
SIMULTANEOUS RECOVERIES FOR SEMILINEAR PARABOLIC

SYSTEMS

YI-HSUAN LIN, HONGYU LIU, XU LIU, AND SHEN ZHANG

Abstract. In this paper, we study inverse boundary problems associated with semilinear
parabolic systems in several scenarios where both the nonlinearities and the initial data
can be unknown. We establish several simultaneous recovery results showing that the
passive or active boundary Dirichlet-to-Neumann operators can uniquely recover both of
the unknowns, even stably in a certain case. It turns out that the nonlinearities play a
critical role in deriving these recovery results. If the nonlinear term belongs to a general
C1 class but fulfilling a certain growth condition, the recovery results are established by
the control approach via Carleman estimates. If the nonlinear term belongs to an analytic
class, the recovery results are established through successive linearization in combination
with special CGO (Complex Geometrical Optics) solutions for the parabolic system.
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1. Introduction

1.1. Mathematical setup and statement of main results. In this paper, we are con-
cerned with inverse problems for semilinear parabolic equations. Depending on the form of
the nonlinear term, there are two setups for our study, which shall be discussed separately
in what follows.

First, we consider the case that the nonlinear term belongs to a C1 class fulfilling a
certain growth condition. We begin by introducing the forward model. Let Ω ⊆ Rn be a
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bounded domain with a C∞-smooth boundary Γ for n ∈ N and Γ0 be a nonempty relatively
open subset of Γ. For any T > 0, we set Q = Ω × (0, T ) and Σ = Γ × (0, T ). Assume that
γ = (γij(x, t))

n
i,j=1 ∈ C

2,1(Q;Rn×n) is a symmetric matrix-valued function in Q, such that

ρ0|ξ|2 ≤
n∑

i,j=1

γij(x, t)ξiξj ≤ ρ−1
0 |ξ|

2, ∀ (x, t) ∈ Q and ξ = (ξ1, . . . , ξn) ∈ Rn,

for some positive constant ρ0 ∈ (0, 1). Moreover, we denote by Hs,r(Q), Hs,r(Γ), Ck+α(Ω)

and Ck+α, k
2

+α
2 (Q), respectively, the standard Sobolev spaces and Hölder spaces for s, r ∈ R,

k ∈ N and α ∈ (0, 1). We refer to [AF03] and [Eva10] for details of these Banach spaces.
Consider the following semilinear parabolic equation:

ut −∇ · (γ∇u) + a(x, t, u) = 0 in Q,

u = f on Σ,

u(x, 0) = g(x) in Ω,

(1.1)

where ut = ∂tu = ∂u
∂t , ∇ and ∇ · ζ denote the gradient operator with respect to the spacial

variable and the divergence of a vector ζ ∈ Rn, g ∈ H1
0 (Ω), f ∈ L2(Σ) and a = a(x, t, u) :

Q× R→ R is a given function, satisfying suitable conditions that will be specified later.
For any g ∈ H1

0 (Ω) and a suitable function a : Q× R → R, which guarantees the global
well-posedness of (1.1) (see Section 2), we introduce the following Dirichlet-to-Neumann
(DN for short) operator:

Λa,g : E → L2(Γ0 × (0, T )),

f 7→ ∂νu
∣∣∣
Γ0×(0,T )

.
(1.2)

In (1.2), ∂νu = ∂u
∂ν denotes the outer normal derivative of u, ν is the unit outer normal

vector on Γ, and u is the solution to (1.1) associated to the initial data g ∈ H1
0 (Ω) and the

boundary data f ∈ E with

E =
{
f ∈ L2(Σ)

∣∣∣ (1.1) is well-posed associated to g and a, such that

u ∈ C([0, T ];L2(Ω)) and ∂νu|Γ0×(0,T ) ∈ L
2(Γ0 × (0, T ))

}
.

It is known that when a ∈ L∞(Q;W 1,∞(R)) and g ∈ H1
0 (Ω),{

f ∈ H
3
2
, 3
4 (Σ)

∣∣∣ f(x, 0) = 0 on Γ
}
⊆ E .

When f ≡ 0 on Σ, we denote

Λ(0)
a,g := Λa,g(0).

In such a case and in the physical situation, the field u is generated by the initial data g,
acting as a source, which is assumed to be unknown in our inverse problem study. Hence,

the boundary measurement encoded in Λ
(0)
a,g is passively taken by the observer, and in the

literature, Λ
(0)
a,g is usually referred to as the passive measurement. In contrast, Λa,g(f)

associated with the boundary input f is called the active measurement, since the field u is
actively induced by the observer by imposing boundary inputs in E .

Associated to the forward model (1.1)–(1.2), first, we are interested in the following two
inverse problems:

• Inverse Problem 1. Can we identify the unknown functions (a, g) by using the
passive measurement Λ0

a,g?
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• Inverse Problem 2. Can we identify the unknown functions (a, g) by using the
active measurement Λa,g?

It is emphasized that the principal coefficient γ = γ(x, t) of our Inverse Problem 1 and
Inverse Problem 2 can be space-time dependent. In order to study the above problems,
we introduce certain a priori conditions on the nonlinear term a to guarantee the well-
posedness of the forward problem as well as the feasibility of the inverse problems. Assume
that a : Q× R→ R satisfies a(x, t, ·) ∈ C1(R) in Q and the following growth condition:

lim sup
y→∞

∂ya(x, t, y)

ln
1
2 |y|

= 0, uniformly for (x, t) ∈ Q. (1.3)

It is clear that any function in L∞(Q;W 1,∞(R)) satisfies the condition (1.3). For notational
clarity, we set

AT =
{
a : Q× R→ R

∣∣∣ a(x, t, ·) ∈ C1(R) in Q, a(·, ·, 0) ∈ L2(Q),

and the condition (1.3) is fulfilled
}
.

(1.4)

In Section 2, we shall show that for any g ∈ H1
0 (Ω), a ∈ AT and f = 0, (1.1) has a unique

solution u ∈ H2,1(Q) and therefore, ∂νu ∈ L2(Σ).
We are in a position to state the first recovery result for the inverse problems introduced

above.

Theorem 1.1 (Conditional stability of determining initial data by the passive measure-
ment). Assume that a ∈ AT and for any M > 0, set

GM =
{
g ∈ H1

0 (Ω)
∣∣∣ ‖g‖H1

0 (Ω) ≤M
}
.

For any gj ∈ GM (j = 1, 2), let Λ0
a,gj be the passive measurement associated to the following

semilinear parabolic equation:
∂tuj −∇ · (γ∇uj) + a(x, t, uj) = 0 in Q,

uj = 0 on Σ,

uj(x, 0) = gj(x), in Ω.

(1.5)

Then there exist positive constants C and δ0 ∈ (0, 1), depending only on n, T and Ω, such
that the following quantitative stability estimate holds:

‖g1 − g2‖2L2(Ω) ≤
C(1 +M)

δ0
‖Λ0

a,g1
− Λ0

a,g2
‖L2(Γ0×(0,T ))

− CM2

ln
(
δ0‖Λ0

a,g1
− Λ0

a,g2
‖L2(Γ0×(0,T ))

) . (1.6)

By Theorem 1.1, it is directly verified that if Λ0
a,g1

= Λ0
a,g2

on Γ0× (0, T ), then g1 = g2 in
Ω. Theorem 1.1 partially answers Inverse Problem 1 that if the nonlinear term a belongs
to the general class (1.4) and is a priori known, then the initial data g can be uniquely
recovered (in a stable manner) by the passive measurement for g in a bounded set GM .

We proceed to consider Inverse Problem 2 and introduce another admissible set on a:

BT =
{
a : Q× R→ R

∣∣∣ a(x, t, u) = a0(x, t, u)χ[0,T−ε](t) + c(x, t, u)χ[T−ε,T ](t)

for some ε > 0 and any given a0 ∈ AT ,

where c ∈ AT and c(x, t, 0) = 0 in Q
}
,

(1.7)

where χE is the characteristic function of a set E ⊆ [0, T ].
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As a corollary of Theorem 1.1, our main unique recovery result for Inverse Problem 2
is stated as follows.

Theorem 1.2 (Uniqueness of determining initial data by the active measurements). As-
sume that aj ∈ BT and gj ∈ H1

0 (Ω) (j = 1, 2). Let Λaj ,gj be the DN map of the semilinear
parabolic equation: 

∂tuj −∇ · (γ∇uj) + aj(x, t, uj) = 0 in Q,

uj = f on Σ,

uj(x, 0) = gj(x), in Ω.

(1.8)

If for any f ∈ E with suppf ⊆ Γ0 × [0, T ],

Λa1,g1(f) = Λa2,g2(f) on Γ0 × (0, T ), (1.9)

then one has that
g1 = g2 in Ω. (1.10)

Theorem 1.2 means that the map Λa,g uniquely determines the initial data g, independent
of functions a ∈ BT .

In the second setup of our study, we consider the case that the nonlinear term a belongs
to an analytic class. In such a case, assume that both the initial data and nonlinear term
are unknown. Then we can simultaneously recover both of them. To this end, introduce
the following class for the nonlinear term.

Definition 1.1 (Admissible class). Assume that b = b(x, t, u) : Q × R → R satisfies the
following conditions:{

the map u 7→ b(·, ·, u) is analytic on R with values in C2+α,1+α/2(Q),

b(x, t, 0) = 0 in Q,
(1.11)

for some α ∈ (0, 1). It means that b can be written as the Taylor expansion at any u0 ∈ R:

b(x, t, u) =

∞∑
k=0

b(k)(x, t, u0)

k!
(u− u0)k, (1.12)

where
b(k)(x, t, u0)

k!
=
∂kub(x, t, u0)

k!
are the Taylor’s coefficients at u0 ∈ R for any k ∈ N.

Next, let Ω ⊆ Rn be a bounded domain with a C∞-smooth boundary Γ, for n ≥ 2. We
introduce the forward model of the following semilinear parabolic equation:

∂tu−∆u+ b(x, t, u) = 0 in Q,

u = f on Σ,

u(x, 0) = g(x), in Ω,

(1.13)

where b is the function given in Definition 1.1. It is easily seen that the second condition
(1.11) of b implies that u = 0 is a trivial solution when the initial and boundary data are
both zero. In Section 2, we shall prove the (local) well-posedness of the forward problem
(1.13) under the assumption that the coefficient b, initial data g and the boundary data f
fulfill the following compatibility condition:

g(·) = gxi(·) = gxixj (·) = f(·, 0) = ft(·, 0) = 0 on Γ, for i, j = 1, · · · , n. (1.14)

Furthermore, we introduce the boundary measurement associated with (1.13) for our
inverse problem study. Let Sn−1 be the unit sphere of Rn and fix ω0 ∈ Sn−1. Define

Γ±,ω0 =
{
x ∈ Γ

∣∣∣ ± ν(x) · ω0 ≥ 0
}

and Σ±,ω0 = Γ±,ω0 × (0, T ). (1.15)
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Let U± be a neighborhood of Γ±,ω0 in Γ and set

V+ = U+ × (0, T ) and V− = U− × (0, T ).

With these notations and the local well-posedness at hand, the partial DN map ΛP
b,g is

defined as:

ΛP
b,g : E1 → C1+α,1+α/2(V−),

f 7→ ∂νu
∣∣
V− ,

(1.16)

where E1 =
{
f ∈ C

2+α,1+α/2
0 (V+)

∣∣∣ ‖f‖C2+α,1+α/2(V+) < δ1

}
for sufficiently small δ1 and

g ∈ C2+α
0 (Ω), which satisfy the compatibility conditions (1.14) and guarantee the well-

posedness of (1.13), and u is the associated solution to (1.13). Meanwhile, the (full) DN
map of the initial-boundary value problem (1.13) is given via

Λb,g : E2 → C1+α,1+α
2 (Σ),

f 7→ ∂νu
∣∣
Σ
,

(1.17)

where E2 =
{
f ∈ C

2+α,1+α
2

0 (Σ)
∣∣∣ ‖f‖

C2+α,1+α
2 (Σ)

< δ2

}
for sufficiently small δ2 and g ∈

C2+α
0 (Ω), which satisfy the compatibility conditions (1.14) and guarantee the well-posedness

of (1.13), and u is the associated solution to (1.13).

Our third inverse problem is as follows:

• Inverse Problem 3. Can we determine the unknown functions (b, g) by using
active measurements, either Λb,g or ΛP

b,g?

The main result established for Inverse Problem 3 is stated as follows.

Theorem 1.3 (Simultaneous recovery for the semilinear parabolic equation). Let b1 and b2
be in the admissible class. There exists a δ > 0, such that for any gj ∈ C2+α

0 (Ω) (j = 1, 2)
with ‖gj‖C2+α(Ω) < δ/2, we denote by Λbj ,gj and ΛP

bj ,gj
the full and partial DN maps of the

semilinear parabolic equation:
ut −∆u+ bj(x, t, u) = 0 in Q,

u = f on Σ,

u(x, 0) = gj(x), in Ω,

(1.18)

for j = 1, 2, respectively. Then we have the following results:

(a) (Full data) If
Λb1,g1(f) = Λb2,g2(f),

for any f ∈ E2 with a sufficiently small δ2, then

g1 = g2 in Ω and b1 = b2 in Q× R.
(b) (Partial data) For a domain Ω′ ⊆ Ω satisfying Γ ⊆ ∂Ω′, assume that b1 = b2 in

Ω′ × (0, T )× R. If

ΛP
b1,g1

(f) = ΛP
b2,g2

(f),

for any f ∈ E1 with a sufficiently small δ1, then

g1 = g2 in Ω and b1 = b2 in Q× R.

Theorem 1.3 states that Inverse Problem 3 can be solved under suitable situations. In
fact, we can determine b(·, ·, ·) and g(·) simultaneously by using active measurements with
full data. Meanwhile, if we assume b(·, ·, ·) is known a-priori in a small neighborhood of Σ,
then we can also determine b(·, ·, ·) and g(·) simultaneously with partial measurements.

Remark 1.2. We would like to point out that
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(1) The proof of Theorem 1.3 relies on the successive linearization method combining
with suitable complex geometrical optics (CGO) solutions (see [CK18b] or Appendix
A) and approximation properties (see Section 4). We can utilize either full or partial
DN maps for the semilinear equation (1.18) to determine both coefficients and initial
data uniquely. Moreover, the smallness assumptions for both initial and boundary
data are needed due to the local well-posedness of the forward problem (1.18) (see
Section 2), but not used to solve the inverse problem.

(2) In the statement (b) of Theorem 1.3, the domain Ω′ can be chosen as Ω′ = Ω \ D
with D ⊆ Ω such that Ω \ D is connected. Moreover, such a set D ⊆ Ω can be as
large as possible so that the domain Ω′ is very “thin”. This means, for our partial
data result, it is sufficient for us to know the coefficient near the boundary Γ×(0, T )
a priori.

Finally, it would be interesting to consider the linear counterparts of the inverse problems
studied in Theorem 1.3. To our best knowledge, the simultaneous recovery results are
untouched in the literature even in the linear case, namely

b(x, t, u) = q(x, t)u

as a linear function with respect to u ∈ R. For this linear model, the smallness conditions
for initial and boundary data are not required, since the well-posedness for general linear
parabolic equations have been well understood (for example, see [Eva10, Chapter 7] or
[LSU88]). To proceed, let us consider the linear parabolic equation:

∂tu−∆u+ qu = 0 in Q,

u = f on Σ,

u(x, 0) = g(x) in Ω.

(1.19)

In order to derive the well-posedness of classical solutions to (1.19), we need to impose the
following compatibility condition:

g(·) = f(·, 0) on Γ. (1.20)

Then one has the well-posedness of (1.19) (see [Eva10, Chapter 7]) and therefore, we may
define the corresponding partial DN map

ΛP
q,g : C

2+α,1+α/2
0 (V+)→ C1+α,1+α/2(V−),

f 7→ ∂νu
∣∣
V− ,

(1.21)

and the (full) DN map

Λq,g : C
2+α,1+α/2
0 (Σ)→ C1+α,1+α/2(Σ),

f 7→ ∂νu
∣∣
Σ
.

(1.22)

Now, the inverse problem is to determine q and g by using the measurements either ΛP
q,g

or Λq,g. The last main unique recovery result is stated as follows.

Theorem 1.4 (Simultaneous recovery for linear parabolic equations). Assume that for

j = 1, 2, qj ∈ C2+α,1+α/2(Q) and gj ∈ C2+α
0 (Ω). Denote by Λqj ,gj and ΛP

qj ,gj are the full

and partial DN maps of the linear parabolic equation:
∂tu−∆u+ qju = 0 in Q,

u = f on Σ,

u(x, 0) = gj(x), in Ω,

(1.23)

for j = 1, 2, respectively. Then we have the following results:
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(a) (Full data) If

Λq1,g1(f) = Λq2,g2(f),

for any f ∈ C2+α,1+α/2
0 (Σ), then

g1 = g2 in Ω and q1 = q2 in Q.

(b) (Partial data) For a domain Ω′ ⊆ Ω satisfying Γ ⊆ ∂Ω′, assume that q1 = q2 in
Ω′ × (0, T ). If

ΛP
q1,g1

(f) = ΛP
q2,g2

(f),

for any f ∈ C2+α,1+α/2
0 (V+), then

g1 = g2 in Ω and q1 = q2 in Q.

It is noted that when the initial data g1 = g2 = 0 in Ω, the logarithmic stability result
for two potentials of the inverse problem associated with the linear parabolic equation with
partial data has been investigated in [CK18b].

1.2. Background and discussion. In this paper, we are interested in the study of inverse
problems for semilinear parabolic equations. A classical result of inverse boundary value
problems for semilinear parabolic equations was proposed by Isakov [Isa93], where a first-
order linearization technique was exploited to reduce the inverse problem associated with
the nonlinear equation into its counterpart associated with a linear equation. Then one can
apply some existing results for the linear equations to investigate related inverse problems
for the nonlinear equations. In addition, one can also consider the second-order linearization
method, which has been successfully adapted in solving some related inverse problems; see
[AZ21, CNV19, KN02, Sun96, SU97] and the references cited therein.

In recent years, various inverse problems for nonlinear hyperbolic equations have been
proposed and studied. Some works mentioned above are based on solution properties to
inverse problems associated with the linearized equations. It turns out that in the inverse
problem study associated with nonlinear hyperbolic equations, one finds that the nonlinear
interactions bring more information which enables to solve some inverse problems that are
still unsolved in the setting associated with linear equations. In [KLU18], the authors
investigated inverse problems for hyperbolic equations with a quadratic nonlinearity on a
globally hyperbolic 4-dimensional Lorentzian manifold. For more related works of inverse
problems for nonlinear hyperbolic equations, we refer readers to [LUW17, LUW18, CLOP21,
dHUW18, KLOU14, WZ19, LLPMT20, LLPMT21, LLL21] and references cited therein. In
addition, inverse problems for semilinear elliptic equations have been attracted a lot of
attentions in recent years. By utilizing high order linearization approach, it is possible
to solve several inverse problems for local and nonlocal nonlinear elliptic equations, and
we refer readers to [LLLS21, FO20, LLLS20, LLST22, LL22, LL19, Lin22, LZ20, KU20a,
KU20b, KKU22, CK20, CF21] for more detailed discussions.

The study of inverse problems on simultaneously recovering an unknown source and its
surrounding inhomogeneous medium has also received considerable attentions recently in
the literature due to its connection to many cutting-edge applications, including the photo-
and thermo-acoustic tomography [LU15], magnetic anomaly detection via the geomagnetic
monitoring [DLL19, DLL20] and quantum mechanics [LLM19, LLM21]. Here, in the setup

described in the previous section, say e.g. in (1.13), the initial data g and b(0) for b in
(1.12) represent the source terms, whereas the other terms in (1.12) of b represent the
medium effects. In [LLL21], the simultaneous recovery for inverse problems associated
with semilinear hyperbolic systems with unknown sources and nonlinearities was studied.
In this paper, we consider the simultaneous recovery for inverse problems associated with
semilinear parabolic systems. It is remarked that we develop new strategies which enable
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us to deal with more general source and medium configurations in the semilinear parabolic
setup than the semilinear hyperbolic case. Finally, we would like to mention in passing some
related physical applications that can be described by the semilinear parabolic systems in
our study, including the heat diffusion [GSS18], mean-field game theory [Car13, GLL11]
and phase field theory [BWBK02, KKL01]. The inverse problems proposed and studied in
this paper can be connected to those practical applications.

The rest of the paper is organized as follows. In Section 2, we study the well-posedness
of the initial boundary value problems for the semilinear parabolic equations under suitable
assumptions. In Section 3, we establish the conditional stability estimates, and show the
unique determination by utilizing either passive or active measurements. We prove Theo-
rems 1.3 and 1.4 in Section 4. Finally, for the sake of completeness, we review some basic
properties on CGO solutions and weak maximum principle for linear parabolic equations.

2. Well-posedness of the forward problems

This section is devoted to studying the local and global well-posedness for initial-boundary
value problems of semilinear parabolic equations, respectively. Let us consider the following
semilinear parabolic equation:

ut −∇ · (γ̃∇u) + b(x, t, u) = 0 in Q,

u = f̃ on Σ,

u(x, 0) = g̃(x) in Ω,

(2.1)

where γ̃ is symmetric and uniformly positive definite on Q with γ̃ ∈ C1+α,α/2(Q;Rn×n) for
α ∈ (0, 1), and b satisfies the following conditions:

b ∈ C2(Q× R) and b(·, ·, 0) = 0 in Q. (2.2)

As a preliminary, we recall the well-posedness result for linear parabolic equations, which
can be found in [LSU88].

Lemma 2.1. Assume that γ̃ is symmetric and uniformly positive with γ̃ ∈ C1+α,α/2(Q;Rn×n),

and q ∈ Cα,α/2(Q). For any g̃ ∈ C2+α(Ω), f̃ ∈ C2+α,1+α/2(Σ) and h ∈ Cα,α/2(Q) with the
compatibility conditions:

g̃(x) = f̃(x, 0) and f̃t(x, 0) = ∇ · (γ̃(x, 0)∇g̃(x))− q(x, 0)g̃(x) + h(x, 0) on Γ, (2.3)

the following linear parabolic equation:
ut −∇ · (γ̃∇u) + qu = h in Q,

u = f̃ on Σ,

u(x, 0) = g̃(x) in Ω,

(2.4)

admits a unique solution u ∈ C2+α,1+α/2(Q). Moreover,

‖u‖C2+α,1+α/2(Q) ≤ C
(
‖f̃‖C2+α,1+α/2(Σ) + ‖g̃‖C2+α(Ω) + ‖h‖Cα,α/2(Q)

)
.

Note that, if h = 0 in Q, g̃ ∈ C2+α(Ω) with g̃ = g̃xi = g̃xixj = 0 (i, j = 1, · · · , n) on Γ

and f̃ ∈ C2+α,1+α/2(Σ) with f̃(x, 0) = f̃t(x, 0) = 0 on Γ, then the compatibility condition
(2.3) holds.

By Lemma 2.1 and the fixed-point method, we have the following local well-posedness
for (2.1).

Theorem 2.1 (Local well-posedness). Assume that γ̃ is symmetric and uniformly positive

with γ̃ ∈ C1+α,α/2(Q;Rn×n), and b satisfies the condition (2.2). Then there exists a positive
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constant δ, such that for any (f̃ , g̃) ∈ Vδ, the equation (2.1) has a unique solution u ∈
C2+α,1+α/2(Q), where

Vδ =
{

(f̃ , g̃) ∈ C2+α,1+α/2(Σ)× C2+α(Ω)
∣∣∣ f̃(x, 0) = f̃t(x, 0) = 0 on Γ,

g̃ = g̃xi = g̃xixj = 0, i, j = 1, · · · , n on Γ,

and ‖f̃‖C2+α,1+α/2(Σ) + ‖g̃‖C2+α(Ω) ≤ δ
}
.

Proof. The proof can be accomplished by the fixed-point technique. First, we set

K =
{
z ∈ Cα,α/2(Q)

∣∣∣ ‖z‖Cα,α/2(Q) ≤ 1, z(·, 0) = g̃ in Ω and z = f̃ on Σ
}
,

where (f̃ , g̃) ∈ Vδ for a sufficiently small δ > 0. It is straightfoward to show that K is a
nonempty convex and compact subset in L2(Q). Also, we define

q(x, t, s) :=


b(x, t, s)

s
for s 6= 0,

bs(x, t, 0) for s = 0.

For any z ∈ K, let us consider the following linear parabolic equation:
ut −∇ · (γ̃∇u) + qz(x, t)u = 0 in Q,

u = f̃ on Σ,

u(x, 0) = g̃(x) in Ω,

(2.5)

where qz(x, t) = q(x, t, z(x, t)), and define the following map:

Ψ(z) = u, ∀ z ∈ K,

where u is the solution to (2.5) associated to qz. By Lemma 2.1, it follows that u ∈
C2+α,1+α

2 (Q). Moreover,

‖u‖C2+α,1+α/2(Q) ≤ C(γ̃, b, n,Ω, T )
(
‖f̃‖C2+α,1+α/2(Σ) + ‖g̃‖C2+α(Ω)

)
≤ C(γ̃, b, n,Ω, T )δ,

where C(γ̃, b, n,Ω, T ) denotes a positive constant, depending only on γ̃, b, n, Ω and T .
Hence, when δ is sufficiently small, ‖u‖C2+α,1+α/2(Q) ≤ 1, and therefore, Ψ(K) ⊆ K. By the

Schauder fixed-point theorem, it is ready to show that Ψ has a fixed point in K, which is
the solution to (2.1). The proof is complete.

�

Remark 2.2. Regarding the local well-posedness, we give several remarks.

(a) The condition (2.2) on b = b(x, t, u) is not essential and it is for convenience to
express compatibility conditions. Also, the admissible condition on b(x, t, u) is not
used in the proof of the local well-posedness, but it will be utilized in the proof of our
simultaneously recovering inverse problem.

(b) In [Isa93], it was assumed that the coefficient b = b(x, u) is independent of t and
∂ub(x, u) ≥ 0 for any u ∈ R. In contrast, we provide different time-dependent
nonlinearities and utilize different techniques to study related inverse problems for
semilinear parabolic equations.

(c) In order to apply the higher order linearization method, we need the infinite differ-
entiability of the equation with respect to the given lateral boundary data f , which
can be shown by applying the implicit function theorem in Banach spaces. To see
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this, let us define the following spaces. Set

X1 =
{

(f, g) ∈ C2+α,1+α/2(Σ)×C2+α(Ω)
∣∣∣ f(x, 0) = ft(x, 0) = 0 on Γ,

g = gxi = gxixj = 0 on Γ for i, j = 1, · · · , n
}
,

X2 =
{
u ∈ C2+α,1+α/2(Q)

∣∣∣ u(x, 0) = ut(x, 0) = 0 on Γ,

u(x, 0) = uxi(x, 0) = uxixj (x, 0) = 0 on Γ for i, j = 1, · · · , n,

ut(x, 0)−∇ · (γ(x, 0)∇u(x, 0)) = 0 on Γ
}
,

and X3 =
{
h ∈ Cα,α/2(Q)

∣∣∣ h(x, 0) = 0 on Γ
}
×X1.

We consider the map G : X1 ×X2 → X3 by

G(f, g, u) =
(
ut −∇ · (γ∇u) + b(x, t, u), u

∣∣∣
Σ
− f, u(x, 0)− g

)
.

Then G(0, 0, 0) = 0 and Gu(0, 0, 0) : X2 → X3 is given by

Gu(0, 0, 0)v =
(
vt −∇ · (γ∇v) + bu(·, ·, 0)v, v

∣∣∣
Σ
, v(x, 0)

)
.

It is straightforward to show that Gu(0, 0, 0) is a linear isomorphism from X2 to X3

by Lemma 2.1. By the implicit function theorem in Banach spaces, there exists a
positive constant δ, and a holomorphic map S : Vδ → C2+α,1+α/2(Q), such that for
any (f, g) ∈ Vδ, we have G(f, g, S(f, g)) = 0. Set u = S(f, g) and this implies the
local well-posedness of (2.1). Notice that in the above proof, we use the condition
that b = b(x, t, u) is in the admissible class in Definition 1.1. Also, the map of
boundary data to the solution is C∞-Fréchet differentiable. Hence, we can also
derive the corresponding DN map is also C∞-Fréchet differentiable.

Next, for a different nonlinearity, let us consider the global well-posedness of the semi-
linear parabolic equation:

ut −∇ · (γ∇u) + a(x, t, u) = 0 in Q,

u = f on Σ,

u(x, 0) = g(x) in Ω,

(2.6)

where γ is symmetric and uniformly positive definite with γ ∈ C1,0(Q;Rn×n), and a :
Q× R→ R satisfies

a(·, ·, 0) ∈ L2(Q), a(x, t, ·) ∈ C1(R) (2.7)

and the increasing condition (1.3).

The global well-posedness result of (2.6) is stated as follows.

Theorem 2.2 (Global well-posedness). Assume that a satisfies (2.7) and (1.3). Then for

any g ∈ H1
0 (Ω) and f ∈ H

3
2
, 3
4 (Σ) with f(·, 0) = 0 on Γ, the semilinear parabolic equation

(2.6) admits a unique strong solution u ∈ H2,1(Q).

Proof. First, let us set

q(x, t, s) :=


a(x, t, s)− a(x, t, 0)

s
for s 6= 0,

as(x, t, 0) for s = 0.
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For any z ∈ L2(Q), consider the following linear parabolic equation:
ut −∇ · (γ∇u) + az(x, t)u+ a(x, t, 0) = 0 in Q,

u = f on Σ,

u(x, 0) = g(x) in Ω,

(2.8)

where az(x, t) = q(x, t, z(x, t)). By the condition (1.3), we have that az(·, ·) ∈ Ln+2(Q).
Indeed, there exist positive constants, which are denoted by C and may be different in one
place or another, such that∫

Q
|az(x, t)|n+2 dxdt =

∫ T

0
‖az(·, t)‖n+2

Ln+2(Ω)
dt

≤C+C

∫ T

0
e
‖az(·,t)‖2

Ln+2(Ω) dt =C+C

∫ T

0

∞∑
j=0

1

j!
‖az(·, t)‖2jLn+2(Ω)

dt

=C +C

∫ T

0

n+2∑
j=0

1

j!
‖az(·, t)‖2jLn+2(Ω)

dt+ C

∫ T

0

∞∑
j=n+3

1

j!
‖az(·, t)‖2jLn+2(Ω)

dt

≤C + C

∫ T

0

∞∑
j=n+3

1

j!
‖az(·, t)‖2jLn+2(Ω)

dt

=C + C

∫ T

0

∞∑
j=n+3

1

j!

(∫
Ω
|az(x, t)|n+2dx

) 2j
n+2

dt

≤C+C

∫ T

0

∞∑
j=n+3

Cj

j!

∫
Ω
|az(x, t)|2j dxdt ≤ C+C

∫
Q
eC|az(x,t)|2dxdt.

(2.9)

By the condition (1.3), for any ε > 0, there always is a positive constant Cε, such that for
any z ∈ L2(Q), it holds that

|as(x, t, z(x, t))|2 ≤ εln|z(x, t)|+ Cε.

Hence, for a sufficient small ε,∫
Q
eC|az(x,t)|2 dxdt ≤

∫
Q
eC[εln(1+|z(x,t)|)+Cε] dxdt

≤C
∫
Q

(1 + |z(x, t)|)Cε dxdt ≤ C
(

1 + ‖z‖2L2(Q)

)
.

(2.10)

(2.9) and (2.10) imply that az ∈ Ln+2(Q).

By [LSU88], the linear parabolic equation (2.8) admits a unique strong solution u ∈
H2,1(Q). Moreover, by the energy estimate, it holds that

‖u‖2L2(0,T ;H1(Ω))∩C([0,T ];L2(Ω)) + ‖ut‖2L2(0,T ;H−1(Ω))

≤CeT‖az‖
2
Ln+2(Q)

(
‖a(·, ·, 0)‖2L2(Q) + ‖g‖2L2(Ω) + ‖f‖2H1,0(Σ)

)
.

(2.11)

Define the following map:
G : L2(Q)→ L2(Q)

by
G(z) = u,

where u is the solution to the equation (2.8) associated to az. Obviously, G is well-posed
and compact. Define

V =
{
z ∈ L2(Q)

∣∣∣ ‖z‖L2(Q) ≤ C∗
}
,
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where C∗ will be specified later. By (2.9)-(2.11),

‖u‖2L2(Q) ≤ C
(
‖a(·, ·, 0)‖2L2(Q) + ‖g‖2L2(Ω) + ‖f‖2H1,0(Σ)

) (
1 + ‖z‖L2(Q)

)
.

Indeed, we may choose ε = 1/C in (2.10). It follows that there exists a C∗ > 0, such that
G(V ) ⊆ V . By the Schauder fixed point theorem, it is easy to check that G has a fixed
point in V , which is the solution to (2.6) in H2,1(Q). �

3. Unique determination of initial data

In this section, we present proofs of Theorems 1.1 and 1.2 concerning the first two inverse
problems of this paper.

3.1. Carleman estimates. In order to prove Theorem 1.1, we first present two Carleman
estimates for the following linear parabolic equation:

ut −∇ · (γ∇u) +A(x, t)u = F (x, t) in Q,

u = 0 on Σ,

u(x, 0) = g(x) in Ω,

(3.1)

where γ is the same as the one in (1.1), A ∈ L∞(0, T ;L2n(Ω)), F ∈ L2(Q) and g ∈ H1
0 (Ω).

As preliminaries, for two parameters λ, µ ≥ 1, we introduce the following functions:

η(x, t) =
eµψ(x) − e2µ‖ψ‖C(Ω)

t2(T − t)2
, ϕ(x, t) =

eµψ(x)

t2(T − t)2
and θ1(x, t) = eλη(x,t),

where ψ(·) ∈ C4(Ω) satisfies that ψ(x) > 0 in Ω, |∇ψ(x)| > 0 in Ω and

n∑
i,j=1

γijψxiνj ≤ 0 on (Γ \ Γ0)× (0, T ).

Also, for any L > 0, there exist t0 ∈ (0, T ) and K > 0, such that

K + t0 < min

{
1,

1

2L

}
.

Set θ2(t) =
1

K + t0 − t
for t ∈ [0, t0].

The first Carleman estimate is stated as follows.

Lemma 3.1. There exist positive constants λ0, µ0 and C, such that for any λ ≥ λ0 and
µ ≥ µ0, the following estimate holds for any solution to (3.1):∫

Q
θ2

1

(
λµ2ϕ|∇u|2 + λ3µ4ϕ3u2

)
dxdt

≤C
∫
Q
θ2

1F
2 dxdt+ C

∫ T

0

∫
Γ0

θ2
1λµϕ |∂νu|

2 dSdt.

(3.2)

Proof. The proof is inspired by [Yua17, Theorem 2.2]. In fact, when A ≡ 0, the estimate
(3.2) holds true for any solution to (3.1). If A ∈ L∞(0, T ;L2n(Ω)), we have that∫

Q
θ2

1

(
λµ2ϕ|∇u|2 + λ3µ4ϕ3u2

)
dxdt

≤C
∫
Q
θ2

1(F −Au)2 dxdt+ C

∫ T

0

∫
Γ0

θ2
1λµϕ |∂νu|

2 dSdt.
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Notice that when n ≥ 3,

∫
Q
θ2

1A
2u2 dxdt ≤

∫ T

0
‖A‖2L2n(Ω)‖θ1u‖L2(Ω)‖θ1u‖

L
2n
n−2 (Ω)

dt

≤ C
∫ T

0

(
‖θ1u‖2L2(Ω) + ‖∇(θ1u)‖2L2(Ω)

)
dt ≤ C

∫
Q
θ2

1

(
|∇u|2 + λ2µ2ϕ2u2

)
dxdt.

When n = 1 and n = 2, the term ‖θ1u‖
L

2n
n−2 (Ω)

can be replaced by ‖θ1u‖L∞(Ω) and

‖θ1u‖L4(Ω), respectively. Hence, when µ0 is sufficiently large, (3.2) holds for any solution to
(3.1). �

The second Carleman estimate is given as follows.

Lemma 3.2. Assume that T ∈ (0, 1). Then there exists a positive constant L0, such that
for any L ≥ L0, t0 ∈ (0, T ) and K > 0 with

K + t0 < min

{
1,

1

2L

}
,

one can always find positive constants λ0 and C, so that for any λ ≥ λ0, the following
estimate holds for any solution to (3.1):

∫ t0

0

∫
Ω
θ2λ

2

(
λθ2

2u
2 + L

n∑
i,j=1

γijuxiuxj

)
dxdt+

∫
Ω

λ

(K + t0)2λ+1
u2(x, 0) dx

≤
∫

Ω

λ

K2λ+1
u2(x, t0)dx+

∫
Ω

1

(K + t0)2λ

n∑
i,j=1

γij(x, 0)uxi(x, 0)uxj (x, 0) dx

+ C

∫ t0

0

∫
Ω
θ2λ

2 F 2 dxdt.

(3.3)

Proof. The proof can be adapted from that of [Yu21, Theorem 2.4.1] for the Carleman es-
timate of stochastic degenerate parabolic equations. We sketch the necessary modifications
in what follows. First, for any λ ≥ 1, we set z = θλ2 (t)u. Then it is straightforward to show
that

2θλ2

−λθ2z −
n∑

i,j=1

(γijzxi)xj

ut − n∑
i,j=1

(γijuxi)xj


=− (λθ2z

2)t + λθ2
2z

2 − 2
n∑

i,j=1

(γijzxizt)xj +
n∑

i,j=1

(γijzxizxj )t −
n∑

i,j=1

γij,tzxizxj

+ 2

λθ2z +

n∑
i,j=1

(γijzxi)xj

2

.
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Integrating the above equality on Ω× (0, t0), we obtain that∫ t0

0

∫
Ω
λθ2

2z
2 dxdt+

∫
Ω

n∑
i,j=1

γij(x, t0)zxi(x, t0)zxj (x, t0) dx+

∫
Ω
λθ2(0)z2(x, 0) dx

≤
∫

Ω

n∑
i,j=1

γij(x, 0)zxi(x, 0)zxj (x, 0) dx+

∫
Ω
λθ2(t0)z2(x, t0) dx

+

∫ t0

0

∫
Ω

∣∣∣ n∑
i,j=1

γij,tzxizxj

∣∣∣ dxdt+

∫ t0

0

∫
Ω
θ2λ

2 (F −Au)2 dxdt.

(3.4)

On the other hand, notice that

2θ2λ
2 u
[
ut −

n∑
i,j=1

(γijuxi)xj

]
= (θ2λ

2 u2)t − 2
n∑

i,j=1

(γijzxiz)xj − 2λθ2λ+1
2 u2 + 2

n∑
i,j=1

γijuxiuxj .

This implies that for any L > 0,

2L

∫ t0

0

∫
Ω

n∑
i,j=1

γijzxizxj dxdt+ L

∫
Ω
θ2λ

2 (t0)u2(x, t0) dx

≤2Lλ

∫ t0

0

∫
Ω
θ2λ+1

2 u2 dxdt+ L

∫
Ω
θ2λ

2 (0)u2(x, 0) dx+ 2L

∫ t0

0

∫
Ω
θ2λ

2 u(F −Au) dxdt.

(3.5)

By (3.4), (3.5) and the definition of θ2, it follows that∫ t0

0

∫
Ω

(
λθ2λ+2

2 u2 + 2Lθ2λ
2

n∑
i,j=1

γijuxiuxj

)
dxdt

+

∫
Ω

λ

(K + t0)2λ+1
u2(x, 0) dx+

∫
Ω

1

K2λ

n∑
i,j=1

γij(x, t0)uxi(x, t0)uxj (x, t0) dx

≤L
∫

Ω

1

(K + t0)2λ
u2(x, 0) dx+

∫
Ω

1

(K + t0)2λ

n∑
i,j=1

γij(x, 0)uxi(x, 0)uxj (x, 0) dx

+

∫
Ω

λ

K2λ+1
u2(x, t0) dx+

∫ t0

0

∫
Ω

(
2Lλθ2λ+1

2 u2 +
∣∣∣ n∑
i,j=1

γij,tzxizxj

∣∣∣) dxdt
+

∫ t0

0

∫
Ω
θ2λ

2

[
Lu2 + (L+ 1)(F −Au)2

]
dxdt.

Furthermore, we notice that θ2(t) ≥ 1
K+t0

> 2L. Also, for any ε > 0,∫ t0

0

∫
Ω
θ2λ

2 A2u2 dxdt

≤
∫ t0

0
θ2λ

2 ‖A‖2L2n(Ω)‖u‖L2(Ω)‖u‖
L

2n
n−2 (Ω)

dt

≤ε
∫ t0

0

∫
Ω
θ2λ

2 |∇u|2 dxdt+ C

∫ t0

0

∫
Ω
θ2λ

2 u2 dxdt.
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Hence, for sufficiently large L and λ, it follows that∫ t0

0

∫
Ω

(
λθ2λ+2

2 u2 + 2Lθ2λ
2

n∑
i,j=1

γijuxiuxj

)
dxdt+

∫
Ω

λ

(K + t0)2λ+1
u2(x, 0) dx

≤
∫

Ω

1

(K + t0)2λ

n∑
i,j=1

γij(x, 0)uxi(x, 0)uxj (x, 0) dx

+

∫
Ω

λ

K2λ+1
u2(x, t0) dx+ C

∫ t0

0

∫
Ω
θ2λ

2 F 2 dxdt.

This implies the desired estimate (3.3). The proof is complete. �

3.2. Determination of initial data. Based on Lemmas 3.1 and 3.2, one has the following
conditional stability result for the inverse source problem of (3.1).

Lemma 3.3. For any M > 0, if

‖g‖H1
0 (Ω) + ‖F‖L2(Q) ≤M, (3.6)

there exist positive constants C and δ0 ∈ (0, 1), depending only on n, T and Ω, such that
the following estimate holds for any solution to (3.1):

‖u(·, 0)‖2L2(Ω) ≤
C(M + 1)

δ0
‖(F, ∂νu)‖ − CM2

ln[δ0‖(F, ∂νu)‖]
, (3.7)

where ‖(F, ∂νu)‖ =
(
‖F‖2L2(Q) + ‖∂νu‖2L2(Γ0×(0,T ))

)1/2
.

Proof. Without loss of generality, we assume that T < 1. For any t1 ∈ (0, T )∩(0, 2
3)∩(0, 1

3L)

with L being the constant in Lemma 3.2, choose K = t1
2 and t0 ∈ [ t12 , t1]. Then,

K + t0 ≤
3

2
t1 < min

{
1,

1

2L

}
and ( t1 + 2t0

2

)−2λ
= (K + t0)−2λ ≤ θ2λ

2 (t) ≤
( 2

t1

)2λ
, for any λ ≥ λ0 and t ∈ [0, t0].

By Lemma 3.2,

λ

∫
Ω

( t1 + 2t0
2

)−2λ−1
u2(x, 0) dx

≤C
∫

Ω

( t1 + 2t0
2

)−2λ
|∇u(x, 0)|2 dx+ Cλ

( 2

t1

)2λ+1[ ∫
Ω
u2(x, t0)dx+

∫
Q
F 2(x, t) dxdt

]
.

This implies that∫
Ω
u2(x, 0) dx

≤C
λ

∫
Ω
|∇u(x, 0)|2 dx

+ C
( t1 + 2t0

2

)2λ( 2

t1

)2λ+1[ ∫
Ω
u2(x, t0) dx+

∫
Q
F 2(x, t) dxdt

]
≤C
λ

∫
Ω
|∇u(x, 0)|2 dx+ C9λ‖(F, t0)‖2,

(3.8)

where ‖(F, t0)‖2 :=

∫
Ω
u2(x, t0) dx+

∫
Q
F 2(x, t) dxdt.
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On the other hand, by Lemma 3.1, for fixed parameters λ and µ, it holds that∫ t0

t0
2

∫
Ω

(
u2 + |∇u|2

)
dxdt ≤ C

∫
Q
F 2dxdt+ C

∫ T

0

∫
Γ0

|∂νu|2 dSdt.

Hence, there exists a t̂ ∈ ( t02 , t0), such that∫
Ω

(
u2(x, t̂) + |∇u(x, t̂)|2

)
dx ≤ C

∫
Q
F 2dxdt+ C

∫ T

0

∫
Γ0

|∂νu|2 dSdt.

By the standard energy estimate,∫
Ω
u2(x, t0) dx

≤C
∫

Ω
u2(x, t̂) dx+ C

∫ t0

t̂

∫
Ω

(u2 + F 2) dxdt

≤C
∫
Q
F 2 dxdt+ C

∫ T

0

∫
Γ0

|∂νu|2 dSdt.

(3.9)

By (3.8) and (3.9), it holds that∫
Ω
u2(x, 0) dx ≤ C

λ

∫
Ω
|∇u(x, 0)|2 dx+ C9λ‖(F, uν)‖2. (3.10)

Take

δ0 ∈ (0, e−λ0 ln 9) and λ =
1

ln 9
ln

(
‖(F, uν)‖+ 1

δ0‖(F, uν)‖

)
,

where λ0 is the constant in Lemma 3.2. Then, λ ≥ λ0. Set

û =
δ0

‖(F, uν)‖+ 1
u and F̂ =

δ0

‖(F, uν)‖+ 1
F.

By (3.10), it follows that∫
Ω
û2(x, 0) dx

≤C
λ

∫
Ω
|∇û(x, 0)|2 dx+ C9λ

δ2
0

(‖(F, uν)‖+ 1)2
‖(F, uν)‖2

≤ C

ln
(
‖(F,uν)‖+1
δ0‖(F,uν)‖

) ∫
Ω
|∇û(x, 0)|2 dx+ C

δ0‖(F, uν)‖
‖(F, uν)‖+ 1

.

This implies that∫
Ω
u2(x, 0) dx ≤ C

ln
(
‖(F,uν)‖+1
δ0‖(F,uν)‖

) ∫
Ω
|∇u(x, 0)|2 dx+ C

[‖(F, uν)‖+ 1]‖(F, uν)‖
δ0

.

For any M > 0 given in (3.6), by the well-posedness of linear parabolic equations, we have
that

‖(F, uν)‖ ≤ CM.

Hence, ∫
Ω
u2(x, 0) dx ≤ CM2

ln
(
‖(F,uν)‖+1
δ0‖(F,uν)‖

) + C
(M + 1)‖(F, uν)‖

δ0
.

This implies the desired estimate (3.7). �

Now, we give a proof of Theorem 1.1.
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Proof of Theorem 1.1. For any a ∈ AT and two initial values g1, g2 ∈ H1
0 (Ω), let ũ = u1−u2,

where uj (j = 1, 2) are the solutions to (1.5) associated to gj . Then ũ ∈ H2,1(Q) is the
solution to the following parabolic equation:

ũt −∇ · (γ∇ũ) +A(x, t)ũ = 0 in Q,

ũ = 0 on Σ,

ũ(x, 0) = g1 − g2, in Ω,

(3.11)

with

A(x, t)ũ = a(x, t, u1)− a(x, t, u2) =
(∫ 1

0
au(x, t, su1 + (1− s)u2) ds

)
· ũ.

with A(x, t) =

∫ 1

0
au(x, t, su1 + (1 − s)u2) ds. Similar to [LLL21, Theorem 3.2], we can

prove that A ∈ L∞(0, T ;L2n(Ω)). By Lemma 3.3, for any M > 0, if ‖g1 − g2‖H1
0 (Ω) ≤ M,

there exist positive constants C and δ0 ∈ (0, 1), depending only on n, T and Ω, such that

‖ũ(·, 0)‖2L2(Ω) ≤
C(M + 1)

δ0
‖∂ν ũ‖L2(Γ0×(0,T )) −

CM2

ln
(
δ0‖∂ν ũ‖L2(Γ0×(0,T ))

) .
This proves the desired estimate (1.6). �

Furthermore, there is a counterexample showing that if a is unknown, the passive mea-
surement cannot uniquely determine all unknowns.

Theorem 3.1 (Non-uniqueness). Suppose that γ ∈ C2,1(Q;Rn×n) is symmetric and uni-
formly positive definite, aj ∈ AT and gj ∈ H1

0 (Ω) for j = 1, 2. Denote by Λ0
aj ,gj the passive

measurement of the following semilinear parabolic equation:
∂tuj −∇ · (γ∇uj) + aj(x, t, uj) = 0 in Q,

uj = 0 on Σ,

uj(x, 0) = gj(x), in Ω.

(3.12)

Then there exist two groups of unknown sources (g1, a1), (g2, a2) ∈ H1
0 (Ω)×AT , such that

(g1, a1) 6= (g2, a2),

but
Λ0
g1,a1

= Λ0
g2,a2

.

Proof. Assume that two functions u1, u2 ∈ C∞(Q) satisfy that

u1(·, 0) 6= u2(·, 0) in a measurable set of Ω with positive measure,

and u1(x, t) = u2(x, t) = 0 in Ωε × [0, T ],

where Ωε =
{
x ∈ Ω

∣∣∣ dist(x,Γ) < ε
}

. Set

Aj(x, t) = −∂tuj(x, t) +∇ · (γ∇uj(x, t)), for j = 1, 2 and (x, t) ∈ Q.
It is easy to show that uj (j = 1, 2) are solutions to (3.12) associated to

gj(x) = uj(x, 0) and aj(x, t, uj) = Aj(x, t).

Then,
(g1, a1) 6= (g2, a2),

but
∂νu1

∣∣∣
Γ0×(0,T )

= Λ0
g1,a1

= Λ0
g2,a2

= ∂νu2

∣∣∣
Γ0×(0,T )

= 0.

�
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Finally, as a corollary of Theorem 1.1, we prove Theorem 1.2 under the condition that
a ∈ BT (see (1.7)).

Proof of Theorem 1.2. For any aj ∈ BT (j = 1, 2),

aj(x, t, y) = a0(x, t, u)χ[0,T−ε](t) + cj(x, t, u)χ[T−ε,T ](t),

where ε > 0, a0 ∈ AT and c1, c2 ∈ AT with c1(x, t, 0) = c2(x, t, 0) = 0 in Q. By the
condition (1.9),

Λa1,g1(0) = Λa2,g2(0) on Γ0 × (0, T ).

Hence,

Λ0
a1,g1

= Λ0
a2,g2

on Γ0 × (0, T − ε).
By the results in Theorem 1.1 for a = a0 in the time period [0, T − ε], we get the assertion
in Theorem 1.2. �

4. Simultaneous recovery results for inverse problems

In this section, we present the proofs of Theorems 1.3 and 1.4 on the simultaneous recovery
results for the inverse problems. We first derive the unique determination of the coefficient
for the linear parabolic equation. To that end, let us prove some useful properties, which
will be needed in the proofs of Theorems 1.3 and 1.4.

4.1. Approximation and denseness properties. Let us begin with the Runge approx-
imation properties for linear parabolic equations. The following approximation property
will be used in the proof of Theorems 1.3 and 1.4 with full data.

Lemma 4.1 (Runge approximation with full data). Let q ∈ C2+α,1+α/2(Q). Then for any
solutions v± ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)) to{

∂tv+ −∆v+ + qv+ = 0 in Q,

v+(x, 0) = 0 in Ω,
(4.1)

and {
−∂tv− −∆v− + qv− = 0 in Q,

v−(x, T ) = 0 in Ω,
(4.2)

and any η > 0, there exist solutions V± ∈ C2+α,1+α/2(Q) to{
∂tV+ −∆V+ + qV+ = 0 in Q,

V+(x, 0) = 0 in Ω,
(4.3)

and {
−∂tV− −∆V− + qV− = 0 in Q,

V−(x, T ) = 0 in Ω,
(4.4)

such that

‖V± − v±‖L2(Q) < η.

Proof. We only prove the case for the forward parabolic equation, and the backward one
can be proved similarly. Define

X =
{
V ∈ C2+α,1+α/2(Q)

∣∣∣V is a solution to (4.3)
}

and

Y =
{
v ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω))

∣∣∣ v is a solution to (4.1)
}
.
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We aim to show that X is dense in Y . By the Hahn-Banach theorem, it suffices to prove
the following statement: If f ∈ L2(Q) satisfies∫

Q
fV dxdt = 0, for any V ∈ X,

then ∫
Q
fv dxdt = 0, for any v ∈ Y.

To this end, let f ∈ L2(Q) and suppose
∫
Q fV dxdt = 0, for any V ∈ X. Consider

−∂tV −∆V + qV = f in Q,

V = 0 on Σ,

V (x, T ) = 0 in Ω

(4.5)

and its solution is in H2,1(Q). For any V ∈ X, one has

0 =

∫
Q
fV dxdt =

∫
Q

(−∂tV −∆V + qV )V dxdt =

∫
Σ
∂νV V dSdt.

Since V |Σ can be arbitrary function, which is compactly supported on Σ, we must have
∂νV = 0 on Σ. Thus, for any v ∈ Y ,∫

Q
fv dxdt =

∫
Q

(−∂tV −∆V + qV )v dxdt =

∫
Σ
∂νV v dSdt = 0,

which verifies the assertion. �

Let Ω ⊂ Rn be a connected domain, and Ω′ be a connected open subset of Ω such that
∂Ω ⊂ ∂Ω′. Define Q′ = (Ω\Ω′)× (0, T ). Meanwhile, for given ε > 0 and ω ∈ Sn−1, we set

Γ+,ω,ε :=
{
x ∈ Γ

∣∣∣ ν(x) · ω > ε
}
,

Γ−,ω,ε :=
{
x ∈ Γ

∣∣∣ − ν(x) · ω > ε
}
,

and Σ±,ω,ε := Γ±,ω,ε × (0, T ).

The following approximation property will be used to prove Theorems 1.3 and 1.4 with
partial data.

Lemma 4.2 (Runge approximation with partial data). Let q ∈ C2+α,1+α/2(Q). Then for
any solutions W± ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)) to{

∂tW+ −∆W+ + qW+ = 0 in Q,

W+(x, 0) = 0 in Ω
(4.6)

and {
−∂tW− −∆W− + qW− = 0 in Q,

W−(x, T ) = 0 in Ω,
(4.7)

and any η > 0, there exist solutions v± ∈ C2+α,1+α/2(Q) to
∂tv+ −∆v+ + qv+ = 0 in Q,

v+ = 0 on Γ−,ω,ε × (0, T ),

v+(x, 0) = 0 in Ω,

(4.8)
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and 
−∂tv− −∆v− + qv− = 0 in Q,

v− = 0 on Γ+,ω,ε × (0, T ),

v−(x, T ) = 0 in Ω,

(4.9)

such that

‖W± − v±‖L2(Q′) < η.

Proof. We may only prove the case for forward parabolic equations. Define

X ′ =
{
v ∈ C2+α,1+α/2(Q)

∣∣∣ v is a solution to (4.8)
}

and

Y ′ =
{
W ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω))

∣∣∣V is a solution to (4.6)
}
.

We aim to show that X ′ is dense in Z. By the Hahn-Banach theorem again, it suffices to
claim that if f ∈ L2(Q′) satisfies∫

Q′
fv dxdt = 0, for any v ∈ X ′,

then ∫
Q′
fW dxdt = 0, for any W ∈ Y ′.

Let f ∈ L2(Q′) satisfy that
∫
Q′ fv dxdt = 0, ∀v ∈ X ′. We extend f to Q by letting f = 0

outside Q′.
Consider 

−∂tv −∆v + qv = f in Q,

v = 0 on Σ,

v(x, T ) = 0 in Ω,

(4.10)

and its solution is in H2,1(Q). Then for any v ∈ X ′,

0 =

∫
Q
fv dxdt =

∫
Q

(−∂tv −∆v + qv)v dxdt =

∫
Σ
∂νvv dSdt.

Since v|Σ can be arbitrary function, which is compactly supported on Σ\(Γ−,ω,ε × (0, T ))
and v = 0 on Γ−,ω,ε × (0, T ), we have that ∂νv = 0 on Σ\(Γ−,ω,ε × (0, T )).

Next, let Ω1 be a nonempty open set such that (Ω1 ∩ ∂Ω) ⊂ (Γ\Γ−,ω,ε). Then v = 0 on
Ω1 × (0, T ). Notice that

−∂tv −∆v + qv = 0 in (Ω′ ∪ Ω1)× (0, T ).

Since Ω′∪Ω1 is open and connected, by the unique continuation principle for linear parabolic

equations (for instance, see [SS87]), we have v = 0 on Ω′ × (0, T ). Hence, v
∣∣∣
∂Ω′×(0,T )

=

∂νv
∣∣∣
∂Ω′×(0,T )

= 0, and it follows that

v
∣∣∣
∂(Ω\Ω′)×(0,T )

= ∂νv
∣∣∣
∂(Ω\Ω′)×(0,T )

= 0.

Hence, for any W ∈ Y ′,∫
Q′
fW dxdt =

∫
Q′

(−∂tv −∆v + qv)W dxdt =

∫
∂(Ω\Ω′)×(0,T )

∂νvW dSdt = 0.

This completes the proof. �
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Remark 4.3. Let us refer readers to some related approximation property for some different
diffusion equations, such as [CK18a, Lemma 5.3]. Since the proofs of the global uniqueness
results with either full data or partial data are similar, we focus on presenting the arguments
for the full data case and remark the necessary modifications for the partial data case, and
vice versa.

Lemma 4.4 (Denseness property). Let q1, q2 ∈ L∞(Q). Assume that f ∈ L∞(Q), such
that ∫

Q
fv1v2 dxdt = 0,

for any v1 and v2, which satisfy v1v2 ∈ L1(Q), and are, respectively, solutions to{
∂tv1 −∆v1 + q1v1 = 0 in Q,

v1(x, 0) = 0 in Ω,
(4.11)

and {
∂tv2 + ∆v2 − q2v2 = 0 in Q,

v2(x, T ) = 0 in Ω.
(4.12)

Then f = 0. In other words, the linear span of products of solutions to forward and backward
parabolic equations are dense in L1(Q).

Proof. Since qj ∈ L∞(Q) for j = 1, 2, without loss of generality, we may assume that there

exists a positive number m, such that q1, q2 ∈
{
q ∈ L∞(Q)

∣∣∣ ‖q‖L∞(Q) < m
}

. First, let

us fix ω ∈ Sn−1. Consider ρ > 0 to be sufficiently large, and (ξ, τ) ∈ M :=
{

(ξ, τ) ∈

Rn+1
∣∣ ξ · ω = 0

}
with |(ξ, τ)|2 < ρ − 1. Then by Proposition A.1, there is a solution

v1,ρ(·, ·; ξ, τ) to (4.11) such that

v1,ρ = ψ−,ρ(θ+,ρ + z+,ρ,q1)

with ‖z+,ρ,q1‖L2(Q) → 0 as ρ → ∞. Similarly, there is a solution v2,ρ(·, ·) to the backward
parabolic equation (4.12) such that

v2,ρ = ψ+,ρ(θ−,ρ + z−,ρ,q2)

with ‖z−,ρ,q2‖L2(Q) tending to 0, as ρ→∞. Then

v1,ρv2,ρ = θ+,ρθ−,ρ + θ+,ρz−,ρ,q2 + z+,ρ,q1θ−,ρ + z+,ρ,q1z−,ρ,q2

= ϕρ(t)e
−i(x,t)·(ξ,τ) + θ+,ρz−,ρ,q2 + z+,ρ,q1θ−,ρ + z+,ρ,q1z−,ρ,q2 ,

where ϕρ(t) = 1− exp(−ρ3/4t)− exp(−ρ3/4(T − t)) + exp(−ρ3/4T ). Note that θ+,ρ and θ−,ρ

are bounded with respect to ρ > 0. Hence, letting ρ → +∞ in

∫
Q
fv1,ρv2,ρ dxdt = 0, we

have that ∫
Q
fe−i(x,t)·(ξ,τ) dxdt = 0. (4.13)

Therefore, for a fixed ω ∈ Sn−1, (4.13) holds in any compact subset of M . Clearly, M is an
n-dimensional subspace of Rn+1. Notice that f has compact support as a distribution and
its Fourier transform is analytic. The Fourier transform of f is zero in any compact subset
of M as shown, and therefore by changing ω ∈ Sn−1 in a small conic neighborhood, we can
conclude it is zero in Rn+1. This implies f = 0 in Q as desired. �

In the application of the preceding denseness result with full data, we are able to derive
the following global uniqueness result as follows.
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Corollary 4.5 (Global uniqueness with full data). Let q1, q2 ∈ L∞(Q). Let Λqj be the full
DN map of the linear heat equation:{

∂tvj −∆vj + qjvj = 0 in Q,

vj(x, 0) = 0 in Ω,
(4.14)

for j = 1, 2, respectively. Assume that

Λq1(f) = Λq2(f) on Σ, (4.15)

for any f ∈ L2(0, T ;H1/2(Γ)), then q1 = q2 in Q.

Proof. This result can be regarded as an application of [CK18b], and we offer the proof for
the sake of completeness. Let v̂ be a solution to the backward heat equation:{

∂tv̂ + ∆v̂ − q2v̂ = 0 in Q,

v̂(x, T ) = 0 in Ω.
(4.16)

Subtracting (4.14) with j = 1, 2, then we have{
∂tṽ −∆ṽ + q2ṽ = (q2 − q1)v1 in Q,

ṽ(x, 0) = 0 in Ω,
(4.17)

where ṽ = v1 − v2 in Q. Multiplying (4.17) by the solution v̂ of (4.16), with the condition
(4.15) at hand, it is easy to derive that∫

Q
(q2 − q1)v1v̂ dxdt = 0. (4.18)

Therefore, by applying (4.4), one can conclude that q1 = q2 in Q as desired.
�

Lemma 4.6 (Global uniqueness with partial data). Let Ω ⊂ Rn be a bounded domain with

C∞-smooth boundary Γ. For any qj ∈ C2+α,1+α
2 (Q) (j = 1, 2), assume that ΛP

qj are the

partial DN maps of the linear parabolic equation:
(∂t −∆ + qj)u = 0 in Q,

u = f on Σ,

u(x, 0) = 0, in Ω,

(4.19)

and

ΛP
q1(f) = ΛP

q2(f) in V−,

for any f ∈ C
2+α,1+α/2
0 (V+). If q1 = q2 in Ω′ × (0, T ), where Ω′ is an arbitrarily given

connected open subset of Ω with Γ ⊂ ∂Ω′, then

q1 = q2 in Q.

Proof. By Proposition A.1, there is a solution

v1(·, ·; ρ, ξ, τ, ω) = ψ−,ρ(θ+,ρ + z+,ρ,q1) ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω))

to the forward parabolic equation (4.19) with respect to q1 such that

lim
ρ→∞
‖z+,ρ,q1‖L2(Q) = 0.

For j ∈ {1, 2}, let us define

Sj =
{
v ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H−1(Ω))

∣∣∣ (∂t −∆ + qj)v = 0 in Q, v(x, 0) = 0 in Ω
}
,
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and the map M : S1 → S2 is defined by

M(v1) = v2,

where v2 is the solution to 
(∂t −∆ + q2)v2 = 0 in Q,

v2 = v1 on Σ,

v2(x, 0) = 0, in Ω.

(4.20)

By using the trace theorem, v1

∣∣
Σ
∈ L2(0, T ;H1/2(Γ)) and the mapM is well-defined. Now

we have 
(∂t −∆ + q2)(v1 − v2) = (q2 − q1)v1 in Q,

v1 − v2 = 0 on Σ,

(v1 − v2)(x, 0) = 0 in Ω.

(4.21)

Consider a solution v̂ to the backward parabolic equation (A.2) of the form that we have
constructed in Proposition A.1 with q = q2. Then by Lemma 4.2, there are two sequences
of functions

{
vk1
}∞
k=1

,
{
v̂k
}∞
k=1
∈ C2+α,1+α

2 (Q), such that vk1 are solutions to (4.8), v̂k are

solutions to (4.9), and vk1 → v1, v̂k → v̂ in L2(Q′) as k →∞. Hence, we have
(∂t −∆ + q2)(vk1 −M(vk1 )) = (q2 − q1)vk1 in Q,

vk1 −M(vk1 ) = 0 on Σ,

(vk1 −M(vk1 ))(x, 0) = 0 in Ω.

(4.22)

Let vk2 =M(vk1 ). Multiplying by the functions v̂k on the both sides of the above equation
and integration by parts implies∫

Q
(q2 − q1) vk1 v̂

k dxdt =

∫
Σ
v̂k∂ν(vk1 − vk2 ) dSdt.

Since U± is a neighborhood of Γ±,ω0 (recalling V± = U±× (0, T )), there is an ε > 0, such
that1 {

x ∈ Γ
∣∣∣ 0 < ω0 · ν(x) < 2ε

}
× (0, T ) ⊂ V−,{

x ∈ Γ
∣∣∣ω0 · ν(x) > −2ε

}
× (0, T ) ⊂ V+.

Therefore, by choosing

ω ∈
{
ω ∈ Sn−1

∣∣∣ |ω − ω0| < ε
}
,

we get that

supp vk1

∣∣∣
Σ
⊂
{
x ∈ Γ

∣∣∣ω · ν(x) ≥ −ε
}
× (0, T )

⊂
{
x ∈ Γ

∣∣∣ω0 · ν(x) > −2ε
}
× (0, T ) ⊂ V+,

and {
x ∈ Γ

∣∣∣ω0 · ν(x) ≥ 2ε
}
⊂ Γ+,ω,ε.

1We also utilize the same parameter ε to construct the solution v1.
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Note that vk1

∣∣∣
Σ

= vk2

∣∣∣
Σ
∈ C2+α,1+α/2

0 (V+) and recall v̂k = 0 on Γ+,ω,ε. Then we have∣∣∣∣∫
Σ
v̂k∂ν(vk1 − vk2 ) dSdt

∣∣∣∣
=

∣∣∣∣∣
∫
{ω0·ν≥2ε}

v̂k∂ν(vk1 − vk2 ) dSdt

∣∣∣∣∣+

∣∣∣∣∣
∫
{0<ω0·ν<2ε}

v̂k∂ν(vk1 − vk2 ) dSdt

∣∣∣∣∣
+

∣∣∣∣∣
∫
{ω0·ν≤0}

v̂k∂ν(vk1 − vk2 ) dSdt

∣∣∣∣∣
=0

Then ∫
Q′

(q2 − q1) vk1 v̂
k dxdt+

∫
Q\Q′

(q2 − q1) vk1 v̂
k dxdt = 0.

Since we assume q1 = q2 in Q \Q′, it follows that∫
Q′

(q2 − q1) vk1 v̂
k dxdt = 0.

Therefore, by similar arguments as in Corollary 4.5, letting ρ→∞, one has that∫
Q′

(q2 − q1)e−i(x,t)·(ξ,τ) dxdt = 0,

where i =
√
−1. Since ω ∈

{
ω ∈ Sn−1

∣∣∣ |ω − ω0| < ε
}
, it can be changed in a small conic

neighborhood. By by using similar arguments as in Corollary 4.5, we have

q1 = q2 in Q

as desired. �

Remark 4.7. For the full data case of Theorem 1.3, we can use Lemma 4.1 to get an
approximation of CGO solutions instead of Lemma 4.2, since the boundary inputs f needs to
belong to the Hölder space. However, our CGO solutions only in the space L2(0, T ;H1(Ω))∩
H1(0, T ;H−1(Ω)), so we need to utilize the approximation property to connect these two
different solution spaces. In other words, Lemma 4.1 is necessary even for the full data case
in this paper. We do not need to assume q1 = q2 in Ω′ × (0, T ), and we also point out that
we cannot apply Corollary 4.5 to get the result for full data because we need to control the
trace of solution on Σ.

4.2. Proof of Theorem 1.3. With Lemma 4.6 at hand, combining with the higher order
linearization method, we are able to prove Theorem 1.3.

Proof of Theorem 1.3. Let us first remark that the proofs of (a) and (b) in Theorem 1.3
are similar, so it suffices to show the global uniqueness result with partial data. The whole
proof is divided into five parts.

Step 1. Initiation

Let us introduce the following boundary value

f(x, t; ε) =
M∑
`=1

ε`f` on Σ, (4.23)
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where M ∈ N, f1, · · · , fM ∈ C2+α,1+α/2
0 (V+) and ε = (ε1, . . . , εM ) is a parameter vector in

RM with |ε| =
M∑̀
=1

|ε`| small enough, such that

∥∥∥∥∥
M∑
`=1

ε`f`

∥∥∥∥∥
C

2+α,1+α/2
0 (Σ)

is sufficiently small.

For j = 1, 2, by the local well-posedenss property in Section 2, there exist unique solutions
uj = uj(x, t; ε) ∈ C2+α,1+α/2(Q) to

uj,t −∆uj + bj(x, t, uj) = 0 in Q,

uj =
M∑
`=1

ε`f` on Σ,

uj(x, 0) = gj(x) in Ω,

(4.24)

where gj ∈ C2+α
0 (Ω) with ‖gj‖C2+α(Ω) <

δ
2 being sufficiently small, and bj(x, t, z) are ad-

missible coefficients defined in Section 1. For the sake of convenience, when ε = 0, let
ũj = uj(·, ·; 0) be the solutions to

ũj,t −∆ũj + bj(x, t, ũj) = 0 in Q,

ũj = 0 on Σ,

ũj(x, 0) = gj , in Ω.

(4.25)

By utilizing the higher order linearization to (4.24) around the solution ũj to (4.25), we will
determine information on bj for j = 1, 2.

Step 2. The first order linearization (M = 1)

One can linearize the equation (4.24) around ũj , where ũj is the solution to (4.25), for
j = 1, 2. Due to Remark 2.2, direct computations demonstrate that for j = 1, 2 and
` = M = 12,

v
(`)
j (x, t) = lim

ε→0

uj(x, t)− ũj(x, t)
ε`

satisfies the following parabolic equation:
v

(`)
j,t −∆v

(`)
j + qjv

(`)
j = 0 in Q,

v
(`)
j = f` on Σ,

v
(`)
j (x, 0) = 0 in Ω,

(4.26)

where

qj(x, t) := bj,u(x, t, ũj(x, t)) in Q and qj ∈ C2+α,1+α
2 (Q).

We need to point out that both ũj and v
(`)
j in (4.25) and (4.26) are still unknown, respec-

tively, since they solve parabolic equations with unknown coefficients and initial data. In
this step, we will show that

q1(x, t) = q2(x, t) in Q. (4.27)

With the same partial DN maps at hand

ΛP
b1,g1

(f) = ΛP
b2,g2

(f), for any sufficiently small f ∈ C2+α,1+α
2

0 (V+),

such that we have

v
(`)
1 (x, 0) = v

(`)
2 (x, 0), v

(`)
1

∣∣∣
Σ

= v
(`)
2

∣∣∣
Σ
, ∂νv

(`)
1

∣∣∣
V−

= ∂νv
(`)
2

∣∣∣
V−
, (4.28)

for ` = M = 1.

2In fact, the arguments hold for all ` = 1, . . . ,M , and we will use in steps 2-5.
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Now, subtracting (4.26) with j = 1, 2, we have
v

(`)
t −∆v(`) + q2v

(`) = (q2 − q1)v
(`)
1 in Q,

v(`) = 0 on Σ,

v(`)(x, 0) = 0 in Ω,

(4.29)

where v(`) := v
(`)
1 −v

(`)
2 . Let ṽ

(`)
2 be a solution to the following backward parabolic equation:{
ṽ

(`)
2,t + ∆ṽ

(`)
2 − q2ṽ

(`)
2 = 0 in Q,

ṽ2(x, T ) = 0 in Ω.
(4.30)

Multiplying both sides of the first equation in (4.29) by ṽ
(`)
2 , by (4.28), an integration by

parts yields that ∫
Q

(q2 − q1) v
(`)
1 ṽ

(`)
2 dxdt =

∫
Σ
ṽ

(`)
2 ∂νv

(`)
1 dSdt. (4.31)

Moreover, with the condition b1 = b2 in Ω′ × (0, T ) × R at hand, by applying Lemma 4.6,

one can easily see that the claim (4.27) holds. Furthermore, as q1 = q2 in Q, v
(`)
1 and v

(`)
2

satisfy the same parabolic equation (4.26), by the uniqueness of solutions, we obtain that

v(`) := v
(`)
1 = v

(`)
2 in Q. (4.32)

Step 3. The second order linearization (M = 2)

For the second linearization (m = 2), one can differentiate (4.24) with respect to different

parameters ε1 and ε2. A direct computation shows that w
(2)
j (j = 1, 2) satisfy

w
(2)
j,t −∆w

(2)
j + qw

(2)
j + bj,uu(x, t, ũj)v

(1)v(2) = 0 in Q,

w
(2)
j = 0 on Σ,

w
(2)
j (x, 0) = 0 in Ω,

(4.33)

where q = q1 = q2, bj,uu(·, ·, ũj) ∈ C2+α,1+α
2 (Q) and v(1), v(2) ∈ C2+α,1+α

2 (Q) satisfy
v

(`)
t −∆v(`) + q(x, t)v(`) = 0 in Q,

v(`) = f` on Σ,

v(`)(x, 0) = 0 in Ω,

here f1 and f2 can be arbitrarily chosen.
Next, we will prove that

b1,uu(x, t, ũ1(x, t)) = b2,uu(x, t, ũ2(x, t)) in Q. (4.34)

With the same DN map at hand, by differentiating ε1 and ε2, we have

w
(2)
1 (x, 0) = w

(2)
2 (x, 0), w

(2)
1

∣∣∣
Σ

= w
(2)
2

∣∣∣
Σ
, ∂νw

(2)
1

∣∣∣
V−

= ∂νw
(2)
2

∣∣∣
V−
. (4.35)

Let v(0) be any solution to the backward parabolic equation:{
v

(0)
t + ∆v(0) − qv(0) = 0 in Q,

v(0)(x, T ) = 0 in Ω.
(4.36)

By subtracting the equations (4.33) associated to j = 1, 2, an integration by parts yields∫
Q

[
b1,uu(x, t, ũ1(x, t))− b2,uu(x, t, ũ2(x, t))

]
v(0)v(1)v(2) dxdt = 0 (4.37)
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We next choose a nonzero boundary data f2 such that f2 ≥ 0 on Σ and f2 > 0 on Dt×(0, T ),

where Dt ⊂ Γ is a relative open subset for any t ∈ (0, T ). Via the condition f2 = v(2)|Σ ∈
L∞(Σ) at any time t ∈ (0, T ), by applying the maximum principle for parabolic equation
(for example, see [Eva10, Chapter 7] or Appendix A), we have a bounded positive solution

v(2) in Q. Now, by selecting v(1) and v(0) as the CGO solutions of forward and backward
parabolic equations, via Corollary 4.5, we get[

b1,uu(x, t, ũ1(x, t))− b2,uu(x, t, ũ2(x, t))
]
v(2) = 0 in Q.

With the positivity of v(2) in Q at hand, we have (4.34) as desired. Furthermore, by the
uniqueness of solutions to (4.33), one can immediately obtain

w
(2)
1 = w

(2)
2 in Q.

Step 4. The higher order linearization (M > 2)

By utilizing the higher order linearization with the induction hypothesis, we are able to find
M -th order derivative of (4.24) and prove that

∂Mu b1(x, t, ũ1(x, t)) = ∂Mu b2(x, t, ũ2(x, t)) in Q, (4.38)

for any M = 3, 4, · · · . Let us first assume that

∂kub1(x, t, ũ1(x, t)) = ∂kub2(x, t, ũ2(x, t)) in Q, for any k = 1, . . . ,M − 1.

Similar to previous steps, we differentiate (4.24) with respect to ε1, . . . , εM−1 and εM , then
we have ∫

Q

[
∂Mu b1(x, t, ũ1(x, t))− ∂Mu b2(x, t, ũ2(x, t))

]
v(0)v(1) · · · v(M) dxdt = 0,

where v(0) is the solution to the backward parabolic equation (4.36), and v(`) (` = 1, 2, · · · ,M)

are solutions to the forward parabolic equation (4.26). Similar to Step 3, let us choose v(0)

and v(1) as CGO solutions, and v(2), . . . , v(M) are bounded positive solutions in Q

∂Mu b1(x, t, ũ1(x, t)) = ∂Mu b2(x, t, ũ2(x, t)) in Q, for any M ∈ N. (4.39)

Step 5. The determination of initial data and coefficients

Recall that ũj (j = 1, 2) are the solutions to the semilinear parabolic equation:
ũj,t −∆ũj + bj(x, t, ũj) = 0 in Q,

ũj = 0 on Σ,

ũj(x, 0) = gj , in Ω.

As in the proof of [LLL21, Theorem 1.3], by the admissible property of b1 and b2,

b1(x, t, ũ1(x, t))− b2(x, t, ũ2(x, t))

=

∞∑
k=1

∂kub2(x, t, ũ2(x, t))

k!

[
− ũ2(x, t)

]k
−
∞∑
k=1

∂kub1(x, t, ũ1(x, t))

k!

[
− ũ1(x, t)

]k
=

∞∑
k=1

∂kub1(x, t, ũ1(x, t))(−1)k

k!

{[
ũ2(x, t)

]k
−
[
ũ1(x, t)

]k}
.

(4.40)
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Since both ũ1 and ũ2 are bounded, set R = ‖ũ1‖L∞(Q) + ‖ũ2‖L∞(Q). Then, for any L > 0
and (x, t) ∈ Q,∣∣∣∣b1(x, t, ũ1(x, t))− b2(x, t, ũ2(x, t))

ũ1(x, t)− ũ2(x, t)

∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

∂kub1(x, t, ũ1(x, t))

k!
(−1)k+1

{[
ũ1(x, t)

]k−1
+
[
ũ1(x, t)

]k−2
ũ2(x, t) + · · ·

+ũ1(x, t)
[
ũ2(x, t)

]k−2
+
[
ũ2(x, t)

]k−1}∣∣∣∣
≤
∞∑
k=1

∣∣∣∂kub1(x, t, ũ1(x, t))
∣∣∣ Rk−1

(k − 1)!

≤
∞∑
k=1

kRk−1

Lk
sup

|z−ũ1(x,t)|=L
|b1(x, t, z)|.

Choose L = 2(R+ 1). By the admissibility of b1 and b2,

G(·, ·) =
b1(·, ·, ũ1(·, ·))− b2(·, ·, ũ2(·, ·))

ũ1(·, ·)− ũ2(·, ·)
∈ L∞(Q).

Set w = ũ1 − ũ2. It is easy to see that
wt −∆w +Gw = 0 in Q,

w = 0 on Σ,

w(x, 0) = g1 − g2 in Ω.

By Λb1,g1(0) = Λb2,g2(0) and Lemma 3.3, we have

g1 = g2 in Ω and ũ1 = ũ2 in Q.

By (4.40),

b1(x, t, ũ1(x, t)) = b2(x, t, ũ2(x, t)) in Q.

In addition, note that for j = 1, 2 and any (x, t, z) ∈ Q× R,

bj(x, t, z) = bj(x, t, ũj(x, t)) +
∞∑
k=1

∂kubj(x, t, ũj(x, t))

k!
(z − ũj(x, t))k ,

which implies that b1(x, t, z) = b2(x, t, z) in Q× R. This proves the assertion. �

4.3. Proof of Theorem 1.4. Similar to the proof of Theorem 1.3, we are ready to prove
Theorem 1.4.

Proof of Theorem 1.4. The argument is similar to the proof of Theorem 1.3, and we prove
this result with the full data. Let us divide the proof into two steps.

Step 1. Unique determination of coefficients

Let uj = uj(x, t) be the solution to
uj,t −∆uj + qjuj = 0 in Q,

uj = f on Σ,

uj(x, 0) = gj(x) in Ω,
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and let ũj = ũj(x, t) be the solution to
ũj,t −∆ũj + qj ũj = 0 in Q,

ũj = 0 on Σ,

ũj(x, 0) = gj(x) in Ω,

(4.41)

for j = 1, 2. With the same DN maps on the lateral boundary at hand, we have

∂νu1 = ∂νu2 and ∂ν ũ1 = ∂ν ũ2 on Σ. (4.42)

We next consider vj := uj − ũj for j = 1, 2, then vj is the solution of
vj,t −∆vj + qjvj = 0 in Q,

vj = f on Σ,

vj(x, 0) = 0 in Ω.

(4.43)

Subtracting (4.43) with respect to j = 1, 2, we get
vt −∆v + q2v = (q2 − q1)v1 in Q,

v = ∂νv = 0 on Σ,

v(x, 0) = 0 in Ω,

(4.44)

where v = v1− v2. Moreover, via the condition (4.42), we have ∂νv = 0 on Σ. On the other
hand, let ṽ2 be a solution to the backward parabolic equation{

ṽ2,t + ∆ṽ2 + q2ṽ2 = 0 in Q,

ṽ2(x, T ) = 0 in Ω.

Multiplying (4.44) by the function ṽ2, an integration by parts yields that∫
Q

(q2 − q1)v1ṽ2 dxdt = 0. (4.45)

By applying the global uniqueness result with full data (Corollary 4.5), then we have q1 = q2

as desired.

Step 2. Unique determination of initial data

Recalling that ũj is the solution of (4.41), by using the uniqueness q1 = q2, we can subtract
(4.41) with respect to j = 1, 2, then we obtain

ut −∆u+ qu = 0 in Q,

u = 0 on Σ,

u(x, 0) = g1 − g2 in Ω,

(4.46)

where q = q1 − q2 and u = ũ1 − ũ2. Via the condition (4.42) again, we have ∂νu = 0 on Σ.
Finally, by applying the quantitative stability estimate (1.6), we can obtain the uniqueness
of the initial data g1 = g2 in Ω. This proves the assertion. �

Remark 4.8. One can find that when the initial and boundary data are small enough,
Theorem 1.4 can be regarded as a corollary of Theorem 1.3, where we can simply take
bj(x, t, u) := qj(x, t)u for j = 1, 2. In order to distinguish the statements of Theorems 1.3
and 1.4, we provide two complete proofs of both theorems.

Appendix A. Auxiliary results

In the end of this paper, for the sake of self-containedness, we review some properties for
linear hear equations, which were used in our proofs.
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A.1. Complex geometrical optics solutions. We first prove a density result for the
product of solutions to forward and backward parabolic equations in L1(Q). It depends
on the construction of CGO solutions, which vanish at initial or final time. They were
constructed in [CK18a], and we summarize the results as the following propositions. To
make the explanation clear, we split the procedure into two parts.

For any ρ > 0, we define{
ψ+,ρ(x, t) = exp(−(ρω · x+ ρ2t)),

ψ−,ρ(x, t) = exp(ρω · x+ ρ2t),

and {
θ+,ρ(x, t; ξ, τ) =

(
1− exp(−ρ3/4t)

)
exp(−i(x, t) · (ξ, τ)),

θ−,ρ(x, t) = 1− exp(−ρ3/4(T − t)),
where ξ ∈ Rn with ξ · ω = 0 and τ ∈ R.

The following proposition was demonstrated in [CK18a, Propositions 4.3, 4.4], and we
state the result without proofs for the sake of convenience.

Proposition A.1. Let m, ε > 0 and ω ∈ Sn−1. There is a positive constant C, depending

only on Q,m and ε, such that for any q ∈
{
q ∈ L∞(Q)

∣∣∣ ‖q‖L∞(Q) < m
}

. Then we have

(a) There exists a CGO solution u ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H−1(Ω)) to the forward
parabolic equation {

(∂t −∆ + q)u = 0 in Q,

u(x, 0) = 0 in Ω,
(A.1)

of the form
u(·, ·; ρ, ξ, τ) = ψ−,ρ(θ+,ρ + z+,ρ,q),

where z+,ρ,q ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω))

lim
ρ→∞
‖z+,ρ,q‖L2(Q) = 0

(b) There exists a CGO solution u ∈ L2(0, T ;H1(Ω))∩H1(0, T ;H−1(Ω)) to the backward
parabolic equation

(−∂t −∆ + q)u = 0 in Q,

u = 0 on Γ+,ω,ε × (0, T ),

u(x, T ) = 0 in Ω,

(A.2)

of the form
u(·, ·; ρ) = ψ+,ρ(θ−,ρ + z−,ρ,q),

where z−,ρ,q ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω)) and it satisfies the decay condi-
tion:

lim
ρ→∞
‖z−,ρ,q‖L2(Q) = 0

A.2. Maximum principle. Finally, let us show the maximum principle for a linear para-
bolic equation.

Lemma A.2 (Strong maximum principle). Let Ω ⊂ Rn be a bounded domain with smooth
boundary Γ for n ∈ N. Let q ∈ C(Q) and v ∈ C2,1(Q) ∩ C(Q) be a solution to

vt −∆v + qv = 0 in Q,

v = f on Σ,

v(x, 0) = 0 in Ω.

(A.3)
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Suppose that f ≥ 0 on Σ and f > 0 on Dt× (0, T ) with Dt ⊂ Γ being a relative open subset
for any t ∈ (0, T ), then v > 0 in Q.

Proof. Without loss of generality, we assume that q ≥ 0 in Q. Otherwise, let u = e−λtv,
where λ > 0 is a sufficiently large positive parameter. If there exists a pair (x0, t0) ∈ Q,
such that v(x0, t0) = 0. Then by [Eva10, Chapter 7], v ≡ 0 in Ω × (0, t0). It contradicts
with the fact that f > 0 on Dt × (0, t0). Hence, v > 0 in Q.

�
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