

The fourth-order partial differential equation (80) in {2 formally introduce the
dispersion as is seen from the right hand side of (80). We remark that our formal
derivation holds for C and p that belong to L°°(§2). In the low-frequency long-
wavelength regime for wave propagation in periodic media, the dispersive wave
equation has been demonstrated by a fourth-order partial differential equation for
the acoustic case [7].

In the particular case that the periodic media occupies ]Rd, (80) models the
wave propagation that transcends the quasi-static regime. For more details we can
recast the higher-order homogenization result in [11,12] when the one-dimensional
unit cell Y = (0,1) is composed of two homogeneous phases:

P(x)zﬁlac(ﬂﬁ):é& for 0<z<a,
P(m):ﬁ2ac(9€)=6’2 for a<z<l,

where 6’1, 6’2, p1, p2 are all constants, and 0 < a < 1. With these notations,
the elastic scattering problem in a one-dimensional domain 2 = (0, L), where the

homogenized constants p, C, are given by [11,12]
_ _ — C1C:
alCs+ (1 — a)Ch

Furthermore, constants D, E, F, and G can be explicitly calculated as
a?(1 —a)?C(C1 — Co)(Cip1 — Capo)
12p(aC2 + (1 — a)C1)?
_ o?(1 — a)?C(pr — p2)(Capa — Cip1)
12pC2C1 7

)

E

F=G=0.

Therefore, for the one-dimensional case, (80) can be read as a second order constant
coefficients ordinary differential equation:

U U

_0%U 2 2 2 3
—— +wplU = —¢ (D—+w E—)+O(e ), (81)

c

0%z Ozt 0x2

where constants C, p, D, E are given as above. Equation (81) is the time-harmonic
analog to the higher-order homogenization in both space and time [11,12].
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To further understand the high-order homogenization for periodic media in
bounded domains where boundary correctors play an important role, we provide
in the next section the numerical study in one dimension.

4 Numerical examples

In this section, we illustrate the higher-order asymptotics by examples in one
dimension. We do not use bold symbols throughout this section. We consider the
one dimensional periodic structure where p and C are Y-periodic with Y = (0, 1).
In the unit cell Y, p and C are given by:

p(z) =p1,Cx)=C1 for 0<z<a, (82)
p(z) =p2, Clz) =Cs for a<z<l, (83)

where 5’1, C, are constants, while p1, p2 are constants or functions, and 0 < o < 1.
Such examples has been studies in [11,12] where the periodic media occupies the
whole space. The periodic structure only occupies in a bounded domain 2 = (0, L)
in our case, and it will be shown that the boundary correctors play an important
role. With these notations, the elastic scattering problem in a one-dimensional
domain {2 is

2 (C’(f)%) + w?p(L)uc =0 in 2,

2 —
2uf +wut =0 in R\ {2, (84)
(uf +ut)t = (u)~ atz=0and x =L,

(& (u +ui)‘u)+ =(C(%)%s.v)” atz=0andz =L,

where u€ satisfies the radiation condition at oo. Here u® restricted in {2 represents
the total wave field, while u® restricted in R\ {2 represents the scattered wave field.
Recall that the solution u® has the following asymptotic expansion

ut = u(o) —+ eu(l) —+ EQU(Z) + ..

Following from equation (6), we first write down the governing equation for
©
u

7 (0% ) +&?pu =0 in 0,
%u(o) + Wu©® =0 in R\ 2, (85)
(w® +u)t = (u)~ atz=0and z = L,
(2 u® +ul)-v)" = (665;0) -v)” atz=0andx =1L,
where the constants of homogenization p and C can be seen from [11,12] as
_ = CiCo
D :/ ply)dy, C=-—"-—""—.
Y aCr+ (1 — a)Cy
From Theorem 1 we have that
[u = ull L2 () < Crellu” || m2(0), (86)

where 2 C Bg.
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Let us further write down the expressions of u" and the boundary corrector
©°. In the case when C1 = C2 = C, the function x given by equation (7) is zero,
and consequently u(") defined by (49) is zero since @ is zero in one dimension.
Now the governing equation (41) for the boundary corrector ¢ can be simplified
to

V- ( aa“; ) +w2p(%)goe =0 in £2,
aa; P+ W’ =0 in R\ 12,
()T — ()" =0 atz =0and z = L,
(g )" = (et v) =w*C%2u(0) v atz=0,
(gre" )" = (Ot v) = CoPuO(1) v atz=1,
(87)
where v is given by equation (24), i.e.
3] oy _ .
(D)~ 5 v
ay( By (p=p) n (88)
Jy 7(y)dy = 0.
From Theorem 2 we have that
Ju€ — u® — eu® — €@ L2(Br) < CrRE|U® || 1a(0), (89)

where 2 C Bg.

In the following we illustrate the performance of our higher-order homogeniza-
tion. We use NGSolve [25] to compute the exact solution u® to (84), the leading-
order approximation u” to (85), and the boundary corrector ¢° to (87). In all the
numerical examples we choose 2 = (0,1),¢ = 0.1, « = %, w=1,andC; = Cy = 1.
We choose Bg = (—1,2), and the computational domain is (—2,3) where PML
was implemented in (—2, —1)U (2, 3). For the computation of v to (88), we impose
periodic boundary conditions on Y and compute it using NGSolve.

We plot the exact solution u€, leading-order approximation u‘”, and higher-
order approximation u'” 4+ eu” +€p® in the domain 2 = (0, 1). The first numerical
example (Fig. 1) is for p1 = 2.4 and p2 = 0.8, the computed error for the leading-
order approximation is ||u® — u'”||12(p,) = 1.78¢ — 2, and the computed error for
the higher-order approximation is ||u® —u'” —eu™ — e[| 12(p,) = 1.90e — 4. This
agrees with the e-convergence in the leading-order homogenization as indicated
by (86) and e*-convergence in the higher-order homogenization as indicated by
(89). The second numerical example (Fig. 2) is for p1 = 2 + sin(27z)/2 and p2 =
2 + sin(27x) /2, the computed error for the leading-order approximation is ||u® —
u®||L2(B,) = 6.36e—3, and the computed error for the higher-order approximation
is [luf—u” —eu'” —ep®|| 2(py) = 7.76e—05. The third numerical example (Fig. 3) is
for p1 = 1 and p2 = 0.4, the computed error for the leading-order approximation
is |lu® — u'”||p2(p,) = 7.84e — 3, and the computed error for the higher-order
approximation is [[u® — u® — eu'” — €p®||12(p,) = 7.37e — 05.
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0.6 N 4

U, u®, u® + eu® + eg°

05 N

04 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bounded domain Q = (0,1)

Fig. 1 p1 = 2.4 and p2 = 0.8. Red: exact solution u¢; Blue: leading-order approximation u(®);
Green: higher-order approximation u(®) + eu( 4 ep©.

We also remark that the boundary corrector ¢ can be approximated by its
leading-order approximation ¢ satisfying

V- (C%5) +wipe =0 in @,
2z +wie® =0 in R\ 72,
()T = ()™ =0 at z=0and z = L,

(g0 )" = (O - v)” =w?Co%G2u(0) v atz =0,
(L@ )t —(CLp” V)" = UJQCag—S)u(O)(l) v atz=1L,
(90)

We illustrate this approximation by the fourth numerical example (Fig. 4), where
all the setup is the same as the first example except that we approximate ¢ by
¢, the computed error for the leading-order approximation is ||u—u'”||p2(p,) =
1.78e—2, and the computed error for the higher-order approximation is ||u® —u'® —
eu” — ep”||L2(p,) = 3.41e — 4. These preliminary examples clearly demonstrate
the performance of our high-order homogenization.

5 Appendix

In the end of this paper, we offer basic materials in analysing the elastic scattering
in periodic media.
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p1=2+sinQ2rx)/2, p, =2+ sin(2zx)/2

O + eu + e

u€, u®,

03 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

bounded domain € = (0,1)

Fig. 2 p1 = 2+sin(27z)/2 and p2 = 2+sin(27z)/2. Red: exact solution u€; Blue: leading-order
approximation u(?); Green: higher-order approximation 4(® + eu(®) + ep*.

LU + eu’ + et

I I I
0 0.1 0.2 03 0.4 05 0.6 07 08 0.9 1
bounded domain Q = (0,1)

Fig. 3 p1 = 1 and p2 = 0.4. Red: exact solution u¢; Blue: leading-order approximation u(®;
Green: higher-order approximation u(®) + eu) + ep©.
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Fig. 4 p1 = 2.4 and p2 = 0.8. Red: exact solution u¢; Blue: leading-order approximation u(®);
Green: higher-order approximation u(®) + eu( 4 ep(®,

5.1 The Dirichlet to Neumann map

Let u satisfy the Navier’s equation in the exterior domain
A*u+w?u =0 in RN\ 2,

and u has a decomposition that satisfies the Kupradze radiation condition. Let
Br be a sufficiently large ball such that 2 C Bg. In the case that 2 C R3, we
introduce the polar coordinates r, 6, ¢ and the unit vectors 7, 0 qS The 6 coordi-
nate corresponds to the angle from the z-axis, 6 € [0, ], and the ¢ coordinate

corresponds to the angle in the (z,y)-plane, ¢ € [0, 27]. Let Ynm be the spherical
harmonic

(2n + 1)(n — |m|)!
4m(n + |ml!)

Yim (0, ¢) = Pl (cos)e™?, n>0, |m|<n.

Now we let Uy and Vi, be the vector spherical harmonics defined by

nm\U, - p ) 2 )
Unm (6, 9) Vn ( o0 6+ sinf 0¢ @ nzl

N 1 1 BYnm aYnm
Vi (0,6) = 7 % Unm = m<_81n9 ol @

where A, = n(n+1). The vectors Yom7, Unm, Vam form an orthonormal basis for
L?(S) where S denotes the unit sphere. Then u on dBg has the following series
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expansion
u = Z ((u|3BR7 Vnm)vnm + (u|8BR7 Unm)Unm (91)
n=0|m|<n

+ (U|BBR7 Ynmf)Ynm'f> s

where (-, -) denotes the L?(S) inner product. One can correspondingly express T, u
on OBR as (see [13])

Tou = Z Z (an(ulaBR,Vnm)Vnm + [bn(u|aBR, Unm) + Cn(U‘BBR, Ynm?)] Unm

n=0|m|<n
+[cn(u|aBR,unm)+dn(u|aBR,Ynm?)]Ynm?) on Bgpg. (92)

The coefficients an,, by, cpn, dy, are given by

1
an = po(ys — E)’

(1,1) (2,1)
- 1.\ By 2 1\ By
(2,1) (1,1)
1.\ By An B
Cp = (2;10\/ An(—7s + E)) R + (2;10(7271, + f)) R oo ow?’
(1,1) (1,2)
1.\ By An By
n — — 2 n\—"s = 2 -2 /)]s 9
d (uov/\( 7+R)) i +(uo( %’LR))R—MOWE
where
Ne = ws hn(wsR) p = wp hn(w;ﬂR) B’fll,l) _ \Y AnR
h(wsR)’ o (wpR)’ Rop(Rys +1) = An’
B2 _ R(1 4+ Rvs) B _ _ R*y, '
" Ryp(Rys +1) = X" " Ryp(Rys + 1) — An

Now for any functions w and u that satisfy the Kupradze radiation condition (4),
one can directly obtain from (91) and (92) that

/ Tou-wdS — Tow-udS = 0.
8B 9Bp

We remark that when 2 C R?, the above equality can be derived in a similar way
[4].
Let Br C R? be a ball of radius R > 0, then the Dirichlet to Neumann (DN)
map was given by [4].
Definition 1 For any g € (HI/Q((?BR))d, the DN map
A: (HY*(0BR))? — (HY?(0Br))*  with  Aglop, = Tvulop,,  (93)

where u € (Hlloc(Rd \ER))d is a solution of the Navier’s equation A*u+w?u =0
in R?\ By and u satisfies the Kupradze radiation condition (4) at infinity.
Notice that the DN map A is a bounded operator, so that it helps to reduce

the scattering problem in unbounded domain to a bounded domain, and we refer
readers to [4, Section 2] for detailed discussions.



34 Yi-Hsuan Lin, Shixu Meng .

5.2 Derivation of the homogenized equation

Consider the simplest linear elliptic system of the homogenization theory. The
periodic homogenization theory was studied by [10,14] and we refer readers to
these references for the comprehensive study. We are concerned with the divergence
form second order elliptic operators with rapidly oscillating periodic coefficients,

x 0 x, 0
Le:=-V- (A(E)V) = " on (aijkz(z)aixk) , €>0.

We assume the coefficients A(y) = (asjxe(y)) with 1 < 4,4, k, £ < d for the dimen-
sion d > 2 is real, bounded and measurable such that A satisfies

d d
C . 1
ellipticity: p E |£¢j|2 < aijke(y)eijene < — E |£ij\2, (94)
ij=1 )
J 1,3
for all symmetric matrix (£:5)1<4,j<d, and

Y-periodicity: A(y + z) = A(y) for all y € RY zeY = [0, 1]d,

for some constant p > 0.
Given F € (H_I(Q))d, let u® € (Hé(ﬂ))d be a solution of

Lo =F in 02, (95)

where 2 is a bounded Lipschitz domain in R%. By the Lax-Milgram theorem, we
have

i 2) < ClIFa-1(02)

where the constant C' independent of e. Note that u® € (H&(Q))d is a weak
solution of (95) if for all ¢ € (H&((Z))d, we have

-7/‘ € . J—

Next, we want to derive the homogenized equation by using the following
asymptotic analysis. We consider u® to be the perturbation of u'® with respect
to e-parameter. Moreover, by observing the elliptic operator L¢, we introduce the
famous two-scale homogenization method in the homogenization theory: Let us

Z .
regard x = x, and y = — as two independent parameters. Let
€

1 2
u =u® +eu™ 4 Eu? 4.

be the asymptotic expansion of u., where
[CO N ¢)) _ @y T
u” = u(z,y) =ul(z, ).
In addition,

) ) 1 . T
vu(.t) — vxu(.7)(x7y) + EVyu(J)(x7y), as y = ;7
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which means under our two-scaled method, the operator V = V4 -V, Therefore,
€

(95) will become
- (V +lv )-{A( ) [(V + EV ) (u“” +eu” + u® +) } =F(z) in 2

z T o Vy Y z T VY .
96)

We point out that the derivation of the homogenized equation did not need to take
care of the boundary condition of certain equations. Expand (96) and compare it
with the same " -orders (for N = 0, -1, —2), so we get

1

O(?) Lo vy ' (A(y)vyu(())(x7y)) = Oa

O(2): = Vy- (AW)Vyu(z,y)) = Vy - (A(y)Vau") + Ve - (A(y) Vyu™),

(97)
O(1): —Vy - (A(y)Vyu?(z,y)) = Vy - (A(y)V2u) + Vo - (A(y) Vyu')
+ Ve (A(y)Vou) + F(x).
Recall that for the periodic elliptic equation
-V - (A(y)Vv(y)) = h(y), whenever A(y) is Y-periodic,

then we have

| mwy=o.

1
by using the divergence theorem. For O(—;) term, this equation is solvable because
€

the right hand side is zero. In further, we multiply u”(x,y) on both sides and
integrate by parts, which will imply

0 :/ (A(y)Vyu?) : Vyu® > u/ Vyu'” (2, y)|*dy >0,
Y Y
which gives us the information that
u?(z,y) = u(x)

and we know that uo is independent of y.
1
Now, for the second term O(=), the second term on the right hand side should
€

be zero since Vyu”(z) = 0. Solve the equation
~Vy - (A(y)Vyu(z,9)) = Vy - (A(y)Vau"”) = (Vy - A(y))(Vou')

formally. Note that since A(y) is Y-periodic, then the equation is solvable for u”
if
/ (Vy - A®y)) - (Veu'”)dy = / (A(y)Vau") - v(y)dS(y) = 0.
Y aYy
By using the separation of variables, we put the ansatz

u(z,y) = x(y) - (Veu" (2))
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with u™ = (u$’)1<a<q such that

Bug)
D (2,1) = X () (@)
(@) = X3 (4) (@)

Moreover, the corrector x;g is Y-periodic and solves the cell problem

0 0
Byi <CL J Aijke ayk X ) m
Jy Xemn (y)dy = 0,

and plug u'” to the 0(1) equation (97) to obtain
€

V(AW Vyx([¥))(Vau?) = (Vy - A(y)(Veu?).
Finally plug u”(z,y) = x(y)Vzu® into the O(1) equation and examine the
solvability condition for u”(z,y), we have

0= / [Vy - (A(y)Veu™) + Va - (A(y)Vyu) + Vo - (A(y) Veu') + F(z)] dy
Y

v {[ [ Aw@xman| voa )+ v ] [ Awan| v} s R,

where the first term vanishes by the periodicity of A and :x. Thus, we can obtain
that u” € (H&(Q))d is a solution of

Zu® := —V . (AVu"®) = F(z) in £, (98)

where

A= / {(A() + AW)(Tyx ()} dy,
Y

where A is the (constant) homogenized operator and we call (98) to be the ho-
mogenized equation. In addition, A = (@;;ke)1<i,j,k,e<da and

0
A5k = Aijkt — Qigmn 5 Xnkl dy 99
sus = [ (a0 = s o xne ) (99)

For the rigorous derivation of the homogenized equation, we need to use a famous
result, which is called the Div-Curl lemma. We skip the rigorous analysis here and
refer readers to the lecture note [26] for more details.

Note that £ := —V - (AV) is the homogenized second order elliptic operator
with respect to A and we want to prove £ is an elliptic operator with constant
coeflicients.

Theorem 5 The homogenized operator L satisfies that
1. L is an elliptic operator, which means

d d
_ 1
p1 E lei;|? < @ijre(y)eijene < n E les |, (100)
i,j=1 i,j=1

for some constant p1 > 0.
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2. The effective coefficient @;;¢ is major and minor symmetric provided ang~s
is major and minor symmetric.

Proof Tt is easy to see that |@;;jx¢| < C by using (99) and the ellipticity of A(y), for
some constant C' > 0. It remains to show @;jkecijere > f11 Zijzl lei;|? for some
constant p1 > 0. We can rewrite (99) as

0 0
Gune = | o {0aii + Xpis} - Gains - o {0 dy,
@ijke /y’aya{ Bi¥i + XBij} - GaBys 8an{ seYk + Xoske} dy

where dsq is the standard Kronecker delta (i.e., dsa = 1 if s = o, and dsq = 0
otherwise). Hence, for € = (g;) € R*¢ we have

_ 0 0
Qijke€ijEke = / Ev {0p5yi€i; + Xpijcij} - Qapys - e {0s0Yrere + Xonecre} dy
Yy OYa Yy
d
> Z / IV (yicip + xgijeis)| >dy > 0.
p=1"Y

If @ jpecijene = 0 for some € = (e45) € R¥*9 then yi€ig + X 8i; must be a constant.
Recall that xg;;(y) is Y-periodic, so this implies that € = 0. This means that there
exists p1 > 0 such that (100) holds. O

5.3 Tools and estimates

In the last part, for the completeness of this paper, we provide some elliptic es-
timate where we have utilized in previous sections. The following theorem was
proved in [6, Theorem 5.7] for the scalar case. It will hold for the vector case. For
completeness, we provide the theorem and its proof as follows.

Theorem 6 (Trace Theorem) Let A = (aijke)1<i,jke<d be a four tensor sat-

isfying the ellipticity condition (100) and 2 C R? be a bounded domain with a
C*-smooth boundary, for d > 2. The (cornormal) mapping Tr : u — aa—u =
R va
(AVu) v defined in C°°(£2) can be continuously extended to a linearly continuous
mapping (still denote by Tr) from H'(£2,A) to H=/2(882), where H' (2, A) is

the space equipped with the graph norm
[ullri0,a) = lullin + IV - (AVU)[|72(0).

Proof Let ¢ € (C"X’(ﬁ))d be a test function and u € C*°(£2;R?%). The integration
by parts formula gives

/E)Q(AVu.V)~godS:/Q(AVu):chda:—»—/nv.(Avu),(Pdm_

By the standard density arguments, the above equation holds for ¢ € (HI(Q))d
so that

[ aVu-v)- pds| < Clulin a.n el o (101)
(9]



38 Yi-Hsuan Lin, Shixu Meng .

for any ¢ € (HI(Q))d, u € (Cw(ﬁ))d, where constant C' > 0 is a constant
independent of ¢ and u. Let g € (Hl/Q(aD))d7 by using the trace theorem, then

there exists a function ¢ € (Hl(.Q))d such that ypnep = f, where v9, stands for
the trace operator. Continuing the inequality (101) and the trace theorem,

/8 (V) -fds] < Ollullar . [Ell s o,

for any f € (HI/Q(G))d, u€ (Coo(ﬁ))d.
Hence, the mapping
f— (AVu-v)-£dS, for any f € (HI/Q(B(Z))d
o
defines a continuous linear operator and from the duality argument,

(AV) - v|g-12000) < Cllullgi(e.a)-

Therefore, the linear mapping Tr : u — (AVu) - v defined on (C* (ﬁ))d is
continuous under the norm H'(£2, A). Thus, the assertion follows from the density
arguments. O

Let C = (Cjjke) be an anisotropic elastic four tensor and Co be a constant isotropic
elastic tensor defined by (2), which satisfy all the conditions given in Section 1.
Next, we provide the stability estimate for the following transmission problem.
The scalar case was demonstrated in [6, Section 5] and here we generalize the
result to a system version.

Theorem 7 Let 2 C R? be a bounded C™-smooth domain. Given f € (Hl/Q(&Q))d
and g € (H=/2(002))%. Let u e (H'(2))" and v € (HL.(R4\ 2))* be the solu-
tions of the following transmission problem
V- (CVu)+w’pu=0 in £,
A*v 4+ wiv =0 in R\ 2,
u—v="f on 012,
T,bu—(CVu)-v=g on 012,

(102)

where T,, is the boundary traction operator given by (3), w € R is not an eigenvalue
of the transmission problem (102) and v satisfies the Kupradze radiation condition
(4). Then for any ball Br with {2 C Br, there exists a constant Cr > 0 such that

lallzi o) + VIl g < Cr a1 2000) + I8l H-1/2000) ) - (103)

Proof Firstly, by using similar arguments in [4, Section 2] and [6, Section 5], the
elastic scattering problem (102) is equivalent to the following transmission prob-

lem: Let u € (Hl(Q))d and v € (H'(Bg \ﬁ))d be the solutions of

V- (CVu)+w?pu=0 in £,

A*v +w?v =0 in Br\ 12,

u—v="~ on 042, (104)
T,u—(CVu)-v=g on 02,

T.v = Av on OBR,
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where A is the DN map defined by (93) on 0 Bgr. Furthermore, by using [4, Lemma
2.8], the DN map A is a bounded operator and A can decomposed into A = A1+ A2,

where — A is a positive operator and Az is a compact operator from (H1/2(0BR))d
to (H~'/2(0Bg))".

Next, let v¢ € (H'(Br \ﬁ))d be the unique solution of the Navier’s equation
in the exterior domain

A've+w?ve=0 in Br\ 2,
ve="f on 942,
vi=0 on 0BRg.

By straight forward calculation, it is not hard to see that the variational formula
of (104) can be written as follows: Find a function w € H'(Bg) such that

/9 ((CVW) (Ve — w’pw - (,i)) dz + / ((COVW) Ve — ww - ¢) dx

Bgr\2

— ¢-T,ywdS + ¢-TyvedS
OBg 9BRr

/é)ng.¢ds+/BR\Q ((Covvf) : qufwzvf.qs) de, (105)

for any test function ¢ € (H1 (BR))d, where Co is a constant elastic tensor defined
by (2). By using the integration by parts, one can easily see that u = w|, and
v =W|g 5 — V¢ satisfy (104).

Now, let us consider two bilinear forms

b1 (v, @) ::/rz ((CVY):Vo+ 19 - @) da:+/B ((CoVW) : Vo +w- ¢) dx

R\
- ¢ - (A1) dS,
OBRr
i 2 2
ba(th, §) =~ /Q («Pp+1) @ -rpde - /BR\Q(” + 1) pda
. ¢ - (Asip)dS, for all ¢, € (H'(Br))",
8Br
and
o . 2
F(¢) = /Bng -¢pdS — - ¢-TVVde+/};R\Q ((CoVVf) Vo —wvy - 45) dx.

Then we can rewrite the problem (105) as finding a function w € (HI(BR))d such
that

bi(w, d) + ba(w, ¢) = F(¢), for any ¢ € (H'(Br))*.

Since —A; is a positive operator, one can conclude that bi(-,-) is strictly coer-
cive. Therefore, from the Lax-Milgram theorem, one can see that the operator
A (HI(BR))d — (HI(BR))d defined by b1(w, ¢) = (AW, @) g1 (B, is invertible
and has a bounded inverse. On the other hand, since A2 is a compact operator
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from (H'/?(0Br))* = (H~Y/%(0Bg))" and (H'(Bg))* — (L*(Br))" is a com-
pact embedding, then it is not hard to see that the operator B : (HI(BR))d —

(H

1(BR))d defined by b2(w, @) = (BW, @)1 (B,) is compact. Hence, by using

[6, Theorem 5.16], one can derive that the existence of the transmission problem
(104) from the uniqueness of (104) and the stability estimate (103) holds auto-

matically. a
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