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Abstract. We extend the study of inverse boundary value problems to the

setting of fully nonlinear PDEs by considering an inverse source problem for

the Monge–Ampère equation

detD2u = F.

We prove that, on a convex Euclidean domain in the plane, the associated
Dirichlet-to-Neumann (DN) map uniquely determines a positive source func-

tion F . The proof relies on recovering the Hessian of a solution to the equa-

tion, which is interpreted as a Riemannian metric g. Interestingly, although
the equation is posed on a Euclidean domain, the inverse problem becomes

anisotropic since the metric g appears as a coefficient matrix in the linearized

equation.
As an intermediate step, we prove that the DN map of the non-divergence

form equation

gab∂abv = 0

uniquely determines the conformal class of the metric g on a simply connected

planar domain, without the usual diffeomorphism invariance. To address the
challenges of full nonlinearity, we develop asymptotic expansions for complex

geometric optics solutions in the planar setting and solve a resulting nonlocal
∂-equation by proving a unique continuation principle for it. These techniques
are expected to be applicable to a wide range of inverse problems for nonlinear

equations.
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1. Introduction

The Monge–Ampère equation is a paradigmatic fully nonlinear (possibly degen-
erate) partial differential equation (PDE), introduced nearly two centuries ago by
Monge [Mon84Mon84] and Ampère [Amp19Amp19]. In general form, it is written as

(1.1) detD2u = f(x, u,∇u) in Ω,

where Ω ⊂ Rn is an open domain, u : Ω → R is a solution, D2u denotes the
Hessian matrix of u, and f : Ω × R × Rn → R is a given source function. Under
mild assumptions on the solution, f and Ω, the equation becomes elliptic, enabling
the application of classical regularity theory (see Remark 1.31.3). Notably, Figalli
was awarded the Fields Medal in 2018 in part for his contributions to the Monge–
Ampère equation: see [Fig17Fig17] for a comprehensive introduction to its elliptic theory
and applications.

The Monge–Ampère equation is deeply intertwined with geometry, analysis, ap-
plied mathematics, and physics.

• An optimal transport ∇u between mass densities ρ0 and ρ1 with quadratic
cost is governed by the Monge-Ampere equation

detD2u(x) =
ρ0(x)

ρ1(∇u(x))
.

Optimal transport appears in many applications such as economics, meteo-
rology, image processing and computer vision, and fluid dynamics. We refer
to the book [Vil09Vil09] by Villani for further details about the applications.
• In differential geometry, the graph (x, u(x)) of a solution to

detD2u = K(x)(1 + |∇u|2)
n+2

2 ,

has prescribed Gaussian curvature K(x), relating to the classical Minkowski
problem [Min97Min97, Min03Min03] of constructing convex hypersurfaces with specified
curvature.
• The Calabi–Yau conjecture asserts that a compact Kähler manifold with

zero first Chern class admits a Ricci-flat Kähler metric, which reduces to
solving the complex Monge-Ampère equation. We refer readers to [Yau78Yau78,
Aub82Aub82] for further studies.

For more comprehensive introduction and studies of the Monge-Ampère equation,
see [Cal72Cal72, CY86CY86, TW00TW00, TW02TW02, TW05TW05, Fig17Fig17].

In this work, we focus on the spatially dependent source case,

f(x, u,∇u) = F (x),

and study an inverse source problem of recovering the function F from boundary
measurements. In this case, the equation (1.11.1) reads

(1.2) detD2u = F (x),

for some positive function F satisfying suitable regularity conditions. Our pri-
mary objective is to investigate the recovery of the function F from the DN map
corresponding to (1.21.2).
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To the best of our knowledge, this work establishes the first uniqueness result
for an inverse source problem governed by a fully nonlinear PDE. A central nov-
elty lies in the recovery of the metric only up to a conformal factor, but without
a natural diffeomorphism from the first linearized equation. Moreover, after some-
what involved asymptotic analysis for the integral identity of the second linearized

equation, the resulting equation is a second-order ∂-equation with a nonlocal ∂
−1

lower-order perturbation. We prove a unique continuation property (UCP) for this
non-local ∂ equation, specifically the equation to show that the conformal factor is
identically equal to 1. We also anticipate that these methods will have influence
well beyond the Monge–Ampère model. The reason for the nonlocal equation seems
to be in the full nonlinearity.

Inverse problems of parameter identification, encompassing both coefficients and
source functions, in nonlinear partial differential equations have attracted consider-
able interest in recent decades. Among these, the determination of nonlinear laws
presents profound challenges due to inherent nonlinearity and severe ill-posedness.
The modern approach to such problems can be traced back to the early 1990s,
notably through Isakov’s pioneering work [Isa93Isa93], which introduced the idea of
linearizing the nonlinear Dirichlet-to-Neumann (DN) map C∞(∂Ω) → C∞(∂Ω).
This linearization reduces the nonlinear inverse problem to one for a linear PDE,
enabling the use of classical techniques. Subsequently, second-order lineariza-
tions, involving data depending on two parameters, have further advanced the field
[AZ21AZ21, CNV19CNV19, KN02KN02, Sun96Sun96, Sun10Sun10, SU97SU97].

More recently, a novel method has emerged in the study of inverse problems for
semilinear elliptic equations [FO20FO20, LLLS21aLLLS21a]. These works exploit nonlinearity not
as an obstacle, but as a constructive tool, building on the foundational insights of
[KLU18KLU18], which examined inverse problems for nonlinear equations on Lorentzian
manifolds and developed the so-called higher order linearization method. By har-
nessing nonlinear interactions via higher order linearizations, these approaches have
solved inverse problems in contexts where methods for linear equations fail.

Following these breakthroughs, a substantial body of literature has developed
using higher order linearization techniques to address inverse problems for vari-
ous nonlinear PDEs. Let us mention here works that address nonlinear elliptic
equations. Key contributions include [LLLS21bLLLS21b, LLST22LLST22, KU20bKU20b, KU20aKU20a, FLL23FLL23]
on semilinear elliptic equations, often with partial boundary data. Quasilinear
elliptic inverse problems have been studied in [KKU23KKU23, CFK+21CFK+21, LW23LW23], while
inverse problems for the minimal surface equation (quasilinear) are treated in
[ABN20ABN20, CLLO24CLLO24, CLLT23CLLT23, CLT24CLT24, Nur24Nur24]. The latter have also led to novel ap-
plications in AdS/CFT physics [JLST25JLST25]. Other related works, including semilinear
elliptic equations under various settings and fractional elliptic inverse problems, can
be found in [LL19LL19, LL22LL22, LSX22LSX22, HL23HL23, ST23ST23, LL25LL25]. We refer the reader to the
recent survey [Las25Las25] for a comprehensive introduction and for further references
to inverse problems for semilinear elliptic and hyperbolic equations.

1.1. Mathematical formulations and main results. The main contribution of
this work is a uniqueness result for an inverse source problem for the Monge-Ampère
equation in a convex planar domain. The mathematical formulation is as follows.

Let Ω ⊂ R2 be a bounded, uniformly convex domain with C∞-smooth boundary
∂Ω. Given a source function F = F (x) ∈ C∞(Ω) satisfying F ≥ c0 > 0 for some
constant c0 > 0, let u : Ω → R be the solution to the Dirichlet boundary value
problem: {

detD2u = F in Ω,

u = ϕ on ∂Ω,
(1.3)
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where D2u denotes the Hessian matrix of u.
To ensure ellipticity (i.e., convexity of solutions), we assume that the source

function satisfies
F (x) ≥ c0 > 0 in Ω,

for some constant c0 > 0. We also assume that the boundary data ϕ ∈ C∞(∂Ω).
Under these conditions, the boundary value problem (1.31.3) is (locally) well-posed.
Further details will be provided in Section 2.22.2 (see also [Fig17Fig17] for additional dis-
cussion). Thanks to this well-posedness, we can define the Dirichlet-to-Neumann
(DN) map associated with (1.31.3) as

(1.4) ΛF : C∞(∂Ω)→ C∞(∂Ω), ϕ 7→ ∂νuϕ|∂Ω ,

for any ϕ sufficiently small in an appropriate sense. Here uϕ ∈ C∞(Ω) denotes the
unique solution to (1.31.3), and

∂νuϕ = ν · ∇uϕ
is the Neumann derivative with respect to the unit outer normal ν on ∂Ω. The
inverse problem for the Monge-Ampere equation we address is as follows.

(IP) Inverse Source Problem. Can we determine the unknown source F in
Ω by using the knowledge of the DN map ΛF ?

Remark 1.1. Before addressing the nonlinear setting, we briefly recall the obstruc-
tion to non-uniqueness to an inverse source problem in the linear case. Let Ω ⊂ Rn
be a bounded open set with sufficiently regular boundary ∂Ω, where n ≥ 2. Consider
the Poisson equation

(1.5)

{
∆u = F in Ω,

u = ϕ on ∂Ω.

Given an arbitrary function ψ ∈ C2(Ω) with vanishing Cauchy data on ∂Ω, define
v := u+ ψ in Ω. Then v satisfies

(1.6)

{
∆v = F + ∆ψ in Ω,

v = ϕ on ∂Ω.

Then, the following observations can be made:

(i) The Cauchy data of (1.51.5) and (1.61.6) coincide. Since ψ ∈ C2(Ω) with van-
ishing Cauchy data was otherwise arbitrary, the inverse source problem is
solvable only up to the gauge symmetry F 7→ F +∆ψ. In particular, even if
the sources agree on all orders on the boundary, the interior source cannot
be uniquely determined.

(ii) Related non-uniqueness phenomena have been investigated in the context
of semilinear equations and shown that for some nonlinearities the gauge
symmetry breaks, leading to unique recovery: see [LL24LL24] for the semilinear
elliptic case and [KLL24KLL24] for the semilinear parabolic case. Very recently,
the work [LN25LN25] determined the source uniquely for a quasilinear elliptic
equation, and [QXYZ25QXYZ25] addresses the inverse problem of simultaneously
recovering multiple unknown parameters for semilinear wave equations.

Interestingly, for our inverse problem (IP)(IP), we can provide an affirmative answer
in two dimensions: the source function F can be uniquely determined from the DN
map (1.41.4) associated with the Monge–Ampère equation (1.31.3). Before presenting
the main result, we introduce the following set of admissible boundary data:

(1.7) Bδ(∂Ω) :=
{
ϕ ∈ C∞(∂Ω) : ‖ϕ‖C4,α(∂Ω) < δ

}
,

for some α ∈ (0, 1) and sufficiently small δ > 0. With these preparations in place,
we are now ready to state our main theorem.
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Theorem 1.2 (Unique determination). Let Ω ⊂ R2 be a bounded, uniformly convex
domain with C∞ boundary ∂Ω. Let F ∈ C∞(Ω) be a source with F ≥ c0 > 0 for
some positive constant c0. Suppose that F is known up to second order on the
boundary, then the DN map ΛF of (1.31.3) determines the source F in Ω uniquely.

More specifically, let F1, F2 ∈ C∞(Ω) be sources, and F1, F2 ≥ c0 > 0 for some
positive constant c0. Let ΛFj be the DN map of

(1.8)

{
detD2u(j) = Fj in Ω,

u(j) = ϕ on ∂Ω,

for j = 1, 2. Suppose that F1 and F2 agree up to second order on the boundary,
then

(1.9) ΛF1(ϕ) = ΛF2(ϕ) on ∂Ω, for any ϕ ∈ Bδ(∂Ω),

for δ > 0 sufficiently small, implies

F1 = F2 in Ω.

Remark 1.3. We clarify the assumptions in Theorem 1.21.2:

(i) Uniform convexity of Ω and positivity of F . These ensure global
regularity—namely, that a solution u admits a classical second derivative
D2u and remains convex on Ω (see [Fig17Fig17, Remark 1.1]). Consequently, the
Monge–Ampère equation is locally well-posed on Bδ(Ω), as its linearization
around a convex solution is elliptic. This local well-posedness is essential
for applying the first linearization method in the inverse problem.

(ii) F known up to second order on ∂Ω. Knowledge of the DN map along
with F and up to its second order derivatives behavior on ∂Ω allows the
recovery of the solution to the Monge-Ampère equation up to at least fourth
order on the boundary. This assumption, while convenient for avoiding
standard boundary determination arguments in our analysis, can most likely
be lifted.

Condition (i)(i) is essential for the forward problem of (1.31.3), while condition (ii)(ii)
is only used for the inverse problem.

The first linearization of the Monge-Ampère equation (1.31.3) (see Section 22) yields

(1.10) uab0 ∂abv = 0 in Ω,

where the coefficient matrix
(
uab0

)
=
(
∂abu0

)−1
is defined via the solution u0 to

the original Monge-Ampère equation with zero Dirichlet data (ϕ = 0 on ∂Ω).
Meanwhile, thanks to the convexity and regularity assumptions, the equation (1.101.10)
is a second-order, anisotropic elliptic equation in non-divergence form, as it has
matrix-valued non-constant coefficients given by uab0 . As an intermediate step in
proving Theorem 1.21.2, we establish a uniqueness result for the associated Calderón
problem of this linearized equation in the plane.

Theorem 1.4. Let Ω ⊂ R2 be a bounded open simply connected domain with
C∞-smooth boundary ∂Ω, and g =

(
gab
)

is a symmetric, positive definite and C∞-
smooth 2× 2 matrix-valued function. Let Λ′g be the DN map of

(1.11) gab∂abv = 0 in Ω,

where
(
gab
)

=
(
gab
)−1

. Then Λ′g determines g up to a conformal factor c = c(x) > 0
in Ω with c|∂Ω = 1.

More specifically, let g = gj be as above, and Λ′gj be the DN map of the equation{
gabj ∂abvj = 0 in Ω,

vj = φ on ∂Ω,
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for j = 1, 2. Suppose that

Λ′g1
(φ) = Λ′g2

(φ) for any φ ∈ C∞(∂Ω),

then there exists a C∞-smooth conformal factor c > 0 with c|∂Ω = 1, such that

g1 = cg2 in Ω.

Note that the determination of the metric in Theorem 1.41.4 is free from diffeomor-
phism ambiguity. In this sense, it constitutes a stronger result than the correspond-
ing one for the divergence form anisotropic Calderón problem in two dimensions.
It is not immediately clear whether the assumption that the domain Ω is simply
connected can be lifted.

Novelty of the methods and outline of the proof. Theorem 1.21.2 establishes,
for the first time to our knowledge, a uniqueness result for an inverse problem
governed by a fully nonlinear elliptic PDE. Key novel contributions of our method
include:

• Solving the first linearized problem: The first linearization leads to an ellip-
tic, second-order PDE in non-divergence form, where the leading coefficient
is the Hessian of the Monge–Ampère solution (1.31.3) with zero Dirichlet data,
considered as a Riemannian metric g. By reformulating this non-divergence
form equation (1.111.11) as(

−∆g +Xg · ∇
)
u = 0,

where the drift term Xg is given by the contracted Christoffel symbols
of g (see Section 4.24.2). After applying a known result for the anisotropic
Calderón problem to the above equation, we study the transformation prop-
erties of Christoffel symbols to eliminate the diffeomorphism gauge on a
simply connected domain. This leads to global recovery of the metric ten-
sor only up to a conformal factor c > 0, normalized on the boundary by
c|∂Ω = 1 (see Theorem 1.41.4).
• Analysis of the second linearized equation: To resolve the remaining confor-

mal factor, we employ a class of complex geometric optics (CGO) solutions
to the first linearized PDE. The second linearization of the Monge–Ampère
equation leads to the integral identity

(1.12)

ˆ
Ω

v∗ tr
{

(D2u0)−1D2v(1)(D2u0)−1D2v(2)
}
dx,

where u0 is the solution to (1.31.3) with zero Dirichlet data, and tr(A) denotes
the trace of a matrix A. Here v(1) and v(2) are CGO solutions of the first
linearized equation of (1.31.3), and v∗ is a CGO solution of the corresponding
adjoint equation.

The number of derivatives versus solutions in the integral (1.121.12) makes
classical CGO constructions and asymptotic arguments insufficient in this
context. For this purpose, we refine the earlier CGOs by deriving a polyno-
mial expansion in h for their correction terms when the associated phases
do not have critical points. Moreover, the asymptotic analysis ultimately
yields a PDE of the form

(1.13) ∂(A∂c(z) + α(z)c(z)) = β(z)∂
−1

(γ(z)c(z)) +H(z),

with a nonlocal lower operator ∂
−1

, where A 6= 0, α, β, γ are possibly
complex-valued functions, and H is a holomorphic function. Here, c is the
unknown, and we want to determine c = 0. To address this difficulty, we
establish a unique continuation property (UCP) via a Carleman estimate



INVERSE SOURCE PROBLEM FOR THE MONGE-AMPÈRE EQUATION 7

for the equation (1.131.13), where the UCP holds only when H is holomorphic
(see Section 66). This is a delicate result, and allows us to conclude that the
conformal factor is identically 1, thereby guaranteeing the unique recovery
of the source F .

1.2. Organization of the article. Section 22 presents the preliminaries: basic no-
tations from complex analysis, local well-posedness results for (1.31.3), and the higher-
order linearization framework. In Section 33, we prove a boundary determination
result for solutions of (1.31.3), which allows us to transfer the DN map from (1.31.3) to
its linearized equations. Section 44 shows Theorem 1.41.4, that is, the diffeomorphism
relating the metrics is the identity, and the metric can be uniquely determined
only up to a conformal factor for an elliptic equation of non-divergence form. In
Section 55, we present CGO solutions for the first linearized equation and carry out
a refined asymptotic analysis of the remainder terms. In Section 66, we prove a
UCP for a PDE with nonlocal lower order perturbations. This UCP, together with
the CGO solutions, is applied in Section 77 to show that the conformal factor is
identically one, via the integral identity of the second linearized equation. Finally,
Section 88 combines all these results and completes the proof of Theorem 1.21.2.

2. Preliminaries

In this section, we will prepare several useful notations and tools for the study
of the Monge-Ampère equation.

2.1. Notations, function spaces and some fundamental tools.

2.1.1. Notations in complex analysis. Let us introduce the following standing no-
tation in this article, which is used to identify R2 = C. The differential operators
∇ = (∂x1

, ∂x2
), ∂ and ∂ on C, which are given by

∂ = ∂z =
∂

∂z
=

1

2
(∂x1 − i∂x2) , ∂ = ∂z =

∂

∂z
=

1

2
(∂x1 + i∂x2) ,(2.1)

where z = x1 + ix2 ∈ C, z = x1 + ix2 with x1, x2 ∈ R and i =
√
−1. In addition,

let us use ∂k ≡ ∂k to simplify the notation, for j = 1, 2, then direct computations
yield that

∂1 = ∂ + ∂, ∂2 = i
(
∂ − ∂

)
,(2.2)

and

∂
2 − ∂2 =

1

4

(
∂2

1 + 2i∂x1
∂x2
− ∂2

x2
− ∂2

x1
+ 2i∂x1

∂x2
+ ∂2

x2

)
= i∂x1

∂x2
.

Note that the Hessian of any C2 function f = f(x) = f(x1, x2) can be written as

D2f =

(
∂11 ∂12

∂12 ∂22

)
f =

 (
∂ + ∂

)2
i
(
∂2 − ∂2

)
i
(
∂2 − ∂2

)
−
(
∂ − ∂

)2
 f(z),(2.3)

where we identify z = x1+ix2 ∈ C. In particular, as Φ is holomorphic (i.e., ∂Φ = 0),
one can obtain

D2Φ =

 (
∂ + ∂

)2
i
(
∂2 − ∂2

)
i
(
∂2 − ∂2

)
−
(
∂ − ∂

)2
Φ =

(
1 i
i −1

)
∂2Φ,(2.4)

and Ψ is antiholomorphic (i.e., ∂Ψ = 0), we have

D2Ψ =

 (
∂ + ∂

)2
i
(
∂2 − ∂2

)
i
(
∂2 − ∂2

)
−
(
∂ − ∂

)2
Ψ =

(
1 −i
−i −1

)
∂

2
Ψ.(2.5)
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Therefore, the Hessian (2.32.3) can be written as

D2f =

 (
∂ + ∂

)2
i
(
∂2 − ∂2

)
i
(
∂2 − ∂2

)
−
(
∂ − ∂

)2
 f = A∂2f +B∂

2
f + 2I2×2∂∂f,(2.6)

where A,B are matrices given by

(2.7) A :=

(
1 i
i −1

)
and B :=

(
1 −i
−i −1

)
are derived from (2.42.4) and (2.52.5), and we used 4∂∂ = ∆. Here, I2×2 denotes the
2 × 2 identity matrix. These notations will be used throughout the article. In
particular, the formula (2.62.6) is crucial for the asymptotic analysis of the second
integral identity.

2.1.2. Function spaces. Let us introduce the notion of function spaces that we use
in this article. The notation Ck,α(K) denotes the Hölder continuous space, for some
compact set K ⊂ R2, where k ∈ N ∪ {0} denotes the k-th order differentiability,
and the exponent α ∈ (0, 1). It is also known that Ck,α(K) is an algebra, in the
sense that

‖uv‖Ck,α(K) ≤ C
(
‖u‖Ck,α(K)‖v‖L∞(K) + ‖u‖L∞(K)‖v‖Ck,α(K)

)
,

for some constant C > 0 independent of u, v ∈ Ck,α(K). It is known that Ck,α(K)
is a Banach space.

2.1.3. Matrices computations. We also collect several useful properties for matrix
computations. Let us first recall the Jacobi formula for a matrix, which is given by

(2.8)
d

dt
detA(t) = (detA(t)) tr

(
A(t)−1 dA(t)

dt

)
,

for any differentiable n× n matrix-valued functions A(t). Moreover, it also holds

(2.9)
d

dt
A−1(t) = −A(t)A′(t)A−1(t),

for any differentiable matrix A(t). These formulas will be used in the forthcoming
analysis to address our problems.

2.2. Well-posedness. Let us establish the (local) well-posedness of (1.31.3) and prove
the continuous dependence of solutions on the Dirichlet data. Following the ap-
proach in [Fig17Fig17], consider a nonempty, bounded, and uniformly convex domain
Ω ⊂ R2. Since the source term F is bounded away from zero, the solution u to
(1.31.3) is convex in Ω. Moreover, under these assumptions, one can obtain improved
regularity results for certain classes of solutions.

Define the nonlinear differential operator

Q(u) := detD2u.

Our goal is to prove the following result regarding the solvability and stability of
solutions to the equation involving Q(u).

Proposition 2.1 (Well-posedness). Let Ω ⊂ R2 be a uniformly convex domain
with C∞-boundary ∂Ω.

(i) Given α ∈ (0, 1), let F ∈ C4,α(Ω) with F (x) ≥ c0 > 0, for some constant
c0. Then there exists a unique convex solution u0 ∈ C4,α(Ω) of{

detD2u0 = F in Ω,

u0 = 0 on ∂Ω.
(2.10)
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(ii) There exists constants δ, C > 0 such that for any ϕ in the set Bδ(∂Ω) given
by (1.71.7), there exists a solution u ∈ C4,α(Ω) of{

detD2u = F in Ω,

u = ϕ on ∂Ω,
(2.11)

which satisfies

‖u− u0‖C4,α(Ω) ≤ C‖ϕ‖C4,α(∂Ω),

where u0 ∈ C4,α(Ω) is the convex solution to (2.102.10). Furthermore, the
solution u is unique in the class

{
w ∈ C4,α(Ω) : ‖w − u0‖C4,α(Ω) ≤ Cδ

}
(iii) In particular, if F ∈ C∞(Ω) and ϕ ∈ Bδ(∂Ω), the solution u of (2.112.11)

belongs to C∞(Ω). In addition, there exist C∞-Fréchet differentiable maps

S : Bδ(∂Ω)→ C∞(Ω), ϕ 7→ uϕ,

Λ : Bδ(∂Ω)→ C∞(∂Ω), ϕ 7→ ∂νuϕ|∂Ω .
(2.12)

Proof. For (i)(i), as the Dirichlet boundary value vanishes, since 0 < c0 ≤ F ∈
C2,α(Ω) in Ω, using the method of continuity in [Fig17Fig17, Theorem 3.4] and [Fig17Fig17,
Remark 1.1], there exists a unique convex solution u0 ∈ C4,α(Ω) of (2.102.10). More
generally, if F ∈ Ck,α(Ω), then there exists a unique solution u ∈ Ck+2,α(Ω) solves
(2.102.10), for any integer k ≥ 2.

For (ii)(ii), let us prove the existence of solutions to (2.112.11) by the implicit function
theorem for Banach spaces (see [RR04RR04, Theorem 10.5]). Let

X := C4,α(∂Ω), Y := C4,α(Ω), Z := C2,α(Ω)× C4,α(∂Ω)

be Banach spaces. Consider the map

(2.13) Φ : X × Y → Z, Φ(ϕ, u) := (Q(u), u|∂Ω − ϕ) ,

We want to show that the map Φ enjoys the mapping property (2.132.13). This can be
seen since the map

C4,α(Ω) 3 u 7→ Q(u) = detD2u ∈ C2,α(Ω),

where we used detD2u is a polynomial in ∂abu, for a, b = 1, 2 and C2,α(Ω) is an
algebra. For the same reason, the mapping Φ is C∞ smooth in the Frechét sense.

Now, using the equation (2.102.10), we have

Φ(0, u0) = (Q(u0), u0|∂Ω) = (0, 0),

and the partial differential operator is given by

∂uΦ(0, u0) : Y → Z,

∂uΦ(0, u0)v =
(

(detD2u0)︸ ︷︷ ︸
=F>0 in Ω

tr
(
(D2u0)−1D2v

)
, v|∂Ω

)
,

for any v ∈ Y , where we used the Jacobi formula (2.82.8) for Q(u).
Since u0 is convex with detD2u0 > 0, it is known that D2u0 is a positive definite

matrix-valued function. Then tr
(
(D2u0)−1D2 ·

)
is a second order elliptic operator

of non-divergence form. Thanks to F > 0 in Ω with F ∈ C2,α(Ω), and the ellipticity
of tr

(
(D2u0)−1D2 ·

)
, using the results [GT01GT01, Chapter 6], we want to show the

map

∂uΦ(0, u0) : Y → Z, v 7→
(
F tr

(
(D2u0)−1D2v

)
, v|∂Ω

)
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is a linear isomorphism. On the one hand, it is easy to see that the function
(detD2u0) tr

(
(D2u0)−1D2v

)
∈ C2,α(Ω) for any v ∈ Y . On the other hand, consider

the Dirichlet problem

(2.14)

{
F tr

(
(D2u0)−1D2v

)
= G in Ω,

v = φ on ∂Ω,

which is equivalent to

(2.15)

{
tr
(
(D2u0)−1D2v

)
= G

F in Ω,

v = φ on ∂Ω,

since F > 0 in Ω, where v|∂Ω = φ ∈ C4,α(∂Ω). If G ∈ C2,α(Ω), then G
F ∈ C

2,α(Ω)

because of F > 0 and F ∈ C2,α(Ω). Since the equation (2.152.15) has no zero order
coefficients, by [GT01GT01, Chapter 6], there exists a unique solution v ∈ C2,α(Ω) to
(2.152.15). Moreover, applying the (global) Schauder estimate (see [GT01GT01, Chapter 6])
again, one can see that the solution v ∈ C4,α(Ω) of (2.142.14).

Finally, via (i)(i) and (ii)(ii), one can see that if F ∈ C∞(Ω) and ϕ ∈ Bδ(∂Ω), then the
corresponding solutions u0 and u to (2.102.10) and (2.112.11) are C∞(Ω)-smooth functions
(the integer k ≥ 2 in (i)(i) can be arbitrary in the argument). Next, using the implicit
function theorem for Banach spaces (for instance, see [RR04RR04, Theorem 10.5]), there
exists δ > 0 and a unique solution map

S : Bδ(∂Ω)→ C∞(Ω), ϕ 7→ S(ϕ),

such that S(0) = u0 and Φ(ϕ, S(ϕ)) = 0, for all ϕ ∈ Bδ(∂Ω), for any sufficiently
small δ > 0. Let u := S(ϕ), since S is Lipschitz continuous with S(0) = u0, then
there must hold

‖u− u0‖C4,α(Ω) ≤ C‖ϕ‖C4,α(∂Ω).

Moreover, the solution map S is C∞ in the Frechét sense, and since the normal
derivative is a linear map, we have that (iii)(iii) holds. This concludes the proof. �

Thanks to (2.122.12), the (local) well-posedness ensures that one can develop the
higher order linearization scheme for the Monge-Ampère equation.

2.3. Higher order linearization. With the well-posedness of Proposition 2.12.1 at
hand, it is known that the equation (1.31.3) admits a unique solution u ∈ C4,α(Ω)
provided that u|∂Ω ∈ Bδ for sufficiently small δ > 0. Consider the boundary data
ϕ = ϕε in (1.31.3) to be of the form

(2.16) ϕε = ε1φ1 + ε2φ2 on ∂Ω,

where ε = (ε1, ε2) with sufficiently small parameters |εk|, and φk can be any suffi-
ciently smooth function on ∂Ω, for k = 1, 2,. With this parametrization at hand,
the corresponding solution u of (1.31.3) can be expressed as uε(x) = u(x; ε). In ad-
dition, let us write the solution uε of (1.31.3) with the Dirichlet data (2.162.16) of the
form

(2.17) uε(x) = u0 + ε1v1 + ε2v2 +
1

2
ε1ε2w +O(ε3)

as an asymptotic expansion when ε→ 0. The notationO(ε3) is the Bachmann–Landau
notation. Notice that we have the well-known Jacobi formula (2.82.8) for the deter-
minant of matrices. In the following, we employ this formula to derive the corre-
sponding linearized equations.
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2.3.1. The first linearization. Since the unknown source ϕ is independent of ε, let
us denote uε of the form (2.172.17), which is the solution to (1.31.3) with the Dirichlet
data (2.162.16). By differentiating (1.31.3) with respect to εk, and combining with the
Jacobi formula (2.82.8), we have{(

detD2uε
)

tr
((
D2uε

)−1
D2
(
∂εkuε

))
= 0 in Ω,

∂εkuε = φ on ∂Ω,
(2.18)

for j = 1, 2. In particular, as ε = 0, there holds{(
detD2u0

)
tr
((
D2u0

)−1
D2v(k)

)
= 0 in Ω,

v(k) = φk on ∂Ω.
(2.19)

where

u0 = u(x; 0), and v(k) = ∂εk |ε=0 uε,

for k = 1, 2. Moreover, it is easy to see that u0 is the solution to (1.31.3) with zero
boundary data, i.e., {

detD2u0 = F in Ω,

u0 = 0 on ∂Ω.
(2.20)

Now, by plugging (2.202.20) into (2.192.19) and using F > 0 in Ω, we obtain a linear second
order elliptic equation11 {

uab0 ∂abv
(k) = 0 in Ω,

v(k) = φk on ∂Ω,
(2.21)

which is of the non-divergence form for k = 1, 2, where(
uab0

)
1≤a,b≤2

=
(
D2u0

)−1
.

By knowing the Cauchy data of (1.31.3), the Cauchy data {v|∂Ω, ∂νv|∂Ω} is also known.
Then we try to solve the inverse boundary value problem for (2.212.21), and our goal
is to recover the matrix uab0 . By the positivity of ϕ, even with the boundary data
f = 0, we still have detD2u0 = F > 0 in Ω, which implies

(
D2u0

)
is also an

invertible matrix. If we can recover the inverse matrix
(
uab0

)
1≤a,b≤2

, then F can be

simply recovered by using F = det(D2u0) in Ω.
In what follows, let us use the notation

(2.22) gab := uab0 in Ω, for a, b = 1, 2,

then one can derive

gab∂abv
(k) = 0 ⇐⇒

√
|g|gab∂abv(k) = 0

⇐⇒ ∂a
(√
|g|gab∂bv(k)

)
− ∂a

(√
|g|gab

)
∂bv

(k) = 0,

for k = 1, 2, where we used |g| = det(g) = det(gab) > 0 in Ω. Hence, we can rewrite
(2.212.21) into

(2.23)

{
(−∆g +Xg · ∇) v(k) = 0 in Ω,

v(k) = φk on ∂Ω,

for k = 1, 2, where

(2.24) ∆g =
1√
|g|
∂a
(√
|g|gab∂b

)
= gab∂ab −Xb

g∂b

1Throughout this work, we used the Einstein summation convention that AabBab =∑2
i=1 AabBab and AabCa =

∑2
a=1 A

abCa, for repeating indices. Any repeated indices will be

regarded as a summation with respect to a certain index.
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stands for the Laplace-Beltrami operator, and

Xg =
(
X1
g (x), X2

g (x)
)

: Ω→ R2,

Xb
g :=

1√
|g|

2∑
a=1

∂a
(√
|g|gab

)
, for b = 1, 2,

(2.25)

which denotes the vector-valued coefficient of the first order term. We will adapt
the above standing notations (2.242.24) and (2.252.25) in the rest of this paper.

2.3.2. The second linearization. Consider the Dirichlet data of the form (2.162.16) in
(1.31.3), and let us rewrite (2.182.18) as

(2.26)

{
tr
((
D2uε

)−1
D2
(
∂εkuε

))
= 0 in Ω,

∂εkuε = φ on ∂Ω,

for k = 1, 2, where we used detD2uε = F > 0 in Ω. Differentiating (2.262.26) with
respect to ε` (for k 6= `) again then direct computations yields that

0 = ∂ε1
{

tr
((
D2uε

)−1
D2
(
∂ε2uε

))}
=
[

tr
(
∂ε1
(
D2uε

)−1)
D2
(
∂ε2uε

)
+ tr

((
D2uε

)−1
∂ε1D

2
(
∂ε2uε

))]
= − tr

((
D2uε

)−1
D2
(
∂ε1uε

)(
D2uε

)−1
D2
(
∂ε2uε

))
+ tr

((
D2uε

)−1
D2
(
∂2
ε1ε2uε

))
,

(2.27)

where we used the fact (2.92.9). Inserting ε = 0 into (2.272.27), we can obtain the second
linearized equation as

(2.28)

{
tr
((
D2u0

)−1
D2w

)
= tr

((
D2u0

)−1
D2v(1)

(
D2u0

)−1
D2v(2)

)
in Ω,

w = 0 on ∂Ω,

where w = ∂2
ε1ε2

∣∣
ε=0

uε, and we utilized det
(
D2uε

)
= F > 0 in Ω. Similar to the

first linearized equation (2.212.21), we can rewrite (2.282.28) as

(2.29)

{
(−∆g +Xg · ∇)w = tr

(
g−1

(
D2v(1)

)
g−1

(
D2v(2)

))
in Ω,

w = 0 on ∂Ω,

where g and Xg are given by (2.222.22) and (2.252.25), respectively. Let us emphasize again
that vk is the solution to the first linearized equation (2.212.21) for k = 1, 2.

3. Boundary determination

In this section, we derive the boundary determination for the Hessian D2u0 on
∂Ω from the DN map under the additional assumption that the source F is known
on the boundary. Presumably, this assumption can be removed by considering
standard-like boundary determination techniques for the first and second linearized
equations.

Lemma 3.1 (Boundary determination). Adopting all assumptions in Theorem 1.21.2,
let u0 ∈ C∞(Ω) be the solution to (2.202.20). Suppose that F is known up to second
order on the boundary, then Dβu0

∣∣
∂Ω

can be determined by ΛF (0), where β =

(β1, β2) ∈ (N ∪ {0})2 is a multi-index, with |β| = β1 + β2 ≤ 3.
In other words, let F1, F2 ∈ C∞(Ω) be positive sources, and suppose that F1 and

F2 agree up to second order on the boundary, then

ΛF1
(0) = ΛF2

(0) on ∂Ω
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implies Dβu
(1)
0

∣∣
∂Ω

= Dβu
(2)
0

∣∣
∂Ω

, for all |β| ≤ 4, where u
(j)
0 ∈ C∞(Ω) is the solution

to {
detD2u

(j)
0 = Fj in Ω,

u
(j)
0 = 0 on ∂Ω,

(3.1)

for j = 1, 2.

Proof. We aim to show that for any point x0 ∈ ∂Ω and any multi-index β with
|β| ≤ 4, the derivative Dβu0(x0) can be determined using the data F |∂Ω with its
boundary derivatives up to order three, and the Dirichlet-to-Neumann map ΛF (0).

Without loss of generality, we assume x0 = 0. Near x0, we parameterize the
boundary ∂Ω locally as the graph x2 = ϕ(x1), where ϕ is a convex function defined
for x1 ∈ (−δ, δ), for some δ > 0. We further assume ϕ(0) = ϕ′(0) = 0, which can
be achieved via rotation and translation of coordinates.

Since Ω is uniformly convex and the source function satisfies F ≥ c0 > 0, the
solution u0 ∈ C∞(Ω) is strictly convex by Proposition 2.12.1. In particular, the
Hessian matrix D2u0 is positive definite in Ω, which implies:

(3.2) ∂11u0 > 0 in Ω,

by the smoothness of u0. Meanwhile, since ∂1 is the tangential derivative at 0 on
∂Ω, with the given information of u0|∂Ω,

Since u0 = 0 on ∂Ω, we have u0(x1, ϕ(x1)) = 0 for all x1 ∈ (−δ, δ), as well as its
tangential derivatives. Thus, differentiating this identity twice with respect to x1,
we can compute

0 =
d2

dx2
1

∣∣∣
x1=0

u0(x1, ϕ(x1))︸ ︷︷ ︸
tangential derivative

=
(
∂11u0

)
(0) + 2

(
∂12u0

)
(0)ϕ′(0) +

(
∂22u0

)
(0)
(
ϕ′(0)

)2
+
(
∂2u0

)
(0)ϕ′′(0).

Using ϕ′(0) = 0, this simplifies to(
∂11u0

)
(0) +

(
∂2u0

)
(0)ϕ′′(0) = 0.

Hence, (
∂11u0

)
(0) = −

(
∂2u0

)
(0)ϕ′′(0).

The right-hand side is known: ∂2u0(0) is obtained from the DN map ΛF at x0 =
0 ∈ ∂Ω, and ϕ′′(0) is the curvature of the boundary at x0 = 0, which is computable
from the parametrization. Thus,

(
∂11u0

)
(0) is determined.

Next, it is known that ΛF provides ∂νu0 on ∂Ω and u0 = 0 is known on the
boundary, ∂2u0 is known on the boundary. Consequently, ∂12u0(0) is also deter-
mined. Moreover, the Monge–Ampère equation (2.202.20) gives:(

∂11u0

)
(0)
(
∂22u0

)
(0)− (∂12u0)

2
(0) = F (0),

which yields (
∂22u0

)
(0) =

F (0) + (∂12u0)
2

(0)(
∂11u0

)
(0)

.

This is valid due to the positivity of
(
∂11u0

)
(0). Therefore, all second-order deriva-

tives
(
∂iju0

)
(0) with i, j ∈ {1, 2} are now determined. Since x0 ∈ ∂Ω was arbitrary,

this argument applies uniformly along ∂Ω, and we conclude that:

∂11u0|∂Ω , ∂12u0|∂Ω , ∂22u0|∂Ω

are determined.
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We now proceed to third-order derivatives. Since ∂22u0|∂Ω is known, we may take
a tangential derivative along ∂Ω to recover ∂122u0(0). Meanwhile, differentiating
the Monge–Ampère equation with respect to x2 yields:

∂11u0(0)∂222u0(0) + ∂211u0(0)∂22u0(0)− 2∂12u0(0)∂122u0(0) = ∂2F (0).

Here, ∂2F (0) = −∂νF (0) is known by assumption, and all terms except ∂222u0(0)
are already determined. Solving for ∂222u0(0), we obtain:

∂222u0(0) =
∂2F (0)− ∂211u0(0)∂22u0(0) + 2∂12u0(0)∂122u0(0)

∂11u0(0)
.

Again, this is valid due to (3.23.2). As a result, all third-order derivatives ∂abcu0(0),
with a, b, c ∈ {1, 2}, are now known.

Continuing this process, we can determine u0 up to fourth order on the bound-
ary by taking more tangential and normal derivatives from the preceding identities.
This completes the proof that all fourth-order derivatives of u0 at any boundary
point x0 ∈ ∂Ω can be determined from the data F |∂Ω with its higher order deriva-
tives on ∂Ω, and ΛF . �

4. Unique determination of the metric

Recall that our goal is to recover the Hessian of u0 in Ω, where u0 is the solution
to (2.202.20). Once the Hessian D2u0 is determined, the source function F is also fully
determined. Let us adopt the notation introduced in (2.222.22).

Thanks to Theorem 3.13.1, we already know the boundary values of the metric
g = D2u0, i.e., g|∂Ω, which in turn implies that the conormal derivative ∂νgvφ
(associated with the operator −∆g) is known.

Using the first linearized equation of the Monge-Ampère equation (see Sec-
tion 2.32.3), we define the DN map Λ′g corresponding to the boundary value problem

(4.1)

{
(−∆g +Xg · ∇) v = 0 in Ω,

v = φ on ∂Ω,

as

(4.2) Λ′g : C∞(∂Ω)→ C∞(∂Ω), φ 7→ ∂νgvφ,

where vφ ∈ C∞(Ω) denotes the solution to (4.14.1).
To proceed, we prove the following result, which shows that the DN map of the

fully nonlinear Monge-Ampère equation determines the DN map of its linearized
counterpart (4.14.1).

Lemma 4.1. Adopting all assumptions in Theorem 1.21.2. The DN map ΛF of (1.31.3)
(see the definition (1.41.4)) determines the DN map Λ′g of (4.24.2), where g = D2u0 is
the Hessian of u0 (u0 is the solution to (2.202.20)).

Proof. The proof relies on boundary determination. By Lemma 3.13.1, the DN map
ΛF determines D2u0|∂Ω. Moreover, we observe that

∇u|∂Ω is determined, where u is the solution to (1.31.3) with u|∂Ω ∈ Bδ(∂Ω).

In addition, Proposition 2.12.1 implies that ∇v|∂Ω is also determined. Hence, we
obtain the complete information of the DN map

Λ′g : φ 7→ ∂νgvφ
∣∣
∂Ω
,

which establishes the claim. �
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From this point onward, our goal is to solve the inverse problem of recovering the
metric g and the vector field Xg from the DN map Λ′g associated with the linearized
equation (4.24.2). To facilitate this analysis, we introduce the following notation.

Let J = (J1, J2) : Ω → R2 be a C1 diffeomorphism. Let g = (gab)1≤a,b≤2

denote a 2× 2 matrix-valued function representing a Riemannian metric on Ω (not
necessarily the Hessian matrix D2u0, and let X = (X1, X2) be a smooth vector
field. Under the coordinate transformation J , the pullbacks of the metric, vector
field, and function v are defined as follows:

(4.3)

J∗g = (∇J)T (g ◦ J)∇J,
J∗X = (J−1)∗X = ∇(J−1)(X ◦ J),

J∗v = v ◦ J,

where ∇J denotes the Jacobian matrix of J , (∇J)T its transpose, and (J−1)∗ the
pushforward by the inverse of J . With these notations in place, we now proceed to
analyze the first linearized equation.

4.1. Determination up to isometry and conformal factor. Recalling that
the first linearized equation of the Monge-Ampère equation is of the form (2.232.23),
then we have the next result.

Lemma 4.2 (Simultaneous recovery). Let Ω ⊂ R2 be a bounded open simply con-
nected domain with C∞-smooth boundary ∂Ω. Let Λ′gj ,Xj be the DN map of

(4.4)

{(
−∆gj +Xj · ∇

)
vj = 0 in Ω,

vj = φ on ∂Ω,

where Xj is a vector field, for j = 1, 2. Suppose that

Λ′g1,X1
(φ) = Λ′g2,X2

(φ), for any φ ∈ C∞(∂Ω),

then there exists a diffeomorphism J : Ω → Ω with J |∂Ω = Id, and a conformal
factor c > 0 with c|∂Ω = 1 such that

(i)

g1 = cJ∗g2 and X1 = c−1J∗X2 in Ω.(4.5)

(ii) Moreover, if vj, j = 1, 2, are solutions to (4.44.4), there holds

v1 = J∗v2.

Here, all notations in (4.54.5) are given in (4.34.3).

Remark 4.3. Note that the vector field Xj in the above lemma could be independent
of the metric gj, for j = 1, 2. Hence, we do not use the notation Xgj given by (2.252.25)
to denote the vector field in (4.44.4) for j = 1, 2.

Proof of Lemma 4.24.2. For (i)(i), by [IUY12IUY12, Theorem 1.1], there is a conformal map-
ping J from Ω to itself with J |∂Ω = Id such that

g1 = cJ∗g2 in Ω,

for some smooth conformal factor c > 0 with c|∂Ω = 1. Inspection of the proof
of the theorem, see [IUY12IUY12, Eq. (6.6)], also shows that ∇J |∂Ω = I2×2 (the 2 × 2
identity matrix). Let v2 be a solution to

−∆g2
v2 +X2 · ∇v2 = 0 in Ω.

Let us denote

ṽ2 = v2 ◦ J,
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then ṽ2 solves

∆g1
ṽ2 = ∆cJ∗g2

ṽ2 = c−1J∗∆g2
v2

= c−1J∗(X2 · ∇v2) = c−1(J∗X2)∇(J∗v2)

= c−1(J∗X2) · ∇ṽ2 in Ω.

Since J |∂Ω = Id and ∇J |∂Ω = I2×2, we also have that

v1|∂Ω = ṽ2|∂Ω and ∂νv1|∂Ω = ∂ν ṽ2|∂Ω.

Here we also used Λ′1 = Λ′2. Thus, the DN maps of the equations

−∆g1v1 +X1 · ∇v1 = 0 in Ω

and

−∆g1
ṽ2 + c−1(J∗X2) · ∇ṽ2 = 0 in Ω

agree. Since Ω is assumed to be simply connected, by [Nur24Nur24, Lemma 4.2] (based
on [Tzo17Tzo17] or alternatively [GT11bGT11b]), we have

c−1(J∗X2) = X1 in Ω.

Thus, we have (4.54.5).
For (ii)(ii), since v1 and ṽ2 now satisfy the same elliptic equation (without zeroth

order term), we have v1 = J∗v2. �

We mention that a more general version of Lemma 4.24.2 on Riemannian surfaces,
based on the proof in [CLT24CLT24], will appear in a work by the first-mentioned author.

4.2. Determination of the isometry via the Christoffel symbol. In this
section, we want to claim that J = Id in Ω by using a coupled system of equations.
Thanks to Lemma 4.24.2, we already know that there is an isometry J : Ω→ Ω with
J |∂Ω = Id, which relates the metrics g1 and g2 via (4.54.5). Therefore, one can apply
the assertion (4.54.5) in Lemma 4.24.2, which shows that

g1 = cJ∗g2 and Xg1
= c−1J∗Xg2

in Ω,

where Xgj is the vector field given by (2.252.25) with components Xi
gj , for i, j = 1, 2.

In addition, let Γ(g)ikl be the Christoffel symbol associated with the metric g, which
is given by

Γ(g)ikl :=
1

2
gim
(∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

)
, for 1 ≤ i, k, l ≤ 2,

for a given metric g. We also note that

Xi
g = −gklΓ(g)ikl,(4.6)

by standard formulas in Riemannian geometry, where Xg is given by (2.252.25).
Notice that the Christoffel symbols transform under conformal scaling

g 7→ g̃ = e2σg,

is

Γ(g̃)ikl = Γ(g)ikl + δik∂lσ + δil∂kσ − gkl∂iσ.
Thus, writing c = e2σ, or σ = 1

2 log c, where c > 0 is the conformal factor, we have

Γikl(g1) = Γikl(cJ
∗g2)

= Γikl(J
∗g2) +

1

2

(
δik∂l log c+ δil∂k log c− (g1)klg

ij
1 ∂j log c

)
.

(4.7)

Here, δik =

{
1 for i = k

0 otherwise
denotes the Kronecker delta.
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Using Lemma 4.24.2, we can prove Theorem 1.41.4. For readers’ convenience, let us
recall Theorem 1.41.4 as follows.

Theorem 4.4. Let Ω ⊂ R2 be a bounded open simply connected domain with C∞-
smooth boundary ∂Ω. Let Λ′gj be the DN map of

(4.8)

{
gabj ∂abvj = 0 in Ω,

vj = φ on ∂Ω,

for j = 1, 2. Suppose that

Λ′g1
(φ) = Λ′g2

(φ) for any φ ∈ C∞(∂Ω),

then there exists a conformal factor c > 0 with c|∂Ω = 1, such that

(4.9) g1 = cg2 in Ω.

Remark 4.5. In Theorem 4.44.4, it is not necessary to assume that Ω is uniformly
convex. However, it remains unclear whether the assumption that Ω is simply con-
nected can be removed. The difficulty lies in the fact that the proof ultimately relies
on the Poincaré lemma, invoked through [Nur24Nur24, Lemma 4.2]. Thus, the theorem
may be viewed as a realization of the anisotropic Calderón problem for elliptic equa-
tions in non-divergence form.

Proof of Theorem 4.44.4. Let us divide the proof into several steps:

Step 1. Initialization.

First, we rewrite (4.84.8) in the form{(
−∆gj +Xgj

)
vj = 0 in Ω,

vj = φ on ∂Ω,

where Xgj is the vector field given in (2.252.25) with g = gj , for j = 1, 2. By

Lemma 4.24.2 (i)(i), there exists a diffeomorphism J : Ω → Ω satisfying J |∂Ω = Id
and a conformal factor c > 0 with c|∂Ω = 1, such that

(4.10) g1 = c J∗g2, Xg1
= c−1J∗Xg2

in Ω.

Step 2. Unique determination of the diffeomorphism.

We next claim

(4.11) J = Id in Ω,

or J(x) = x for all x ∈ Ω. To this end, let us write x̃ = J(x) and use the typical

convention to denote by ∂xi

∂x̃m the components of the differential of the inverse of J
(evaluated at J). We have the standard Christoffel symbols transform as

Γikl(J
∗g2) =

∂xi

∂x̃m
∂x̃a

∂xk
∂x̃b

∂xl
Γmab(g2) ◦ J +

∂2x̃m

∂xk∂xl
∂xi

∂x̃m
.(4.12)

Multiplying (4.124.12) by the matrix (J∗g2)kl, and applying (4.64.6), we can obtain

Xi
J∗g2

=
∂xi

∂x̃m
Xm
g2
◦ J + (J∗g2)kl

∂2x̃m

∂xk∂xl
∂xi

∂x̃m
.(4.13)

By (4.74.7) and (4.124.12), one can find

Γikl(g1) =
∂xi

∂x̃m
∂x̃a

∂xk
∂x̃b

∂xl
Γmab(g2) ◦ J +

∂2x̃m

∂xk∂xl
∂xi

∂x̃m

+
1

2

(
δik∂l log c+ δil∂k log c− (g1)klg

ij
1 ∂j log c

)
.
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By (4.64.6), (4.74.7) and (4.134.13), one has

(J∗g2)klΓikl(g1) = (J∗g2)klΓikl(cJ
∗g2)︸ ︷︷ ︸

By g1=cJ∗g2

= (J∗g2)klΓikl(J
∗g2)︸ ︷︷ ︸

=−Xi
J∗g2

+
1

2
(J∗g2)kl

(
δik∂l log c+ δil∂k log c− (g1)klg

ij
1 ∂j log c

)
= −

( ∂xi
∂x̃m

Xm
g2
◦ J + (J∗g2)kl

∂2x̃m

∂xk∂xl
∂xi

∂x̃m

)
+

1

2
(J∗g2)kl

(
δik∂l log c+ δil∂k log c− (g1)klg

ij
1 ∂j log c

)
.

(4.14)

Via (4.54.5) and (4.64.6), the left-hand side of (4.144.14) is

(4.15) (J∗g2)klΓikl(g1) = cgkl1 Γikl(g1) = −cXg1
.

On the one hand, plugging (4.154.15) into (4.144.14), and using the second relation in
(4.104.10), i.e., Xg1 = c−1J∗Xg2 , we obtain

(J∗Xg2
)
i

= (cXg1
)
i

=
∂xi

∂x̃m
Xm
g2
◦ J + (J∗g2)kl

∂2x̃m

∂xk∂xl
∂xi

∂x̃m

− 1

2
(J∗g2)kl

(
δik∂l log c+ δil∂k log c− (g1)klg

ij
1 ∂j log c

)
.

(4.16)

On the other hand, via (4.34.3), we also have

(J∗Xg2)
i

=
∂xi

∂x̃m
Xm
g2
◦ J ,(4.17)

so we can insert (4.174.17) into the left-hand side of (4.164.16), which can be canceled by
the first term in the right-hand side of (4.164.16). Thus, one can obtain

(J∗g2)kl
∂2x̃m

∂xk∂xl
∂xi

∂x̃m
=

1

2
(J∗g2)kl

(
δik∂l log c+ δil∂k log c− (g1)klg

ij
1 ∂j log c

)
.

(4.18)

Finally, using g1 = cJ∗g2 to the both sides of (4.184.18), we have

gkl1

∂2x̃m

∂xk∂xl
∂xi

∂x̃m
=

1

2
gkl1

(
δik∂l log c+ δil∂k log c− (g1)klg

ij
1 ∂j log c

)
,(4.19)

which can also be written in an equivalent form

gkl1

∂2x̃m

∂xk∂xl
=

1

2

∂x̃m

∂xi
(
2gil1 ∂l log c− 2gij1 ∂j log c

)
= 0,(4.20)

where we used gkl1 (g1)kl = tr(I2) = 2 for the last term in the right-hand side of
(4.194.19).

Thus, for the individual m = 1, 2, the equation (4.204.20) implies that

(4.21)

{
gkl1

∂2x̃m

∂xk∂xl
= 0 in Ω,

x̃m = xm on ∂Ω,

which is a second order elliptic equation of non-divergence form, where we apply
Lemma 4.24.2 to have J |∂Ω = Id, so that x̃m = xm on ∂Ω for m = 1, 2. Therefore,
by the uniqueness of the boundary value problem (4.214.21) (for example, see [GT01GT01]),
this implies that x̃m ≡ xm in Ω for m = 1, 2 (it is easy to see that xm is a solution
to (4.214.21)). This infers that J(x) = x in Ω as we wish. This proves the claim (4.114.11).



INVERSE SOURCE PROBLEM FOR THE MONGE-AMPÈRE EQUATION 19

Step 3. Summary.

Finally, using (4.104.10), we know that

g1 = cJ∗g2 = cg2︸ ︷︷ ︸
By J = Id

in Ω,

which proves the assertion (4.94.9). �
Remark 4.6.

(i) From (4.204.20), the mapping J(x) satisfies the elliptic equation (4.214.21) without
requiring knowledge of the conformal factor c > 0.

(ii) In Theorem 4.44.4, convexity of Ω is not needed; however, simple connected-
ness is essential for determining Xg.

The remainder of the paper is devoted to recovering the conformal factor c > 0
in Ω using suitable CGO solutions for the first linearized equation.

5. Complex geometrical optics solutions

This section is devoted to constructing CGO solutions for the first linearized
equation (2.232.23) and its adjoint equation (7.27.2). We also derive expansion formulas
for the correction terms and provide estimates for the related oscillatory integrals.

5.1. Isothermal coordinates. Recall that the isothermal coordinates (see, for

example, [Ahl66Ahl66]) correspond to a change of variables χ : Ω→ Ω̃ := χ(Ω), where we
denote by χ the associated quasi-conformal mapping. In what follows, we introduce
isothermal coordinates so that the metric g1 takes the form

g1 = µ I2×2,

for some positive scalar function µ = µ(x), which will play a key role in our subse-
quent analysis.

Using Lemma 4.24.2, we can rewrite the equation (4.44.4) (in the case j = 1) as

(5.1)

−
1

µ
∆v1 + χ∗Xg1 · ∇v1 = 0 in Ω̃,

v1 = φ ◦ χ on ∂Ω̃,

where v1 := v1 ◦ χ. This reformulation is also instrumental in the identification of
the conformal factor c in Ω.

Moreover, equation (5.15.1) can be further simplified to the standard form

(5.2)

{
−∆v1 + Xg1 · ∇v1 = 0 in Ω̃,

v1 = φ ◦ χ on ∂Ω̃,

for some vector field Xg1
depending on g1, χ, and µ.

Since we have already applied the change of variables to transform all indices
from 2 to 1, we now consider the adjoint problem corresponding to equation (5.25.2).
Let v∗1 denote a solution to the adjoint equation:

(5.3)

{
∆v∗1 +∇ · (Xg1

v∗1) = 0 in Ω̃,

v∗1 = φ ◦ χ on ∂Ω̃,

where φ is an arbitrary function.
Using Lemma 4.24.2, we may also perform the same change of variables for the

adjoint equation (7.27.2) with j = 2, while assigning the Dirichlet boundary condition
to be identical to that of v∗1

∣∣
∂Ω̃

. By the uniqueness of solutions to elliptic equations,

this yields that the adjoint problem for j = 2 also takes the form of equation (5.35.3).



20 T. LIIMATAINEN AND Y.-H. LIN

Hence, we denote the unified form of the adjoint problem in isothermal coordi-
nates as:

(5.4)

{
∆v∗ +∇ · (Xgv

∗) = 0 in Ω̃,

v∗ = φ ◦ χ on ∂Ω̃,

where g = g1. From this point forward, all notations introduced above are fixed
and will be used consistently throughout the remainder of the paper.

5.2. The construction of CGOs. For X ∈ C∞c (M,T ∗M), we recall the con-
struction of [GT11bGT11b] of CGO solutions to

(5.5) (−∆g +X · ∇) v = 0 on M̃.

Here X · ∇v = g(X, dv).
We want to show that the desired CGO solutions of the linear equation

(5.6) (−∆g +X · ∇) v = 0 in Ω,

and its adjoint equation

(5.7) −∆gv −∇ · (Xv) = 0 in Ω,

are of the form

F−1
A eΦ/h(a+ r),

for (small) h > 0, where X : Ω→ R2 is a C∞-smooth vector field. Here, Φ = Φ(z)
be is holomorphic Morse function, r is the corresponding remainder term, FA = eiα,
where α is a function that solves ∂α = A, and A will be given by X. We have a
similar ansatz for CGOs with antiholomorphic phase, see Lemma 5.35.3.

The construction of solutions is based on the methods developed in [GT11aGT11a]
and [GT11bGT11b]. Although our setting only requires the construction within global
holomorphic coordinates, we follow the general framework used in these references,
which are formulated on general Riemannian surfaces. This choice facilitates cross-
referencing and provides a flexible foundation for future applications.

We begin by introducing the standard notations and definitions adopted in the
aforementioned works. Let Σ be a Riemann surface compactly contained in an open
surface M . We extend the metric g and the vector field X smoothly to a larger

open surface M̃ ⊃M such that X ∈ C∞c (M̃).

5.2.1. Calculus on Riemannian surfaces. The complexified cotangent bundle CT ∗M
has the splitting

CT ∗M = T ∗1,0M ⊕ T ∗0,1M
determined by the eigenspaces of the Hodge star operator ?. In holomorphic coor-
dinates z = (x1, x2) the space T ∗1,0M is spanned by dz and T ∗0,1M is spanned by
dz, where

dz = dx1 + idx2 and dz = dx1 − idx2.

The invariant definitions of ∂ and ∂ operators are given as

∂ := π1,0d and ∂ := π0,1d.

Then d = ∂ + ∂ and in holomorphic coordinates

∂f = ∂zf dz, ∂f = ∂zf dz,

where ∂ and ∂ are given (as in (2.12.1)) by

∂z =
1

2
(∂x1 − i∂x2) , ∂ =

1

2
(∂x1 + i∂x2) .
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By expressing dx1 and dx2 in terms of dz and dz, a 1-form X = X1 dx1 + X2 dx2

in holomorphic coordinates can be written as

(5.8) X =
1

2
(X1 − iX2) dz +

1

2
(X1 + iX2) dz =: X1,0 +X0,1

so that π1,0X = 1
2 (X1 − iX2) and π0,1X = 1

2 (X1 + iX2). Using the above formula
for X, we define

∂X := dX0,1, ∂X := dX1,0.

In holomorphic coordinates, this is equivalent to

∂(u dz + v dz) = ∂v ∧ dz, ∂(u dz + v dz) = ∂u ∧ dz.
The Laplacian is given by

−∆gf = −2i ∗ ∂∂f.
(We note that we use the opposite sign for the Laplacian to [GT11aGT11a, GT11bGT11b].)

By [GT11bGT11b, Proposition 2.1], importantly, there is a right inverse ∂
−1

for ∂ in
the sense that

(5.9) ∂∂
−1
ω = ω for all ω ∈ C∞0 (M,T ∗0,1M)

such that ∂
−1

is bounded from Lp(T ∗1,0M) to W 1,p(M) for any p ∈ (1,∞). We have

analogous properties for the Hermitian adjoint of ∂

∂
∗

= −i ∗ ∂ : W 1,p(T ∗0,1M)→ Lp(M).

In holomorphic coordinates z, the operator ∂
∗

is just ∂. We define

∂
−1

ψ := R∂−1
e−2iψ/hE and ∂

∗−1

ψ := R∂∗−1
e2iψ/hE ,

where E : W l,p(Σ) → W l,p
c (M) an extension operator for some M compactly con-

taining M and R is the restriction operator onto Σ. By [GT11bGT11b, Lemma 2.2 and
Lemma 2.3] we have for p > 2 and 2 ≤ q ≤ p the following estimates∥∥∂−1

ψ f
∥∥
Lq(M)

≤ Ch1/q‖f‖W 1,p(M,T∗0,1M)∥∥∂∗−1

ψ f
∥∥
Lq(M)

≤ Ch1/q‖f‖W 1,p(M,T∗1,0M).
(5.10)

Moreover, there is ε > 0 such that∥∥∂−1

ψ f
∥∥
L2(M)

≤ Ch1/2+ε‖f‖W 1,p(M,T∗0,1M)∥∥∂∗−1

ψ f
∥∥
L2(M)

≤ Ch1/2+ε‖f‖W 1,p(M,T∗1,0M).
(5.11)

If ψ has no critical points on M , we can obtain better estimates than (5.115.11) and
(5.105.10). Indeed, we have that for all f ∈ C∞(M ;T ∗0,1M),

∂
−1

ψ f = R∂−1
e−2iψ/hEf =

ih

2
R∂−1

((
∂e−2iψ/h

) Ef
∂ψ

)
,(5.12)

where for all ω ∈ D′(M ;T ∗0,1M), ω/∂ψ denotes the unique scalar function such

that ∂ψ(ω/∂ψ) = ω. In holomorphic coordinates, ∂
−1

has Schwartz kernel given
by (z − z′)−1. Thus, writing (5.125.12) in local coordinates and integrating by parts
yields

∂
−1

ψ f = e−2iψ/h ih

2

f

∂ψ
+

ih

2
R∂−1

(
e−2iψ/h∂

(
Ef
∂ψ

))
.

Consequently, in the case when ψ has no critical points, continuity of ∂
−1

: Lp →
W 1,p immediately gives the estimate

(5.13)
∥∥∂−1

ψ f
∥∥
p
≤ Ch‖f‖W 1,p ,
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for p ∈ (1,∞). Similarly we have∥∥∂∗−1

ψ f
∥∥
p
≤ Ch‖f‖W 1,p .

If the holomorphic function Φ has no critical points, we have by (the proof of)
[CLLT23CLLT23, Lemma 3.5] to arbitrary order N ∈ N ∪ {0} the following expansion

∂
−1

ψ (f) = e−2iψ/h
N+1∑
j=1

hjF j + hN+1∂
−1

ψ (∂FN+1),(5.14)

where F j , j ∈ N, are defined iteratively by

F 1 =
i

2

f

∂ψ
∈ C∞

and

F j+1 =
i

2

1

∂ψ
∂F j ∈ C∞.

Note that the functions F j ∈ C∞, j = 1, . . . , N + 1 in (5.145.14), are independent of
h. The expansion formula holds since ∂ψ 6= 0 due to

2i∂ψ = ∂(Φ− Φ) = −∂Φ,

which must be nonzero because Φ is holomorphic. We have a similar formula for
∂−1
ψ f .

5.2.2. CGOs with holomorphic phase. The CGOs we next introduce have the same
form

v = F−1
A eΦ/h(a+ rh),

as in [GT11bGT11b]. Here Φ = φ + iψ is a holomorphic Morse function and a is a
holomorphic function defined on M . Moreover, the function FA is given by

(5.15) FA = eiα,

where α solves

∂α = A

with A = π0,1

(
− i

2X
)

= − i
2π0,1X. Note that α always exists by (5.95.9).

The Laplace operator with a drift term and potential

L := −∆g +X · ∇+ q,

factorized as the magnetic Schrödinger operator

(5.16) L = 2F−1

A
∂
∗[
FAF

−1
A ∂FA

]
+Q,

see [GT11bGT11b, Section 5], where A and FA are as before,

(5.17) FA = eiα,

and

(5.18) Q =
i

2
∗ dX − 1

4
|X|2 +

1

2
∇ ·X + q.

Note that while α solves ∂α = A, α solves

∂α = A.

We will apply the above in the case q = 0, but we include the general case for future
reference.
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For concreteness and to illustrate how the computations using complex deriva-
tives work, let us verify (5.165.16). Let f ∈ C∞, then one may compute

2F−1

A
∂
∗[
FAF

−1
A ∂(FAf)

]
= 2F−1

A
∂
∗[
FAF

−1
A ∂(eiαf)

]
= 2F−1

A
∂
∗[
FAF

−1
A eiα(iAf + ∂f)

]
= 2F−1

A
∂
∗[
FA(iAf + ∂f)

]
= −2i ∗ F−1

A
∂
[
FA(iAf + ∂f)

]
= −2i ∗

[
iA ∧ (iAf + ∂f) + i(∂A)f + iA ∧ ∂f + ∂∂f

]
= −∆gf + 2 ∗ (A ∧ ∂f +A ∧ ∂f)− 2i ∗ (i∂A−A ∧A)f.

Here A ∧ ∂f + A ∧ ∂f = 2Re(A ∧ ∂f). Computing using holomorphic coordinates
z = (x1, x2) we have by (5.85.8) that A = − i

4 (X1 + iX2) dz and consequently

A ∧ ∂f = − i

4
(X1 + iX2) dz ∧ 1

2
(∂1f − i∂2f) dz

=
i

8
(X1 + iX2)(∂1f − i∂2f) dz ∧ dz

=
1

4
(X1 + iX2)(∂1f − i∂2f) dx1 ∧ dx2,

where we used dz ∧ dz = −2i dx1 ∧ dx2. Recalling that

(5.19) ∗dVg = 1 and dVg =
√
|g| dx =

√
|g| dx1 ∧ dx2,

we obtain

2 ∗ (A ∧ ∂f +A ∧ ∂f) = 2 ∗ 2Re(A ∧ ∂f)

= |g|−1/2
(X1∂1f +X2∂2f)

= g(X,∇f)

= X · ∇f.
Hence, by setting

Q = 2i ∗ (i∂A−A ∧A) + q,

we have
−∆g +X · ∇+ q = 2F−1

A
∂
∗(
FAF

−1
A ∂FA

)
+Q

as claimed. To have the formula (5.185.18), let us compute

Q− q = 2i ∗ (i∂A−A ∧A)

= −2 ∗ ∂z
[−i

4
(X1 + iX2)dz ∧ dz − 2i ∗ i

4
(X1 − iX2)

(−i
4

(X1 + iX2)
)]
dz ∧ dz

=
i

4

[
(∂1X1 + ∂2X2) + i(∂1X2 − ∂2X1)

]
∗ dz ∧ dz − i

8
(X2

1 +X2
2 ) ∗ dz ∧ dz

=
1

2
∇ ·X − 1

4
|X|2 +

i

2
∗ dX,

which shows the identity.

Lemma 5.1 (CGO solutions). Let

V ′ := − |FA|2 and V :=
1

2
Q |FA|−2

,

where FA and Q are given by (5.175.17) and (5.185.18), respectively. Then

v = F−1
A eΦ/h(a+ rh)
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solves the linear equation (5.55.5), where rh is the remainder term given by

(5.20) rh = −∂−1

ψ V ′sh

where

sh =

∞∑
j=0

T jh∂
∗−1

ψ (V a).(5.21)

with

(5.22) Th := ∂
∗−1

ψ V ∂
−1

ψ V ′.

Proof. Although it follows from [GT11bGT11b] of (5.55.5) that v is a solution, let us verify
that for concreteness. We compute

Lv −Qv = 2F−1

A
∂
∗[
FAF

−1
A ∂

(
eΦ/h(a+ rh)

)]
= 2F−1

A
∂
∗(
FAF

−1
A eΦ/h∂rh

)
= −2F−1

A
∂
∗(
FAF

−1
A eΦ/he−2iψ/hV ′sh

)
.

We have
FAF

−1
A = eiαe−iα = |FA|−2

.

Thus

Lv −Qv = 2F−1

A
∂
∗(
eΦ/he−2iψ/hsh

)
= 2F−1

A
∂
∗(
eΦ/hsh

)︸ ︷︷ ︸
∂
∗
eΦ/h=0

= 2F−1

A
eΦ/h∂

∗
sh

= −2F−1

A
eΦ/h∂

∗(
∂
∗−1

ψ (V a) +

∞∑
j=1

T jh∂
∗−1

ψ (V a)
)

= −2F−1

A
eΦ/he2iψ/h

(
V a+ V ∂

−1

ψ V ′
∞∑
j=1

T j−1
h ∂

∗−1

ψ (V a)
)

= −2F−1

A
eΦ/hV (a+ rh)−Qv,

since
F−1

A
|FA|−2

= e−iαe−iαeiα = F−1
A .

Thus, Lv = 0 as claimed. �

Let us next recall and derive estimates for the correction term rh. By [GT11bGT11b,
Lemma 3.1], we have

‖Th‖Lr→Lr = O(h1/r) and ‖Th‖L2→L2 = O(h1/2−ε),(5.23)

for any 0 < ε < 1/2. We also have

‖Th‖W 1,p→W 1,p = O(h1/p) and ‖Th‖W 1,2→W 1,2 = O(h1/2−ε),(5.24)

for any 0 < ε < 1/2. Indeed, if f ∈W 1,p, we have for p > 2∥∥∂∗−1

ψ V ∂
−1

ψ V ′f
∥∥
W 1,p .

∥∥V ∂−1

ψ V ′f
∥∥
Lp
. h1/p‖f‖W 1,p

by continuity of ∂
−1

: Lp → W 1,p and (5.105.10). For p = 2 the norm estimate in
(5.245.24) follows from the fact that Th is uniformly bounded W 1,r to W 1,r, r < 2 ,
and standard interpolation result [BL76BL76, Theorem 6.4.5]. By (the proof of) [GT11bGT11b,
Lemma 3.2] it then follows that for any ε > 0 small enough

(5.25) ‖sh‖L2 + ‖rh‖L2 = O(h1/2+ε),
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and similar to [CLT24CLT24, Section 4.1], we also have

‖sh‖Lp + ‖rh‖Lp = O(h1/p+εp),

for all p ≥ 2, where εp > 0 depends on p. Moreover, since ∂∂
−1

is a Calderón-
Zygmund operators, so one can use the Calderón-Zygmund estimate to derive

‖rh‖Lp , ‖∂rh‖Lp ,
∥∥∂rh∥∥Lp = O(h1/p+εp),

for all p ≥ 2, where εp > 0 depends on p.
Before proceeding, we recall the Calderón–Zygmund estimate for r2 (see, for

instance, [LW23LW23, Section 3]), which yields

(5.26) ‖HD2rh‖L2 = O(h−1/2+ε),

for any sufficiently small ε > 0 where H ∈ C2
0 (Ω) can be arbitrary. To verify

(5.265.26), we apply the Calderón–Zygmund inequality (for example, see [GT01GT01, Corol-
lary 9.10]) to the product of rh with H, obtaining∥∥HD2rh

∥∥
L2 ≤

∥∥D2(Hrh)
∥∥
L2 + 2

∥∥∇H ⊗∇rh∥∥L2 +
∥∥rhD2H

∥∥
L2

. ‖∂∂̄(Hrh)‖L2 +O(h1/2+ε)

. ‖∂
(
eiϕ/hsh

)
‖L2 +O(h1/2+ε)

.
1

h
‖sh‖L2 + ‖∂sh‖L2 +O(h1/2+ε)

= O(h−1/2+ε),

where we have used (5.255.25) and (5.215.21) to conclude that ‖∂sh‖L2 = O(1).

5.2.3. CGOs with antiholomorphic phase. Next, we construct a CGO solution with
an antiholomorphic phase −Φ, where Φ = ϕ+ iψ is a holomorphic Morse function.
Since the coefficients of the linear equation (5.55.5) are real, we obtain a CGO with
an antiholomorphic phase by taking the complex conjugate of the CGO

F−1
A e−Φ/h(a+ rh)

given by Lemma 5.15.1 for the phase −Φ. This gives us a CGO of the form

ṽ = FAe
−Φ/h(1 + r̃h),

where FA = eiα and by (5.15.1)

r̃h = −∂−1
ψ V ′

∞∑
j=0

T̃ jh∂
∗−1
ψ (V a).

Here ψ is the imaginary part of Φ as before and

T̃h = ∂∗−1
ψ V ∂−1

ψ V ′

with

∂−1
ψ := R∂−1e−2iψ/hE and ∂∗−1

ψ := R∂∗−1e2iψ/hE .

(see also [CLT24CLT24]). Here ∂∗−1 = ∂
−1

in holomorphic coordinates. We also write

(5.27) r̃h := −∂−1
ψ V ′s̃h, s̃h :=

∞∑
j=0

T̃ jh∂
∗−1
ψ (V a).

The remainder r̃h enjoys the same estimates as rh (corresponding to holomorphic
Morse phase), hence, we do not repeat those estimates from the previous subsection.

Note that T̃h is not exactly the same as Th since we also changed the sign of Φ.

However, T̃h satisfies the same estimates as Th given by (5.235.23) and (5.245.24).
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5.2.4. Estimates and expansions for CGOs in the absence of critical points. Observe
that in the above construction, if Φ has no critical points, we may apply the better
estimate (5.135.13) throughout the construction to get

‖rh‖p + ‖sh‖p + ‖drh‖p ≤ Ch,
for all p ∈ (1,∞) and for some constant C > 0. In fact, we have even the following
asymptotic expansion formula for the correction terms associated with a phase
function that does not have critical points.

Lemma 5.2. Let rh and r̃h be as above, and correspond to a holomorphic phase
without critical points. Let also N ∈ N and k + l ≤ 2, p ≥ 2. Then, we can write

(5.28) rh = hFh +OW 2,p(hN ), r̃h = hF̃h +OW 2,p(hN ),

where Fh = Fh(x) and F̃h = F̃h(x) are finite power series in h with C∞ smooth
coefficients depending only on x.

This lemma will be extremely useful when analyzing the integral identity of
the second linearized Monge-Ampère equation. The lemma implies that correction
terms of CGOs that have phases without critical points can be disregarded as lower

order terms in the asymptotic analysis due to the term hFf (or hF̃h).

Proof of Lemma 5.25.2. Let N ∈ N. We have

Th : W 1,p →W 1,p

has an operator norm O(h1/p) for p > 2 and O(h1/2−ε) for p = 2 by (5.245.24), where
Th is defined by (5.225.22). We also note that

∂
−1

ψ V ′ : W 1,p →W 2,p

with ∥∥∂−1

ψ V ′f
∥∥
W 2,p =

∥∥∂−1
(e−2iψ/hV ′f)

∥∥
W 1,p . h

−1‖f‖W 1,p ,

where we apply [Tzo17Tzo17, Proposition 2.3] with ∂
−1

: W 1,p →W 2,p. Recall also that

∂
∗−1

ψ V is uniformly bounded from Lp to W 1,p, using the above facts, then there is
K = KN ∈ N such that

rh = −∂−1

ψ V ′
∞∑
k=0

T kh ∂
∗−1

ψ (V a)

= −∂−1

ψ V ′
( K∑
k=0

T kh ∂
∗−1

ψ (V a) +OW 1,p(hN )
)

= −∂−1

ψ V ′
K∑
k=0

T kh ∂
∗−1

ψ (V a) + h−1OW 2,p(hN ).

Thus, it remains to analyze the finite sum above.
We expand using [CLLT23CLLT23, Lemma 3.5] as

∂
∗−1

ψ (V a) = e2iψ/hV ′
N+1∑
j=1

hjF j + hN+1∂−1
ψ (∂FN+1),

where the functions F j ∈ C∞(M) are defined recursively by

F 1 =
i

2

V a

∂ψ
, F j+1 =

i

2

1

∂ψ
∂F j .

Since ψ has no critical points, these functions are smooth. In the following, we
denote by

F̌ j , F̌ jk, etc.
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unspecified smooth functions in C∞, which may vary from line to line.
For each k ≥ 0, we have:

T kh
(
∂
∗−1

ψ (V a)
)

=
(
∂
∗−1

ψ V ∂
−1

ψ V ′
)k(

∂
∗−1

ψ (V a)
)

=
(
∂
∗−1

ψ V ∂
−1

ψ V ′
)k(

e2iψ/h
N+1∑
j=1

hjF j + hN+1∂−1
ψ (∂FN+1)

)

=
(
∂
∗−1

ψ V ∂
−1

ψ V ′
)k(

e2iψ/h
N+1∑
j=1

hjF j
)

+ hN+1OW 1,p(1).

Now (
∂
∗−1

ψ V ∂
−1

ψ V ′
)k(

e2iψ/h
N+1∑
j=1

hjF̌ j
)

=

N+1∑
j=1

hj
(
∂
∗−1

ψ V ∂
−1

ψ V ′
)k−1(

∂
∗−1

ψ V ∂
−1

ψ V ′
)
e2iψ/hF̌ j

=

N+1∑
j=1

hj
(
∂
∗−1

ψ V ∂
−1

ψ V ′
)k−1

∂
∗−1

ψ F̌ j

=

N+1∑
j=1

hj
(
∂
∗−1

ψ V ∂
−1

ψ V ′
)k−1

(e2iψ/h
N+1∑
l=1

hlF̌ jl + hN+1∂−1
ψ (∂F̌ jN+1))

=

N+1∑
j,l=1

hjhl
(
∂
∗−1

ψ V ∂
−1

ψ V ′
)k−1

(e2iψ/hF̌ jl) + hN+1OW 1,p(1)

= · · · = e2iψ/h
N+1∑

j1,...,jk+1=1

hj1+···+jk+1 F̌ j1···jk+1 + hN+1OW 1,p(1).

Thus

rh = −∂−1

ψ V ′
K∑
k=0

T kh ∂
∗−1

ψ (V a) + h−1OW 2,p(hN )

= −
K∑
k=0

∂
−1

ψ V ′
(
e2iψ/h

N+1∑
j1,...,jk+1=1

hj1+···+jk+1 F̌ j1···jk+1 + hN+1OW 1,p(1)
)

+ h−1OW 2,p(hN )

=

K∑
k=0

N+1∑
j1,...,jk+1=1

hj1+···+jk+1 F̌ j1···jk+1 + hNOW 2,p(1) + h−1OW 2,p(hN ).

The decrease of the pover of h in the middle term resulted from ∂
−1

ψ : W 1,p →
W 2,p with norm O(h−1). Redefining N as N + 1 yields the first identity in (5.285.28).
The proof of the second identity is similar. �

To conclude this subsection, and for the readers’ convenience in the forthcoming
analysis, we now summarize all the CGO solutions introduced above.

Lemma 5.3 (CGO solutions).

(i) There exist CGO solutions with holomorphic phases

F−1
A1
eΦ1/h(1 + r1) and F−1

A∗ e
Φ∗/h(1 + r∗)
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to the equations (5.65.6) and (5.75.7), respectively, where Φ1 and Φ∗ are holo-
morphic functions without critical points. Here, F−1

A1
and F−1

A∗ are smooth
non-vanishing function independent of h > 0, and r1 and r∗ are remainders
fulfilling (5.285.28).

(ii) There is a CGO solution with an antiholomorphic phase

FA2
e−Φ2/h(1 + r̃2)

to the equation (5.65.6), where Φ2 is a holomorphic Morse function with critical
points. Here, FA2

is a smooth non-vanishing function independent of h > 0,

and r̃2 is the remainder fulfilling (5.275.27).

In Section 77, we will carefully select these phase functions Φ1, Φ2, and Φ∗ to
recover an unknown conformal factor c uniquely.

6. Carleman estimate and unique continuation

In this section, A is a non-vanishing, possibly complex-valued function. We prove
a unique continuation principle (UCP) for solutions of

(6.1) ∂(A∂c(z) + α(z)c(z)) = β(z)∂
−1

(γ(z)c(z)) +H,

where ∂
−1

is the standard Cauchy-Riemann integral operator and H is a holomor-
phic function. We state it as follows

Lemma 6.1 (Unique continuation property). Let U ⊂ R2 be a bounded connected
open set with C∞-boundary ∂U , and c a C2-solution to (6.16.1). Let A ∈ C2(U) be
a non-vanishing function and α, β, γ ∈ C∞(U). Given a nonempty open subset
W ⊂ U , then c = 0 on W implies c = 0 in U .

We prove the above lemma by applying a two-parameter Carleman estimate (see
[GT11aGT11a, Lemma 3.2]):

(6.2) ‖e−τφεv‖2L2(U) ≤ Cε‖e
−τφε∂v‖2L2(U),

for all v ∈ C∞c (U), where C > 0 is a constant independent of ε, τ, v, and

(6.3) φε(z) = ϕ(z)− 1

2ετ
|z|2 ,

with ϕ a harmonic function (such estimates are often referred to as Carleman
estimates with convexified weights).

Let us choose

ϕ(z) = log(|z|2),

which is harmonic away from z = 0, blows up at the origin, and hence allows us
to apply the Carleman estimate on an annulus. This yields the (weak) UCP for
equation (6.16.1).

Note that τφε = τϕ − 1
2ε |z|

2
, so the weight function involves two independent

parameters, ε and τ . Concretely, the small parameter ε is first used to absorb
lower-order terms, after which the large parameter τ is employed to establish the
UCP. We want to emphasize that Lemma 6.16.1 holds only when H is a holomorphic
function; otherwise, the result may not hold.

Proof of Lemma 6.16.1. Without loss of generality, we may assume that the equation
(6.16.1) holds in a ball of radius R and that c = 0 on a ball of radius r < R. We show
that c then vanishes on the larger ball B(0, r + δ), for any δ ∈ (0, R− r), and this
implies u = 0 in B(0, R).

First, we use conjugation for the term A∂c(z) + α(z)c(z). For this, let θ solve

∂θ = A−1(α− ∂A).
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Such θ exists due to the existence of ∂
−1

operator (for example, see (5.95.9)). Consider
the function c̃ := eθAc, then c̃ satisfies

∂c̃ = eθ
(
A∂c + ∂θAc + ∂Ac

)
= eθ

(
A∂c + αc

)
,

which is equivalent to

e−θ∂c̃ = A∂c + αc.

Using this, we can transform the equation (6.16.1) into

∂
(
e−θ∂c̃

)
= β∂

−1
(γA−1e−θc̃) +H,

and we aim to prove unique continuation for the above equation. To simplify the
notation, we set

u = c̃,

and redefine γ as γA−1e−θ in the rest of the proof.
With these notations, we prove UCP for the equation of the form

(6.4) ∂(e−θ∂u) = β∂
−1

(γu) +H.

Let us then start to estimate. Let χ ∈ C∞c (B(0, R)) and recall that u vanishes on
a ball of radius r. Thus χu is supported on an annulus

A = B(0, R) \B(0, r)

(since u = 0 in B(0, r) by assumption), and the Carleman estimate (6.26.2) holds
for the domain A. We will choose χ more precisely later. By using the Carleman
estimate consecutively, we have

ε−1‖e−τφεχu‖2L2(C) = ε−1‖e−τφεχu‖2L2(A)

. ‖e−τφε∂(χu)‖2L2(A)︸ ︷︷ ︸
By (6.26.2)

. ‖e−τφε(∂χ)u)‖2L2(A) + ‖e−τφεχ∂u)‖2L2(A)

= ‖e−τφε(∂χ)u)‖2L2(A) + ‖e−τφεχeθ(e−θ∂u)‖2L2(A)

. ‖e−τφε(∂χ)u)‖2L2(A) + ‖e−τφε(χe−θ∂u)‖2

. ‖e−τφε(∂χ)u)‖2L2(A) + ε‖e−τφε∂(χe−θ∂u))‖2L2(A)︸ ︷︷ ︸
By (6.26.2)

. ‖e−τφε(∂χ)u‖2L2(A) + ε‖e−τφε(∂χ)e−θ∂u‖2L2(A)

+ ε‖e−τφεχ∂(e−θ∂u)‖2L2(A).

(6.5)

Here . refers to an inequality with unspecified constants independent of τ and ε.
Next, let us insert the equation (6.46.4) to the last term in the right-hand side of

(6.56.5). Then we have

‖e−τφε(∂χ)u‖2L2(A) + ε‖e−τφε(∂χ)e−θ∂u‖2L2(A) + ε‖e−τφεχ(β∂
−1

(γu) +H)‖2L2(A)

. ‖e−τφε(∂χ)u‖2L2(A) + ε‖e−τφε(∂χ)∂u‖2L2(A) + ε‖e−τφεχ(∂
−1

(γu) +H)‖2L2(A)

. ‖e−τφε(∂χ)u‖2L2(A) + ε‖e−τφε(∂χ)∂u‖2L2(A) + ε2‖e−τφε∂(χ(∂
−1

(γu) +H))‖2L2(A)︸ ︷︷ ︸
By (6.26.2)

. ‖e−τφε(∂χ)u‖2L2(C) + ε‖e−τφε(∂χ)∂u‖2L2(C) + ε2‖e−τφε(∂χ)(∂
−1

(γu) +H)‖2L2(C)

+ ε2‖e−τφεχu‖2L2(C),

(6.6)
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where we crucially used the fact that ∂H = 0 since H is holomorphic. We will
denote ‖ · ‖L2(C) by ‖ · ‖L2 from now on. In short, the above estimates (6.56.5) and
(6.66.6) mean that there is C > 0 independent of τ and ε, such that

ε−1‖eτφεχu‖2L2 ≤ C
(
‖e−τφε(∂χ)u‖2L2 + ε‖e−τφε(∂χ)∂u‖2

+ ε2‖e−τφε(∂χ)(∂
−1

(γu) +H)‖2L2 + ε2‖e−τφεχu‖2L2

)
.

(6.7)

We first absorb the last term on the right-hand side of (6.76.7), assuming that ε > 0
is so small that

Cε2 ≤ 1

2
ε−1 ⇐⇒ ε ≤ (2C)−1/3.

With such values of ε ∈ (0, (2C)−1/3), we have

ε−1‖e−τφεχu‖2L2 ≤ 2C
(
‖e−τφε(∂χ)u‖2L2 + ε‖e−τφε(∂χ)e−θ∂u‖2L2

+ ε2‖e−τφε(∂χ)(∂
−1

(γu) +H)‖2L2

)
.

(6.8)

In the forthcoming analysis, we will not change ε anymore and it is fixed.
Next, we choose the Carleman weight φε and the cutoff function χ appropriately,

and argue by contradiction. For the harmonic function ϕ, we take ϕ = log(|z|2).
Then

e−τφε = |z|−2τe−
1
2ε |z|

2

,

where φε is given by (6.36.3). Since ε is fixed from this point onward, the exponential

factor e−
1
2ε |z|

2

can be regarded as a bounded weight, both above and below, in the
forthcoming estimates. On the other hand, the term

|z|−2τ

decays rapidly as τ →∞, because |z| > 0 for all z 6= 0.
Let δ > 0. We choose the cutoff function χ such that

χ(z) :=

1 if |z| ≤ r + δ,

0 if |z| ≥ R.

It follows that ∂χ is supported on the annulus r+ δ ≤ |z| ≤ R. With these choices,
the right-hand side of (6.86.8) is bounded by

2C‖∂χ‖L∞
[
‖e−τφεu‖2L2(B(0,R)\B(0,r+δ)) + ε‖e−τφε∂u‖2L2(B(0,R)\B(0,r+δ))

+ ε2‖e−τφε(∂−1
(γu) +H)‖2L2(B(0,R)\B(0,r+δ))

]
≤ C ′‖e−τφε‖2L2(B(0,R)\B(0,r+δ)),

since u is C1 and ∂
−1

: L∞ → L∞ is bounded. In particular, we have ‖∂−1
(γu)‖L∞ .

‖u‖L∞ , which follows directly from the definition of ∂
−1

.
Since |z|−2τ is decreasing in |z|, we obtain

‖e−τφε‖2L2(B(0,R)\B(0,r+δ)) =

ˆ
B(0,R)\B(0,r+δ)

e−2τφε dz . |r + δ|−2τ .

Thus, the right-hand side of (6.86.8) is bounded by

C ′′|r + δ|−2τ ,

for some constant C ′′ independent of τ and ε (note that C ′′ may depend on u and
H, but this will not affect the argument).

On the other hand, since χ ≡ 1 on B(0, r + δ), we have

‖e−τφεu‖2L2(B(0,r+δ)) ≤ ‖e
−τφεχu‖2L2(C).
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Consequently, ˆ
B(0,r+δ)

e−2τφε |u|2 dz ≤ εC ′′|r + δ|−2τ .

Recalling that e−τφε = |z|−2τ
e−

1
2ε |z|

2

, this inequality becomesˆ
B(0,r+δ)

|z|−2τ |u|2 dz ≤ εC ′′′|r + δ|−2τ ,

or equivalently,

(6.9)

ˆ
B(0,r+δ)

(
|z|
|r + δ|

)−2τ

|u|2 dz ≤ C ′′′,

for some constant C ′′′ > 0.
Assume then that there is z0 ∈ B(0, r + δ) such that |u(z0)| 6= 0. Thus, by

continuity of u there is a neighborhood N ⊂ B(0, r + δ) of z0 such that

|u(z)| ≥ σ for z ∈ N ,
for some σ > 0, where

(6.10) |z| < r + δ − s, for all z ∈ N ,
for some s > 0. Thus, using (6.96.9) we have

σ2

ˆ
N

(
|z|
r + δ

)−2τ

dz ≤
ˆ
B(0,r+δ)

(
|z|
r + δ

)−2τ

|u|2 dz ≤ C ′′′(6.11)

Note that for z ∈ N , we have the condition (6.106.10), so that

|z|
r + δ

≤ r + δ − s
r + δ

= 1− s

r + δ

which is strictly less than 1. Thus, on the open set N , there holds(
|z|
r + δ

)−2τ

→∞ as τ →∞.

As a result, using this to (6.116.11) leads to a contradiction as the left-hand side blows
up with τ → ∞. We conclude that u ≡ 0 on B(0, R), which is larger ball than
B(0, r), and u was assumed to be zero in B(0, r). Finally, due to the standard
propagation of smallness argument in UCP, one can conclude that u ≡ 0 in U , by
using u = 0 in B(0, r) ⊂ U . This concludes the proof. �

7. Unique determination of the conformal factor

In the previous section, we determined the 2× 2 matrix D2u0 up to a conformal
factor c > 0 with c|∂Ω = 1. We now turn to the problem of recovering this con-
formal factor inside the domain Ω. To this end, we employ the second linearized
equation together with its associated integral identity. The analysis will be some-
what involved due to two reasons: (1) The full nonlinearity leads to complicated
asymptotic analysis, (2) The second linearized equation is not coordinate invariant.
These complications seem to be unavoidable and lead to a non-local ∂-equation.

Let u
(j)
0 ∈ C4,α(Ω) denote the solution to (3.13.1) for j = 1, 2. The second linearized

Monge–Ampère equation then takes the form

(7.1)


(
−∆gj +Xgj · ∇

)
wj = tr

(
g−1
j (D2v

(1)
j )g−1

j (D2v
(2)
j )
)

in Ω,

wj = 0 on ∂Ω,

where gj and Xgj are given by (2.222.22) and (2.252.25), respectively, with g = gj and
j = 1, 2. As discussed in Proposition 2.12.1, the problem (7.17.1) is well-posed.
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Lemma 7.1. Under the assumptions of Theorem 1.21.2, the DN map ΛF associated
with (1.31.3) determines the Neumann derivative ∂νgw

∣∣
∂Ω

. In particular, the condition

(1.91.9) implies ∂νg1w1 = ∂νg2w2 on ∂Ω.

Proof. The argument is analogous to Lemma 4.14.1, but applied to the second lin-
earization of solutions to (1.31.3). Combining Lemmas 3.13.1 and 4.14.1, and differentiating
twice with respect to the small parameter ε, yields the desired result. �

7.1. The second integral identity. We now turn to the derivation of the integral
identity arising from the second linearization, which will be the key to proving our
main result. In particular, we first extract from the first linearization an identity
that enables the recovery of the metric g. To this end, we introduce the adjoint
problem associated with the first linearized equation (2.232.23):

(7.2)

∆gv
∗ +

1√
|g|

∂b
(√
|g|Xb

g v
∗) = 0 in Ω,

v∗ = ϕ∗ on ∂Ω,

where ϕ∗ ∈ C∞(∂Ω) is an arbitrary boundary function. The vector field Xg here is
the drift term appearing in the non-divergence-to-divergence recasting of the first
linearized equation (see Section 22). Notice that

√
|g|∆g = ∇ ·

(√
|g|g−1∇

)
, and let

w be the solution to the second linearized equation (2.282.28), then an integration by
parts implies

ˆ
∂Ω

√
|g|ϕ∗∂νgw dS

=

ˆ
Ω

v∗
√
|g|∆gw dx+

ˆ
Ω

√
|g|g−1∇v∗ · ∇w dx

=

ˆ
Ω

v∗
√
|g|∆gw dx+

ˆ
∂Ω

√
|g|∂νgv∗w dS −

ˆ
Ω

w
√
|g|∆gv

∗ dx

=

ˆ
Ω

√
|g|v∗

(
Xb
g∂bw − tr

(
g−1

(
D2v(1)

)
g−1

(
D2v(2)

)))
dx︸ ︷︷ ︸

By (2.292.29)

+

ˆ
Ω

w∂b
(√
|g|Xb

gv
∗) dx︸ ︷︷ ︸

By (7.27.2)

=

ˆ
Ω

√
|g|v∗

(
Xb
g∂bw − tr

(
g−1

(
D2v(1)

)
g−1

(
D2v(2)

)))
dx−

ˆ
Ω

v∗
√
|g|Xb

g∂bw dx

= −
ˆ

Ω

v∗ tr
(
g−1

(
D2v(1)

)
g−1

(
D2v(2)

))
dVg,

where we used
´
∂Ω
wv∗

√
|g|Xbνb dS = 0 (since w|∂Ω = 0). Here ν = (ν1, ν2)

denotes the unit outer normal to ∂Ω, and ∂νgw
∣∣
∂Ω

=
√
|g| gik∂iw νk

∣∣
∂Ω

is the

conormal derivative. We employ the standard notation from (5.195.19), which will be
used throughout the rest of the work. Finally, recall that v denotes the solution of
the first linearized equation (2.232.23). Combining all of the above computations, we
arrive at the following result.

Lemma 7.2 (Integral identity for the second linearization). The following integral
identities hold:

(i) Let ΛF be the DN map of (1.31.3), then there holdsˆ
∂Ω

√
|g|ϕ∗∂νgw dS = −

ˆ
Ω

v∗ tr
(
g−1

(
D2v(1)

)
g−1

(
D2v(2)

))
dVg,

where g is given by (2.222.22), v(k) is the solution to the first linearized equation
(2.232.23) and w is the solution to (2.282.28), for k = 1, 2.
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(ii) Let ΛFj be the DN map of (1.81.8) for j = 1, 2, and suppose the condition
(1.91.9) holds. Thenˆ

Ω

v∗1 tr
(
g−1

1

(
D2v

(1)
1

)
g−1

1

(
D2v

(2)
1

))
dVg1

−
ˆ

Ω

v∗2 tr
(
g−1

2

(
D2v

(1)
2

)
g−1

2

(
D2v

(2)
2

))
dVg2 = 0,

(7.3)

where v∗j is the solution to the adjoint problem (7.27.2) with respect to the first
linearized equation, for j = 1, 2.

Proof. We already proved (i)(i) by the previous computations. Combining Lemma
7.17.1, one can prove the integral identity (ii)(ii) directly. �

Remark 7.3. To recover the conformal factor c appearing in Lemma 4.24.2 from the
integral identity (7.37.3), we analyze it using global isothermal coordinates. A compli-
cation arises because the Hessian D2 in the identity is not the invariant Hessian
for either metric g1 or g2. Consequently, the change to isothermal coordinates
introduces additional coordinate artifact terms, which we collectively denote by Y
(see (7.67.6)). These terms Y will ultimately lead to a non-local ∂̄ equation for the
conformal factor c, which we then solve.

7.2. Change of variables for the Hessian. Recalling that D2u denotes the
Hessian matrix of u, let χ : R2 → R2 denote a change of coordinates (can be
arbitrary), then we have

D2ũ = ∇χTD2u
∣∣
χ
∇χ+

2∑
k=1

D2χk · ∂ku
∣∣
χ
,

where ũ = u◦χ, and χ(x) =
(
χ1(x1, x2), χ2(x1, x2)

)
denotes the change of variables

in the plane. This follows from(
D2ũ

)
ab

= ∂ab(u ◦ χ) = ∂a
(
∂ku|χ∂bχk

)
= ∂mku|χ∂aχm∂bχk + ∂ku|χ∂abχk

= (DχT )ka(D2u)km|χDχmb + ∂ku|χ∂abχk,
for 1 ≤ a, b ≤ 2, and we denote

∂ku|χ∂abχk = D2χ · ∇u|χ,
where we still adopt the Einstein summation convention for repeated indices.

Let us also denote D2χ as a three tensor by (D2χ)kab, which is symmetric in
the lower indices, i.e., (D2χ)kab = (D2χ)kba for all 1 ≤ a, b, k ≤ 2. Recalling that
the change of variables for a Riemannian metric g is given by (4.34.3). Note that the
preceding computations hold not only in dimension two but also in any dimension.
Thus, we have

tr
(
g̃−1

(
D2ṽ(1)

)
g̃−1

(
D2ṽ(2)

))
= tr

(
g−1

(
D2v(1)

)
g−1

(
D2v(2)

))∣∣
χ

+ tr
(
g−1|χ

(
D2v(1)

)
g−1|χ

(
D2χ · ∇v(2)

))
+ tr

(
g−1|χ

(
D2χ · ∇v(1)

)
g−1|χ

(
D2v(2)

))∣∣
χ

+ tr
(
g−1|χ

(
D2χ · ∇v(1)|χ

)
g−1|χ

(
D2χ · ∇v(2)|χ

))
,

(7.4)

where g̃ = χ∗g and ṽ(k) = v(k) ◦ χ, for k = 1, 2. Let us emphasize again that the
mapping χ can be any change of variables at the moment.

Applying the isothermal coordinates, we can transform the Laplace–Beltrami
operator into the standard (isotropic) Laplacian, up to a conformal factor. This
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change of variables is central to the argument that follows. On the one hand in the
isothermal coordinates χ, using (7.47.4), one has

tr
(
g−1

1 D2v
(1)
1 g−1

1 D2v
(2)
1

)
= µ−2 tr

((
D2v

(1)
1

)(
D2v

(2)
1

))
+ µ−2 tr

(
D2v

(1)
1 C · ∇v

(2)
1

)
+ µ−2 tr

(
C · ∇v

(1)
1 D2v

(2)
1

)
+ µ−2 tr

(
C · ∇v

(1)
1 C · ∇v

(2)
1

)
,

where C =
(
Ckab
)

1≤a,b,k≤2
is some function with 3 indices and depends on the

change of variables to the isothermal coordinates.
On the other hand, by Lemma 4.24.2, one known that the mapping J changes from

quantities with index 2 to the index 1 with v
(1)
j = v

(2)
j ◦J , for j = 1, 2. Consider the

map χ̃ := J ◦ χ, using the same isothermal coordinates mentioned in the previous
section, then we can obtain

tr
(
g−1

2 D2v
(1)
2 g−1

2 D2v
(2)
2

)
= c−2µ−2 tr

((
D2v

(1)
1

)(
D2v

(2)
1

))
+ c−2µ−2 tr

((
D2v

(1)
1

)
C̃ · ∇v

(2)
1

)
+ c−2µ−2 tr

(
C̃ · ∇v

(1)
1

(
D2v

(2)
1

))
+ c−2µ−2 tr

(
C̃ · ∇v

(1)
1 C̃ · ∇v

(2)
1

)
,

where C̃ is some function with 3 indices C̃cab, and C̃ is actually depends on the

function C and J . Meanwhile, the function C and C̃ have the same value on the

boundary ∂Ω̃, since we have utilized only one quasi-conformal mapping χ, and
J |∂Ω = Id.

Now, adopting all notations introduced in Section 5.15.1, plugging all the above
changes of variables of Hessian into (7.37.3), we can obtain

0 =

ˆ
Ω

v∗1 tr
(
g−1

1

(
D2v

(1)
1

)
g−1

1

(
D2v

(2)
1

))
dVg1

−
ˆ

Ω

v∗2 tr
(
g−1

2

(
D2v

(1)
2

)
g−1

2

(
D2v

(2)
2

))
dVg2

=

ˆ
Ω

v∗1 tr
(
g−1

1

(
D2v

(1)
1

)
g−1

1

(
D2v

(2)
1

))√
|g1| dx

−
ˆ

Ω

v∗2 tr
(
g−1

2

(
D2v

(1)
2

)
g−1

2

(
D2v

(2)
2

))√
|g2| dx

=

ˆ
Ω̃

[
Gv∗ tr

((
D2v

(1)
1

)(
D2v

(2)
1

))
+ Y

]
dx,

where

G = µ−1
(
1− c−2

)
in Ω̃,(7.5)√

|g1| = µ (after the change of variable), and v∗ is given by (5.45.4). Here, Y denotes
the lower order terms with

µY = v∗ tr
(
D2v

(1)
1 C · ∇v

(2)
1

)
− c−2v∗ tr

((
D2v

(1)
1

)
C̃ · ∇v

(2)
1

)
+ v∗ tr

(
C · ∇v

(1)
1 D2v

(2)
1

)
− c−2v∗ tr

(
C̃ · ∇v

(1)
1

(
D2v

(2)
1

))
+ v∗ tr

(
C · ∇v

(1)
1 C · ∇v

(2)
1

)
− c−2v∗ tr

(
C̃ · ∇v

(1)
1 C̃ · ∇v

(2)
1

)
= v∗ tr

(
D2v

(1)
1 C · ∇v

(2)
1

)
+ v∗ tr

(
D2v

(2)
1 C · ∇v

(1)
1

)
+ (1− c−2)v∗ tr

(
C · ∇v

(1)
1 C · ∇v

(2)
1

)
,

(7.6)

where we use the notation

C := C − c−2C̃ = (1− c−2)C,(7.7)
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for the three tensor function in the rest of the paper, where we use Lemma 4.44.4 to

conclude C̃ = C as J = Id in Ω.
Now, we have already transformed the metric from g2 to g1 and then to the

isothermal coordinates. In what follows, we will work on the g1-domain, and let

us denote g ≡ g1 and v(k) ≡ v
(k)
1 for k = 1, 2 to simplify our notations. With the

above analysis at hand, we can have the next key result, which is used to prove the
uniqueness of the conformal factor c in Ω.

Theorem 7.4. Assume thatˆ
Ω

[
Gv∗ tr

((
D2v(1)

)(
D2v(2)

))
+ Y

]
dx = 0,(7.8)

for any v(1),v(2) solving (5.25.2), and v∗ solving (5.35.3), where Y is given by (7.67.6). Let
G be the function given by (7.57.5), then c = 1 in Ω.

Remark 7.5. Thanks to the boundary determination of Lemma 3.13.1, utilizing c|∂Ω =
1 and ∂νc|∂Ω = 0, we can rewrite the integral identity (7.87.8) asˆ

U

[
Gv∗ tr

((
D2v(1)

)(
D2v(2)

))
+ Y

]
dx = 0,(7.9)

where Ω is compactly contained in U since we have G = Y = 0 in U \Ω. Thus, we
are going to use the integral identity (7.97.9) to claim c = 1 in U so that c = 1 in Ω
in the rest of the paper.

Since v(1), v(2), and v∗ can be taken as arbitrary solutions to (5.25.2) and (5.45.4), re-
spectively, we will employ isothermal coordinates and the associated CGO solutions
summarized in Lemma 5.35.3 for the first linearized equations to prove Theorem 7.47.4.

7.3. Asymptotic analysis for the second integral identity. To prove Theo-
rem 7.47.4, let us review the known stationary phase formula.

• Stationary phase formula. For any ϕ ∈ C∞0 (R2), we have the asymptotic
expansion of the oscillatory integral

1

2πh

ˆ
R2

eix1x2/hϕ(x) dx =

N−1∑
k=0

hk

k!

((1

i
∂x1

∂x2

)k
ϕ
)

(0, 0) +RN (ϕ;h)

=

N−1∑
k=0

hk

k!

(((
∂

2 − ∂2
))k

ϕ
)
(0, 0) +RN (ϕ;h),

(7.10)

for N ∈ N and h > 0. Here, RN (ϕ;h) denotes the error term of the expansion that
can be estimated by

|RN (ϕ;h)| ≤ ChN

N !

∑
α1+α2≤N

∥∥∂α1
x1
∂α2
x2

(∂x1∂x2)
N
ϕ
∥∥
L1(R2)

,

for any N ∈ N, and α = (α1, α2) ∈ (N ∪ {0})2
denotes the multi-indices. Now, we

can prove Theorem 7.47.4.

Proof of Theorem 7.47.4. The proof relies on the asymptotic behavior of CGO so-
lutions for the first linearized equation. Using the stationary phase method, we
extract the principal contributions. Unlike semilinear or quasilinear cases, the full
nonlinearity of the Monge–Ampère equation introduces two derivatives of the CGOs
in the integral identity, making the asymptotic analysis substantially more delicate
and dependent on the estimates from Section 55 and Section 66.
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This asymptotic analysis leads to a second-order differential equation with a
lower-order nonlocal perturbation

∂(A∂c(z) + α(z)c(z)) = β(z)∂
−1

(γ(z)c(z)) +H(z) in U,

for c = 1 − c−2 (see (7.397.39)), where the coefficients in the above equation can be
explicitly determined (see the last step of the proof). In particular, the leading coef-
ficient A is non-vanishing, and the function H is holomorphic. Therefore, applying
UCP of Lemma 6.16.1, we can deduce c ≡ 0 in U , hence c = 1 in U . Here U is an
open set fulfilling the property Ω b U that is given in Remark 7.57.5. Moreover, since
G and Y (defined in (7.57.5) and (7.67.6)) vanish on ∂Ω up to higher orders, integration
by parts can be performed (at least twice) without any boundary contributions.
Meanwhile, we also set c = 1 in the exterior domain Rn \ Ω, so that c ∈ C2(R2).
The proof is organized into eight steps.

Step 0. Initialization.

Let us consider the holomorphic functions

Φ1(z) = z +
1

8
z2, and Φ2(z) = −1

4
z2

in holomorphic coordinates. We may assume by scaling the coordinates z that Φ1

does not have critical points in U . Let us compute tr
((
D2v(1)

)(
D2v(2)

))
, where

v(1) = F−1
A1
eΦ1/h(1 + r1), v(2) = FA2

eΦ2/h(1 + r̃2)

are CGO solutions for the first linearized equation, for sufficiently small h > 0,
where r1, r̃2 are remainders (see Lemma 5.35.3 for the formulas). We have

tr
((
D2v(1)

)(
D2v(2)

))
= tr

(
D2(F−1

A1
eΦ1/h)D2(FA2

eΦ2/h)
)

+ tr
(
D2(F−1

A1
eΦ1/hr1)D2(FA2

eΦ2/h)
)

+ tr
(
D2(F−1

A1
eΦ1/h)D2(FA2

eΦ2/hr̃2)
)

+ tr
(
D2(F−1

A1
eΦ1/hr1)D2(FA2

eΦ2/hr̃2)
)
,

where we used the matrix representation formula (2.32.3) for the Hessian to derive the
above identities.

Let us begin by analyzing the first term in (7.87.8), which can be written as the
sum ˆ

U

Gv∗ tr
((
D2v(1)

)(
D2v(2)

))
dx := S1 + S2 + S3 + S4,

where

S1 :=

ˆ
U

Gv∗ tr
(
D2(F−1

A1
eΦ1/h)D2(FA2

eΦ2/h)
)
dx,

S2 :=

ˆ
U

Gv∗ tr
(
D2(F−1

A1
eΦ1/hr1)D2(FA2

eΦ2/h)
)
dx,

S3 :=

ˆ
U

Gv∗ tr
(
D2(F−1

A1
eΦ1/h)D2(FA2

eΦ2/hr̃2)
)
dx,

S4 :=

ˆ
U

Gv∗ tr
(
D2(F−1

A1
eΦ1/hr1)D2(FA2

eΦ2/hr̃2)
)
dx.

(7.11)

Here, r1 and r̃2 are the remainder terms in the CGO solutions satisfying

(7.12) r1 = −∂−1

ψ V ′s1 and r̃2 = −∂−1
ψ V ′s̃2
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with s1 and s̃2 satisfy the decay estimates as constructed in Section 55. In the rest
of the article, the function ψ is chosen as

ψ = ψ(x1, x2) =
x1x2

2
.

For the solution to the adjoint equation, we take

(7.13) v∗ = F−1
A∗ e

Φ∗/h (a∗ + r∗),

where h > 0 is sufficiently small and Φ∗ is the holomorphic phase function

Φ∗(z) := −z +
1

8
z2.

By scaling the coordinates again, if needed, we may assume that Φ∗ neither has
critical points in U . Here F−1

A∗ is a smooth, nowhere-vanishing function as given
in Lemma 5.35.3, and the remainder r∗ satisfies the same better decay estimates as
r1. In the following, we will analyze the contributions Sk for k = 1, 2, 3, 4 separately.

Step 1. Analysis of S1.

We define the notation

(7.14) G̃0 := F−1
A1
FA2

G = µ−1F−1
A1
FA2

(1− c−2).

Using the expression (2.62.6), a direct computation yields

S1 =

ˆ
U

Gv∗tr
{[
A∂2(F−1

A1
eΦ1/h) +B∂

2
(F−1
A1
eΦ1/h) + 2I2×2∂∂(F−1

A1
eΦ1/h)

]
·
[
A∂2(FA2

eΦ2/h) +B∂
2
(FA2

eΦ2/h) + 2I2×2∂∂(FA2
eΦ2/h)

]}
dx

=

ˆ
U

Gv∗tr
{[
A
(
F−1
A1
∂2eΦ1/h + 2∂F−1

A1
∂eΦ1/h + eΦ1/h∂2F−1

A1

)
+BeΦ1/h∂

2
F−1
A1

+ 2I2×2

(
eΦ1/h∂∂F−1

A1
+ ∂F−1

A1
∂eΦ1/h

)]
·
[
B
(
FA2

∂
2
eΦ2/h + 2∂FA2

∂eΦ2/h + eΦ2/h∂
2
FA2

)
+AeΦ2/h∂2FA2

+ 2I2×2

(
eΦ2/h∂∂FA2

+ ∂FA2
∂eΦ2/h

)]}
dx

where A,B are complex-valued matrices given in (2.72.7), which satisfy

tr(AB) = 4, tr(AA) = tr(BB) = tr(A) = tr(B) = 0.

The above relations are used to reduce the computations throughout the asymptotic
analysis. Next, let us write

S1 := S1,1 + S1,2,

where

S1,1 =

ˆ
U

G̃0v
∗ tr(AB)︸ ︷︷ ︸

=4

∂2(eΦ1/h)∂
2
(eΦ2/h) dx

= 4

ˆ
U

∂∂(G̃0v
∗)∂(eΦ1/h)∂(eΦ2/h) dx

=
1

h2

ˆ
U

(
G̃0∆v∗ + 4∂v∗∂G̃0 + 4∂v∗∂G̃0 + v∗∆G̃0

)
∂Φ1∂Φ2e

(Φ1+Φ2)/h dx

=
1

h2

ˆ
U

(
− G̃0∇ · (Xgv

∗) + 4∂v∗∂G̃0 + 4∂v∗∂G̃0 + v∗∆G̃0

)
· ∂Φ1∂Φ2e

(Φ1+Φ2)/h dx,

and we have employed integration by parts and the adjoint equation (5.45.4) in the
above identities.
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Let us emphasize that, throughout the remainder of the proof, integration by
parts will produce no boundary contributions due to the boundary determination
established in Section 33. Furthermore, we note that the term S1,2 = S1 − S1,1

consists of integrals in which at least one derivative falls on either F−1
A1

or FA2
.

As we shall demonstrate, these contributions are of lower order and do not affect
the leading order behavior. For convenience in future computations, we collect the
following identities:

∂Φ1 = 1 +
1

4
z, ∂Φ2 = −1

2
z, ∂Φ∗ = −1 +

1

4
z,

∂2Φ1 = ∂2Φ∗ =
1

4
, ∂

2
Φ2 = −1

2
.

(7.15)

Step 1-1. Analysis of S1,1.

Using the CGO solution of the form (7.137.13), we can write

S1,1 := Sm1,1 + Sr1,1,

where

Sm1,1 :=
1

h2

ˆ
U

(
− G̃0∇ · (XgF

−1
A∗ e

Φ∗/h) + 4∂(F−1
A∗ e

Φ∗/h)∂G̃0

+ 4∂(F−1
A∗ e

Φ∗/h)∂G̃0 + F−1
A∗ e

Φ∗/h∆G̃0

)
(∂Φ1)(∂Φ2)e(Φ1+Φ2)/h dx,

and

Sr1,1 :=
1

h2

ˆ
U

(
− G̃0∇ · (XgF

−1
A∗ e

Φ∗/hr∗) + 4∂(F−1
A∗ e

Φ∗/hr∗)∂G̃0

+ 4∂(F−1
A∗ e

Φ∗/hr∗)∂G̃0 + F−1
A∗ e

Φ∗/hr∗∆G̃0

)
(∂Φ1)(∂Φ2)e(Φ1+Φ2)/h dx.

(7.16)

We will show that Sm1,1 is a governing term in the asymptotic analysis.

To proceed, using ∂eΦ∗/h = 0, we can compute Sm1,1 as

h

2π
Sm1,1 =

1

2πh

ˆ
U

(
− G̃0∇ · (F−1

A∗Xg)e
Φ∗/h − 1

h
G̃0F

−1
A∗Xg · ∇Φ∗eΦ∗/h

+ 4∂(F−1
A∗ e

Φ∗/h)∂G̃0 + 4eΦ∗/h∂F−1
A∗ ∂G̃0 + F−1

A∗ e
Φ∗/h∆G̃0

)
· (∂Φ1)(∂Φ2)e(Φ1+Φ2)/h dx

=
1

2πh

ˆ
U

(
− G̃0∇ · (F−1

A∗Xg)−
1

h
G̃0F

−1
A∗Xg · ∇Φ∗

+ 4(∂F−1
A∗ +

1

h
F−1
A∗ ∂Φ∗)∂G̃0 + 4∂F−1

A∗ ∂G̃0 + F−1
A∗ ∆G̃0

)
· (∂Φ1)(∂Φ2)eix1x2/h dx

=
1

2πh

ˆ
U

{
1

h

[
F−1
A∗

(
− 1 +

z

4

)
∂G̃0 − F−1

A∗ (Xg · ∇Φ∗)G̃0

]
+
[
− G̃0∇ · (F−1

A∗Xg) + 4∂F−1
A∗ ∂G̃0 + 4∂F−1

A∗ ∂G̃0

+ F−1
A∗ ∆G̃0

]}
· (1 +

1

4
z)(−1

2
z)︸ ︷︷ ︸

By (7.157.15)

eix1x2/h dx,

(7.17)
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where we used Φ1 + Φ2 + Φ∗ = 1
4

(
z2 − z2

)
= ix1x2 = 2iψ. Applying the stationary

phase expansion (7.107.10) to the identity (7.177.17), we can see that

1

2πh
Sm1,1

=
(
∂

2 − ∂2
){(

F−1
A∗

(
− 1 +

z

4

)
∂G̃0 − F−1

A∗ (Xg · ∇Φ∗)G̃0

)
· (1 +

1

4
z)(−1

2
z)
}∣∣∣
z=0

+O(h)

= ∂
2
{(
F−1
A∗

(
− 1 +

z

4

)
∂G̃0 − F−1

A∗ (Xg · ∇Φ∗)G̃0

)
(1 +

1

4
z)(−1

2
z)
}∣∣∣
z=0

+O(h)

= −1

2
∂
{(
F−1
A∗

(
− 1 +

z

4

)
∂G̃0 − F−1

A∗ (Xg · ∇Φ∗)G̃0

)
(1 +

1

4
z)
}∣∣∣
z=0

+O(h)

=
1

2
∂
(
F−1
A∗ ∂G̃0 + F−1

A∗ (Xg · ∇Φ∗)G̃0

)∣∣
z=0

+O(h),

(7.18)

where we used

∂2
{(
F−1
A∗

(
− 1 +

z

4

)
∂G̃0 − F−1

A∗ (Xg · ∇Φ∗)G̃0

)
(1 +

1

4
z)(−1

2
z)
}∣∣∣
z=0

=
{(
− 1

2
z
)
∂2
[(
F−1
A∗

(
− 1 +

z

4

)
∂G̃0 − F−1

A∗ (Xg · ∇Φ∗)G̃0

)
(1 +

1

4
z)
]}∣∣∣

z=0

= 0.

Furthermore, in view of (7.187.18), one can conclude that

lim
h→0

(
hSm1,1

)
= π∂

(
F−1
A∗ ∂G̃0 + F−1

A∗ (Xg · ∇Φ∗)G̃0

)∣∣
z=0

.

Next, we want to show Sr1,1 has a faster decay in h than Sm1,1. Recalling that Sr1,1 is
given by (7.167.16), which has a very similar form as Sm1,1. The only difference is that the
integral contains an extra error term, r∗, and its first derivative. Thanks to Lemma
5.25.2 and analysis in Section 55, the remainder term r∗ has better decay properties,
so that one can apply the stationary phase formula to ensure limh→0

(
hSr1,1

)
= 0.

Hence, we can ensure

lim
h→0

(
hS1,1

)
= π∂

(
F−1
A∗ ∂G̃0 + F−1

A∗ (Xg · ∇Φ∗)G̃0

)∣∣
z=0

,

which will play an essential role in the recovery of the conformal factor.

Step 1-2: Analysis of S1,2.

Since every term in the integrand of S1,2 involves at least one derivative acting

on either F−1
A1

or FA2
, it is expected that many of these terms contribute only to

lower-order effects and do not influence the leading-order behavior. To illustrate
this, let us examine representative terms in S1,2 that exhibit the highest possible
asymptotic order with respect to the small parameter h. The asymptotic behavior
of the remaining terms can be analyzed in a similar manner, and in most cases,
they exhibit even faster decay. It is straightforward to verify that there are two
terms of order O(1/h3), and we compute them term by term below.

We denote that

(7.19) G̃1 := GF−1
A∗ F

−1
A1
∂FA2

= µ−1F−1
A∗ F

−1
A1
∂FA2

(1− c−2)
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is a bounded function independent of h > 0, then an integration by parts with
respect to ∂ and the stationary phase expansion imply that

2

ˆ
U

GF−1
A1
∂FA2

v∗ tr(AB)︸ ︷︷ ︸
=4

∂2(eΦ1/h)∂(eΦ2/h) dx

= −8

ˆ
U

(∂G̃1)eΦ∗/h
( 1

h2
(1 +

z

4
)2 +

1

4h

)
e(Φ1+Φ2)/h dx+O(1)

= −16π

h
∂G̃1

∣∣
z=0

+O(1),

(7.20)

as h→ 0, where we utilize ∂eΦ∗/h = 0 and

v∗ = F−1
A∗ e

Φ∗/h(1 + r∗),

where the integral including r∗ contribute O(1) by Lemma 5.25.2 in the middle line
of (7.207.20). Thus, we obtain

lim
h→0

(
2h

ˆ
U

GF−1
A1
∂FA2

v∗ tr(AB)∂2(eΦ1/h)∂(eΦ2/h) dx

)
= −16π∂G̃1

∣∣
z=0

.

Similarly, we can use the same approach as above for the other term to obtain

2

ˆ
U

G∂F−1
A1
FA2

tr(AB)v∗∂eΦ1/h∂
2
eΦ2/h dx

=
4

h2

ˆ
U

∂
(
G∂F−1

A1
FA2

v∗
)︸ ︷︷ ︸

=O(1)

(
1 +

z

4

)
ze(Φ1+Φ2)/h dx

= O(1).

Therefore, we can obtain

lim
h→0

(
2h

ˆ
U

G∂F−1
A1
FA2

tr(AB)v∗∂eΦ1/h∂
2
eΦ2/h dx

)
= 0.

Since the above two terms contribute O(1/h) and O(1), and it is not hard to see
the rest terms in S1,2 have at least one more h factor. This implies

lim
h→0

(
hS1,2

)
= −16π∂G̃1

∣∣
z=0

.

Therefore, combining all the analyses, we can ensure

lim
h→0

(
hS1

)
= π∂

(
F−1
A∗ ∂G̃0 + F−1

A∗ (Xg · ∇Φ∗)G̃0

)∣∣
z=0
− 16π∂G̃1

∣∣
z=0

.(7.21)

We remark that the terms G̃0 and G̃1 on the right-hand side each contain (1− c−2)
as a multiplicative factor. Ultimately, our analysis will lead to a partial differential
equation for (1− c−2).

Step 2. Analysis of S2.

Recall that A and B are 2× 2 complex-valued matrices (see (2.72.7)), and D2 denotes
the Hessian operator in R2. The contributions of S2, arising from the remainder
term r1, are associated with the linear part of the phase function and can be handled
similarly to previous terms. The more challenging components are S3 and S4, whose
analysis will be presented in the subsequent sections. For S2, let us compute the
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matrix BD2 as

BD2 =

(
1 −i
−i −1

) (
∂ + ∂

)2
i
(
∂2 − ∂2

)
i
(
∂2 − ∂2

)
−
(
∂ − ∂

)2


=

(
2∂2 + 2∂∂ i(2∂2 − 2∂∂)

−i(2∂2 + 2∂∂) 2∂2 − 2∂∂

)
,

so that

(7.22) tr(BD2) = 4∂2.

With the above computations, applying an integration by parts formula and ∂(eΦ2/h) =
0, we can see

S2 =

ˆ
U

Gv∗ tr
(
D2(F−1

A1
eΦ1/hr1)

)
D2(FA2

eΦ2/h) dx

=

ˆ
U

Gv∗ tr
{(
D2(F−1

A1
eΦ1/hr1)

)[
B
(
FA2

∂
2
eΦ2/h + 2∂FA2

∂eΦ2/h + eΦ2/h∂
2
FA2

)
+AeΦ2/h∂2FA2

+ 2I2×2

(
eΦ2/h∂∂FA2

+ ∂FA2
∂eΦ2/h

)]}
dx

=: S2,1 + S2,2

(7.23)

where

S2,1 :=

ˆ
U

GFA2
v∗ tr

(
BD2(F−1

A1
eΦ1/hr1)∂

2
eΦ2/h

)
dx

and

S2,2 :=

ˆ
U

Gv∗ tr
{(
D2(F−1

A1
eΦ1/hr1)

)[
B
(
2∂FA2

∂eΦ2/h + eΦ2/h∂
2
FA2

)
+AeΦ2/h∂2FA2

+ 2I2×2

(
eΦ2/h∂∂FA2

+ ∂FA2
∂eΦ2/h

)]}
dx.

Notice that the integral S2,2 contains at least one derivative of FA2
, and generate

one extra h than the first integral in the right-hand side of (7.237.23). Let us analyze
S2,1 as follows. Using (7.227.22), we have

S2,1 = 4

ˆ
U

GFA2
v∗∂2(F−1

A1
eΦ1/hr1)∂

2
eΦ2/h dx

= 4

ˆ
U

∂∂
(
G̃2v

∗)∂(F−1
A1
eΦ1/hr1)∂eΦ2/h dx

+ 4

ˆ
U

∂
(
G̃2v

∗)∂[∂F−1
A1
eΦ1/hr1 + F−1

A1
eΦ1/h∂r1

]
∂eΦ2/h dx,

where

G̃2 := GFA2
.

Observing that the analysis of the term S2,1 closely parallels that of S1, the only
difference being the appearance of the remainder term r1, which enjoys better decay
properties for h > 0 as described in Lemma 5.25.2, we can proceed analogously. By
repeating exactly the same arguments used in the analysis of S1, and taking into
account the improved decay of r1 and its derivatives, we immediately obtain

lim
h→0

(hS2,1) = 0.

For S2,2, as explained earlier, there is an extra factor of h compared to S2,1, so
we omit the detailed derivation. In short, one can ensure that limh→0

(
hS2,2

)
= 0,
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which in turn yields

(7.24) lim
h→0

(
hS2

)
= 0.

Step 3. Analysis of S3.

Similar to the analysis for S2, we have a similar formula for AD2, such that

(7.25) tr(AD2) = 4∂
2
.

Different from the analysis of S2, using (2.62.6) again, an alternative integration by
parts formula yields that

S3 =

ˆ
U

Gv∗ tr
(
D2(F−1

A1
eΦ1/h)D2(FA2

eΦ2/hr̃2)
)
dx

=

ˆ
U

Gv∗tr
{[
A
(
F−1
A1
∂2eΦ1/h + 2∂F−1

A1
∂eΦ1/h + eΦ1/h∂2F−1

A1

)
+BeΦ1/h∂

2
F−1
A1

+ 2I2×2

(
eΦ1/h∂∂F−1

A1
+ ∂F−1

A1
∂eΦ1/h

)]
·D2(FA2

eΦ2/hr̃2)
)
dx

=: S3,1 + S3,2,

where

S3,1 :=

ˆ
U

GF−1
A1

v∗ tr
(
AD2(FA2

eΦ2/hr̃2)∂2eΦ1/h
)
dx,

and

S3,2 :=

ˆ
U

Gv∗tr
{[
A
(
2∂F−1

A1
∂eΦ1/h + eΦ1/h∂2F−1

A1

)
+BeΦ1/h∂

2
F−1
A1

+ 2I2×2

(
eΦ1/h∂∂F−1

A1
+ ∂F−1

A1
∂eΦ1/h

)]
·D2(FA2

eΦ2/hr̃2)
)
dx.

We also analyze S3,1 and S3,2 separately.
Let us review an integration by parts as in [LW23LW23, Section 3.1], which yields

ˆ
U

(
∂
−1
f
)
ϕdx = −

ˆ
U

f
(
∂
−1
ϕ
)
dx,(7.26)

for f ∈ L1 and ϕ ∈ Lp for some p > 2, such that both f and ϕ vanish on the
boundary ∂U . For S3,1, using (7.257.25) and an integration by parts, we have

S3,1 = 4

ˆ
U

GF−1
A1

v∗∂
2
(FA2

eΦ2/hr̃2)∂2eΦ1/h dx

= 4

ˆ
U

∂
2(
GF−1

A1
v∗
)
FA2

( 1

h2

(
1 +

z

4

)2
+

1

4h

)
e(Φ1+Φ2)/hr̃2 dx︸ ︷︷ ︸

By ∂eΦ1/h=0

= 4

ˆ
U

G̃3

( 1

h2

(
1 +

z

4

)2
+

1

4h

)
eix1x2/hr̃2 dx

where

G̃3 :=
[
∂

2(
GF−1

A1

)
(1 + r∗) + 2∂

(
GF−1

A1

)
∂r∗ +GF−1

A1
∂

2
r∗
]
FA2

= OL2(1),



INVERSE SOURCE PROBLEM FOR THE MONGE-AMPÈRE EQUATION 43

we used the properties of v∗, r∗ again. To proceed, using (7.127.12), we can rewrite
S3,1 into

S3,1 = 4

ˆ
U

G̃3

( 1

h2

(
1 +

z

4

)2
+

1

4h

)
eix1x2/hr̃2 dx

= −4

ˆ
U

G̃3

( 1

h2

(
1 +

z

4

)2
+

1

4h

)
eix1x2/h∂−1

ψ V ′s̃2 dx

= 4

ˆ
U

∂−1
[
G̃3

( 1

h2

(
1 +

z

4

)2
+

1

4h

)
eix1x2/h

]
V ′s̃2e

ix1x2/h dx

= O(h−1+ε), as h→ 0,

(7.27)

where we used [GT11bGT11b, Lemma 2.2] with

∂
−1

ψ f = OL2(h1/2+ε) and ∂−1
ψ f = OL2(h1/2+ε) as h→ 0,

and ‖s2‖L2(U) = O(h1/2+ε), for ε > 0 sufficiently small. The derivation (7.277.27)
ensures that the limit

lim
h→0

(
hS3,1

)
= 0

holds. Similarly, since S3,2 contains at least one addition h factor, similar analysis
gives rises to limh→0

(
hS3,2

)
= 0, which infers that

(7.28) lim
h→0

(
hS3

)
= 0

as we expect.

Step 4. Analysis of S4.

Using the Hessian representation (2.62.6), direct computations imply that

tr
(
D2(F−1

A1
eΦ1/hr1)D2(FA2

eΦ2/hr̃2)
)

= tr
{
D2(F−1

A1
eΦ1/hr1)

·
[
A∂2(FA2

eΦ2/hr̃2) +B∂
2
(FA2

eΦ2/hr̃2) + 2I2×2∂∂(FA2
eΦ2/hr̃2)

]}
= tr

(
AD2(F−1

A1
eΦ1/hr1)

)
∂2(FA2

eΦ2/hr̃2)

+ tr
(
BD2(F−1

A1
eΦ1/hr1)

)
∂

2
(FA2

eΦ2/hr̃2)

+ 2 tr
(
D2(F−1

A1
eΦ1/hr1)

)︸ ︷︷ ︸
=2∆(F−1

A1
eΦ1/hr1)

∂∂(FA2
eΦ2/hr̃2)

= 4∂
2
(F−1
A1
eΦ1/hr1)∂2(FA2

eΦ2/hr̃2)︸ ︷︷ ︸
By (7.257.25)

+ 4∂2(F−1
A1
eΦ1/hr1)∂

2
(FA2

eΦ2/hr̃2)︸ ︷︷ ︸
By (7.227.22)

+ 8∂∂(F−1
A1
eΦ1/hr1)∂∂(FA2

eΦ2/hr̃2)︸ ︷︷ ︸
By ∆ = 4∂∂

.

(7.29)

Inserting (7.297.29) into S4 given by (7.117.11), we can write

S4 := S4,1 + S4,2 + S4,3,
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where

S4,1 := 4

ˆ
U

Gv∗∂
2
(F−1
A1
eΦ1/hr1)∂2(FA2

eΦ2/hr̃2) dx,

S4,2 := 4

ˆ
U

Gv∗∂2(F−1
A1
eΦ1/hr1)∂

2
(FA2

eΦ2/hr̃2) dx,

S4,3 := 8

ˆ
U

Gv∗∂∂(F−1
A1
eΦ1/hr1)∂∂(FA2

eΦ2/hr̃2) dx.

Now, for S4,1, direct computations yields that

∣∣S4,1

∣∣ = 4

∣∣∣∣ˆ
U

Gv∗∂
2
(F−1
A1
r1)∂2(FA2

r̃2)e(Φ1+Φ2)/h dx

∣∣∣∣ = O(h−1/2+ε),

where we use the better estimate for r1 and (5.265.26) for r̃2. This implies that

lim
h→0

(
hS4,1

)
= 0.

For S4,2, we can apply a similar method as in Step 1, then an integration by parts
gives

S4,2 = 4

ˆ
U

∂∂
(
Gv∗

)
∂(F−1

A1
eΦ1/hr1)∂(FA2

eΦ2/hr̃2) dx

+ 4

ˆ
U

∂
(
Gv∗

)
∂
(
eΦ1/h∂(F−1

A1
r1)
)
∂(FA2

eΦ2/hr̃2) dx

+ 4

ˆ
U

∂
(
Gv∗

)
)∂(F−1

A1
eΦ1/hr1)∂

(
eΦ2/h∂(FA2

r̃2)
)
dx

+ 4

ˆ
U

Gv∗∂
(
eΦ1/h∂(F−1

A1
r1)
)
∂
(
eΦ2/h∂(FA2

r̃2)
)
dx.

Using (5.205.20) as in the previous step, it is not hard to see the above integral is of
O(h−1/2+ε), which implies

lim
h→0

(
hS4,2

)
= 0.

Similarly arguments can be used in the derivation of S4,3, and we can conclude that

(7.30) lim
h→0

(
hS4

)
= 0

as wanted. Hence, using (7.217.21), (7.247.24), (7.287.28) and (7.307.30), we can summarize that

lim
h→0

(
h

ˆ
U

Gv∗ tr
((
D2v(1)

)(
D2v(2)

))
dx

)
= π∂

(
F−1
A∗ ∂G̃0 + F−1

A∗ (Xg · ∇Φ∗)G̃0

)∣∣
z=0
− 16π∂G̃1

∣∣
z=0

,

where v(1),v(2),v∗ are the CGO solutions described as before. It remains to ana-
lyze the integral of Y .

Step 5. Analysis of the integral of Y .

Using the relation (7.67.6), we can write

ˆ
U

Y dx := S5 + S6 + S7,
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where

S5 :=

ˆ
U

µ−1v∗ tr
(
D2v(1)C · ∇v(2)

)
dx,

S6 :=

ˆ
U

µ−1v∗ tr
(
C · ∇v(1)D2v(2)

)
dx,

S7 :=

ˆ
U

µ−1
(
1− c−2

)
v∗ tr

(
C · ∇v(1)C · ∇v(2)

)
dx.

Similar to the previous analysis, we exploit the structures of the CGO solutions v∗,
v(1), and v(2). Since S5 and S6 share the same structural form, we analyze them
jointly.

Step 6. Analysis of S5 and S6.

Recall the tensor function C = (Ckab)1≤a,b,k≤2, which is independent of h > 0. Using

the CGO solutions v(k) for k = 1, 2, the leading terms in S5 and S6 can be written
as

tr
(
D2v(1)C · ∇v(2)

)
= tr

(
D2
(
F−1
A1
eΦ1/h

)
C · ∇

(
FA2

eΦ2/h
))

+ tr
(
D2
(
eΦ1/hr1

)
C · ∇

(
FA2

eΦ2/h
))

+ tr
(
D2
(
F−1
A1
eΦ1/h

)
C · ∇

(
FA2

eΦ2/hr̃2

))
+ tr

(
D2
(
F−1
A1
eΦ1/hr1

)
C · ∇

(
FA2

eΦ2/hr̃2

))
and

tr
(
C · ∇v(1)D2v(2)

)
= tr

(
C · ∇

(
F−1
A1
eΦ1/h

)
D2
(
FA2

eΦ2/h
))

+ tr
(
C · ∇

(
F−1
A1
eΦ1/hr1

)
D2
(
FA2

eΦ2/h
))

+ tr
(
C · ∇

(
F−1
A1
eΦ1/h

)(
D2
(
FA2

eΦ2/hr̃2

)))
+ tr

(
C · ∇

(
F−1
A1
eΦ1/hr1

)
D2
(
FA2

eΦ2/hr̃2

))
.

Then we can write S5 and S6 into

S5 := S5,1 + S5,2 + S5,3 + S5,4,

S6 := S6,1 + S6,2 + S6,3 + S6,4,

where

S5,1 :=

ˆ
U

µ−1v∗
[

tr
(
D2
(
F−1
A1
eΦ1/h

)
C · ∇

(
FA2

eΦ2/h
))]

dx,

S5,2 :=

ˆ
U

µ−1v∗
[

tr
(
D2
(
F−1
A1
eΦ1/hr1

)
C · ∇

(
FA2

eΦ2/h
))]

dx,

S5,3 :=

ˆ
U

µ−1v∗
[

tr
(
D2
(
F−1
A1
eΦ1/h

)
C · ∇

(
FA2

eΦ2/hr̃2

))]
dx,

S5,4 :=

ˆ
U

µ−1v∗
[

tr
(
D2
(
F−1
A1
eΦ1/hr1

)
C · ∇

(
FA2

eΦ2/hr̃2

))]
dx,
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and

S6,1 :=

ˆ
U

µ−1v∗
[

tr
(
C · ∇

(
F−1
A1
eΦ1/h

)
D2
(
FA2

eΦ2/h
))]

dx,

S6,2 :=

ˆ
U

µ−1v∗
[

tr
(
C · ∇

(
F−1
A1
eΦ1/hr1

)
D2
(
FA2

eΦ2/h
))]

dx,

S6,3 :=

ˆ
U

µ−1v∗
[

tr
(
C · ∇

(
F−1
A1
eΦ1/h

)
D2
(
FA2

eΦ2/hr̃2

))]
dx,

S6,4 :=

ˆ
U

µ−1v∗
[

tr
(
C · ∇

(
F−1
A1
eΦ1/hr1

)
D2
(
FA2

eΦ2/hr̃2

))]
dx.

Step 6-1: Analysis of S5,1 and S6,1.

Let us use the same technique in previous steps, using (2.62.6) and the stationary
phase expansion (7.107.10), then direct computations give

S5,1 =

2∑
k=1

ˆ
U

µ−1v∗∂2
(
F−1
A1
eΦ1/h

)
∂xk
(
FA2

eΦ2/h
)

tr
(
ACk

)
dx

+

2∑
k=1

ˆ
U

µ−1v∗∂
2(
F−1
A1
eΦ1/h

)
∂xk
(
FA2

eΦ2/h
)

tr
(
BCk

)
dx

+ 2

2∑
k=1

ˆ
U

µ−1v∗∂∂
(
F−1
A1
eΦ1/h

)
∂xk
(
FA2

eΦ2/h
)

tr
(
Ck
)
dx,

where A is the 2× 2 complex-valued matrix given in (2.72.7), and Ck =
(
Ckab
)

1≤a,b≤2

is given by (7.77.7), for k = 1, 2. Using (2.22.2), we note that ∂x1
eΦ2/h = (∂ + ∂)eΦ2/h =

− 1
2hze

Φ2/h and ∂x2
eΦ2/h = i(∂ − ∂)eΦ2/h = i

2hze
Φ2/h so that ∂xk

(
eΦ2/h

)
will con-

tribute a factor of z for k = 1, 2. Moreover, as in the previous steps, the governing

terms arise when the derivatives act on eΦ1/h and eΦ2/h. Thus, we can write
S5,1 := Sm5,1 + Sr5,1, where

Sm5,1 :=

2∑
k=1

ˆ
U

µ−1v∗F−1
A1
FA2

∂2
(
eΦ1/h

)
∂xk
(
eΦ2/h

)
tr
(
ACk

)
dx,

and Sr5,1 = S5,1 − Sm5,1 is of lower order, as it contains an additional factor of h.

Here, we use ∂
2(
F−1
A1
eΦ1/h

)
= eΦ1/h∂

2
F−1
A1

and ∂∂
(
F−1
A1
eΦ1/h

)
= ∂

(
eΦ1/h∂F−1

A1

)
that produces an extra h factor.

Therefore, the stationary phase expansion (7.107.10) can be applied to compute Sm5,1
such that

Sm5,1 =

2∑
k=1

ˆ
U

µ̃v∗∂2
(
eΦ1/h

)
∂xk
(
eΦ2/h

)
tr
(
ACk

)
dx

=
1

h

ˆ
U

µ̃(1 + r∗)
[ 1

h2

(
1 +

z

4

)2
+

1

4h

]
z
[−1

2
tr
(
AC1

)
+

i

2
tr
(
AC2

)]
eix1x2/h dx

=
2π

h

(
∂2 − ∂2){

µ̃
(
1 +

z

4

)2
z
[−1

2
tr
(
AC1

)
+

i

2
tr
(
AC2

)]}∣∣∣
z=0

+O(1)

=
2π

h
∂

2
{
µ̃
(
1 +

z

4

)2
z
[1

2
tr
(
AC1

)
− i

2
tr
(
AC2

)]}∣∣∣
z=0

+O(1)

=
2π

h
∂
{
µ−1

(
1 +

z

4

)2[1

2
tr
(
AC1

)
− i

2
tr
(
AC2

)]}∣∣∣
z=0

+O(1)

=
π

h
∂
{
µ̃
[

tr
(
AC1

)
− i tr

(
AC2

)]}∣∣
z=0

+O(1)

(7.31)
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as h→ 0, where

(7.32) µ̃ := µ−1F−1
A1
FA2

is a bounded function independent of h > 0. Meanwhile, it is clear that Sr5,1 = O(1),
and we omit the derivation.

Similar analysis can be utilized for S6,1. By writing S6,1 := Sm6,1 + Sr6,1, where

Sm6,1 :=

2∑
k=1

ˆ
U

µ̃v∗∂xk
(
eΦ1/h

)
∂

2(
eΦ2/h

)
tr(BCk) dx

=
1

h

ˆ
U

∂
2[
µ̃(1 + r∗)

(
tr(BC1) + i tr(BC2)

)](
1 +

z

4

)
eix1x2/h dx

= O(1) as h→ 0,

(7.33)

where we have applied twice integration by parts in the above computations, and
µ̃ is given by (7.327.32). Here we used the Dirichlet and Neumann data of Ck are zero,
for k = 1, 2. To summarize, on the one hand, using (7.317.31) and Sr5,1 = O(1), one
can see that

lim
h→0

(
hS5,1

)
= π∂

{
µ̃
[

tr
(
AC1

)
− i tr

(
AC2

)]}∣∣
z=0

.

On the other hand, with (7.337.33) at hand, we can ensure

lim
h→0

(
hS6,1

)
= 0,

since Sr6,1 has a better decay in h than Sm6,1.

Step 6-2. Analysis of S5,2 and S6,2.

Note that the difference between S5,2 and S5,1 lies in the presence of an additional
remainder term r1 in the integrand, which enjoys better decay properties and admits
a favorable asymptotic expansion. On the one hand, when the derivative does not
act on r1, the analysis proceeds in the same way as the analysis for S2: applying
the stationary phase method (7.107.10) yields the desired vanishing limit. On the other
hand, if the derivative falls on r1, we can still invoke the stationary phase expansion,
as an additional factor of z is always present due to the absence of any remainder
term r̃2 in these computations.

A similar strategy applies to S6,2. By integrating by parts in the ∂ operator and

exploiting the holomorphic properties of v∗ and v(1) from their phase functions,
the analysis mirrors that of (7.337.33). As the arguments follow closely, we omit further
details. In summary, we can obtain

lim
h→0

(hS5,2) = lim
h→0

(hS6,2) = 0.

It remains to analyze the terms S5,3, S5,4, S6,3, and S6,4, which involve the remain-
der term r2.

Step 6-3. Analysis of S5,3 and S6,3.

Let us first analyze S5,3 with the same strategy by using (2.62.6) as before, then we
can compute each term in S5,3 as

S5,3 := Sm5,3 + Sr5,3,
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where

Sm5,3 :=

2∑
k=1

ˆ
U

µ̃v∗ tr(ACk)∂2
(
eΦ1/h

)
∂xk
(
eΦ2/hr̃2

))
dx

=

ˆ
U

µ̃v∗ tr(AC1)∂2
(
eΦ1/h

)(
∂ + ∂

)(
eΦ2/hr̃2

))
dx

+ i

ˆ
U

µ̃v∗ tr(AC2)∂2
(
eΦ1/h

)(
∂ − ∂

)(
eΦ2/hr̃2

))
dx.

Here, the term Sr5,3 consists of those contributions in which at least one derivative

acts on either F−1
A1

or FA2
, and µ̃ is the function defined in (7.327.32).

By writing Sm5,3 :=
∑2
k,`=1 S

k,`
5,3 , such that

S1,1
5,3 :=

ˆ
U

µ̃v∗ tr(AC1)∂2
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

))
dx,

S1,2
5,3 := −i

ˆ
U

µ̃v∗ tr(AC2)∂2
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

))
dx,

S2,1
5,3 :=

ˆ
U

µ̃v∗ tr(AC1)∂2
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

))
dx,

S2,2
5,3 := i

ˆ
U

µ̃v∗ tr(AC2)∂2
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

))
dx.

Let us only analyze S1,1
5,3 , and S2,1

5,3 has a similar structure. Applying the integration
by parts, one can obtain

S1,1
5,3 =

ˆ
U

µ̃v∗ tr(AC1)∂2
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

))
dx

= −
ˆ
U

∂
[
µ̃v∗ tr(AC1)

]
∂2
(
eΦ1/h

)
eΦ2/hr̃2 dx

= −
ˆ
U

∂
[
µ̃ tr(AC1)

]
(1 + r∗)

( 1

h2

(
1 +

z

4

)2
+

1

4h

)
eix1x2/hr̃2 dx

−
ˆ
U

µ̃ tr(AC1)∂r∗
( 1

h2

(
1 +

z

4

)2
+

1

4h

)
eix1x2/hr̃2 dx︸ ︷︷ ︸

By ∂
(
eΦ
∗/h(1 + r∗)

)
= eΦ

∗/h∂r∗

.

(7.34)

It is easy to see that the second term in the right-hand side of (7.347.34) is of order
O(h−1/2+ε), and we only need to consider the first term in the right-hand side of
(7.347.34). To this end, we can apply [CLLT23CLLT23, Proposition 3.9], such that the first
term is of order o(1/h). Therefore, we can have

S1,1
5,3 = O(h−1+ε), as h→ 0,

which leads

lim
h→0

(
hS1,1

5,3

)
= 0.

Similar arguments can be applied to S1,2
5,3 , and one can conclude

lim
h→0

(
hS1,1

5,3

)
= lim
h→0

(
hS1,2

5,3

)
= 0.

When ∂ hits eΦ2/hr2, the analysis will become more complicated. Before analyzing
S2,1

5,3 and S2,2
5,3 , let us look into S6,3.

Similar to the analysis for S5,3, let us write S6,3 = Sm6,3 + Sr6,3, where

Sm6,3 :=

ˆ
U

µ̃v∗
[

tr
(
C · ∇

(
eΦ1/h

)(
D2
(
eΦ2/hr̃2

)))]
dx := S1

6,3 + S2
6,3 + S3

6,3,
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and Sr6,3 = S6,3 − Sm6,3 contains those contributions in which at least one derivative

acts on either F−1
A1

or FA2
. Thanks to (2.62.6) again, we can write Sm6,3 := S1

6,3 +S2
6,3 +

S3
6,3, where

S1
6,3 :=

2∑
k=1

ˆ
U

µ̃v∗ tr
(
BCk)∂xk

(
eΦ1/h

)
∂

2(
eΦ2/hr̃2

)
dx := S1,1

6,3 + S1,2
6,3 ,

S2
6,3 :=

2∑
k=1

ˆ
U

µ̃v∗ tr
(
ACk

)
∂xk
(
eΦ1/h

)
∂2
(
eΦ2/hr̃2

)
dx := S2,1

6,3 + S2,2
6,3 ,

S3
6,3 := 2

2∑
k=1

ˆ
U

µ̃v∗ tr
(
Ck
)
∂xk
(
eΦ1/h

)
∂∂
(
eΦ2/hr̃2

)
dx := S3,1

6,3 + S3,2
6,3 .

Here

S1,1
6,3 :=

ˆ
U

µ̃v∗ tr
(
BC1)∂

(
eΦ1/h

)
∂

2(
eΦ2/hr̃2

)
dx

S1,2
6,3 := i

ˆ
U

µ̃v∗ tr
(
BC2)∂

(
eΦ1/h

)
∂

2(
eΦ2/hr̃2

)
dx,

S2,1
6,3 :=

ˆ
U

µ̃v∗ tr
(
AC1

)
∂
(
eΦ1/h

)
∂2
(
eΦ2/hr̃2

)
dx,

S2,2
6,3 := i

ˆ
U

µ̃v∗ tr
(
AC2

)
∂
(
eΦ1/h

)
∂2
(
eΦ2/hr̃2

)
dx

and

S3,1
6,3 := 2

ˆ
U

µ̃v∗ tr
(
C1
)
∂
(
eΦ1/h

)
∂∂
(
eΦ2/hr̃2

)
dx,

S3,2
6,3 := 2i

ˆ
U

µ̃v∗ tr
(
C2
)
∂
(
eΦ1/h

)
∂∂
(
eΦ2/hr̃2

)
dx.

For S1,1
6,3 , via twice integration by parts for ∂, one can obtain

S1,1
6,3 =

1

h

ˆ
U

∂
2(
µ̃v∗ tr(BC1)

)(
1 +

z

4

)
e(Φ1+Φ2)/hr̃2 dx = O(h−1/2+ε),

where we used r2 = OL2(h1/2+ε) and the term ∂
2(
µ̃v∗ tr(BC1)

)
will not generate

extra 1/h since its phase is holormorphic. Similar assertion holds for S1,2
6,3 , so we

can conclude

lim
h→0

(
hS1

6,3

)
= 0.

Recalling that S2
6,3 can be written as S2

6,3 = S2,1
6,3 +S2,2

6,3 , let us first analyze S2,1
6,3 .

Applying an integration by parts formula, one has

S2,1
6,3 = −

ˆ
U

∂
(
µ̃v∗ tr

(
AC1

))
∂
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

)
dx

−
ˆ
U

µ̃v∗ tr
(
AC1

)
∂2
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

)
dx︸ ︷︷ ︸

=S2,1
5,3

,

which implies

S2,1
5,3 + S2,1

6,3 = −
ˆ
U

∂
(
µ̃v∗ tr

(
AC1

))
∂
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

)
dx.



50 T. LIIMATAINEN AND Y.-H. LIN

Now, for the right-hand side in the above equation, direct computations implyˆ
U

∂
(
µ̃v∗ tr

(
AC1

))
∂
(
eΦ1/h

)
∂
(
eΦ2/hr̃2

)
dx

=

ˆ
U

∂
(
µ̃ tr

(
AC1

))
v∗∂

(
eΦ1/h

)
eΦ2/h∂r̃2 dx

+

ˆ
U

µ̃ tr
(
AC1

)
∂v∗∂

(
eΦ1/h

)
eΦ2/h∂r̃2 dx

=
1

h

ˆ
U

∂
(
µ̃ tr

(
AC1

))
v∗
(
1 +

z

4

)
e(Φ1+Φ2)/h∂r̃2 dx

+
1

h

ˆ
U

µ̃ tr
(
AC1

)
∂
(
eΦ∗/hr∗

)(
1 +

z

4

)
e(Φ1+Φ2)/h∂r̃2 dx

+
1

h2

ˆ
U

µ̃ tr
(
AC1

)(
− 1 +

z2

16

)
eix1x2/h∂r̃2 dx.

(7.35)

It is easy to see that the first two terms in the right-hand side of (7.357.35) can be
estimated by O(h−1/2+ε), which gives rise to

lim
h→0

ˆ
U

∂
(
µ̃ tr

(
AC1

))
v∗
(
1 +

z

4

)
e(Φ1+Φ2)/h∂r̃2 dx

= lim
h→0

ˆ
U

µ̃ tr
(
AC1

)
∂
(
eΦ∗/hr∗

)(
1 +

z

4

)
e(Φ1+Φ2)/h∂r̃2 dx

= 0.

Thus, it remains to estimate the last term in the right-hand side of (7.357.35).
For a certain term, using the relation

r̃2 = −∂−1
ψ s̃2 = −∂−1e−ix1x2/hs̃2,

we can conclude that

lim
h→0

(
1

h

ˆ
U

µ̃ tr
(
AC1

)(
− 1 +

z2

16

)
eix1x2/h∂r̃2 dx

)
= − lim

h→0

(
1

h

ˆ
U

µ̃ tr
(
AC1

)(
− 1 +

z2

16

)
eix1x2/h ∂∂−1

(
e−ix1x2/hV ′s̃2

)︸ ︷︷ ︸
=e−ix1x2/hV ′s̃2

dx

)

= − lim
h→0

(
1

h

ˆ
U

µ̃ tr
(
AC1

)(
− 1 +

z2

16

)
V ′s̃2 dx

)
= − lim

h→0

[
1

h

ˆ
U

µ̃ tr(AC1)
(
− 1 +

z2

16

)
V ′
(
∂∗−1(eix1x2/hV )

+

∞∑
k=1

T̃ kh ∂
∗−1
(
eix1x2/hV

))]
dx

(7.36)

Let us look at the first term in the right-hand side of (7.367.36). Applying the integra-
tion by parts formula (7.267.26) and the stationary phase formula (7.107.10), we have

1

h

ˆ
U

µ̃ tr(AC1)
(
− 1 +

z2

16

)
V ′∂∗−1

(
eix1x2/hV

)
dx

= − 1

h

ˆ
U

∂∗−1
(
µ̃ tr(AC1)

(
− 1 +

z2

16

)
V ′
)(
eix1x2/hV

)
dx

−→ −2π∂∗−1
(
µ̃ tr(AC1)

(
− 1 +

z2

16

)
V ′
)
V
∣∣∣
z=0

= 2πi∂
−1
(
µ̃ tr(AC1)

(
− 1 +

z2

16

)
V ′
)
V
∣∣∣
z=0
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as h → 0. Recalling that here we also extended C1 by zero, outside Ω. This
extension is C2 thanks to the boundary determination (recall that since we are in

holomorphic coordinates ∂∗−1 = ∂
−1

). Since the first term in the right-hand side

of (7.367.36) is of O(1), note that T̃h satisfies (5.235.23), which ensures that the second
term in the right-hand side of (7.367.36) decays faster than O(1) as h→ 0. Hence,

lim
h→0

(
1

h

ˆ
U

µ̃ tr
(
AC1

)(
− 1 +

z2

16

)
eix1x2/h∂r̃2 dx

)
= 2πi∂

−1
(
µ̃ tr(AC1)

(
− 1 +

z2

16

)
V ′
)
V
∣∣∣
z=0

.

Similarly, one can use the same derivation for S2,2
6,3 together with S2,2

5,3 . Therefore,
to summarize, we must have

lim
h→0

[
h
(
S2,1

5,3 + S2,1
6,3

)]
= 2πi∂

−1
(
µ̃ tr(AC1)

(
− 1 +

z2

16

)
V ′
)
V
∣∣∣
z=0

,

lim
h→0

[
h
(
S2,2

5,3 + S2,2
6,3

)]
= −2π∂

−1
(
µ̃ tr(AC2)

(
− 1 +

z2

16

)
V ′
)
V
∣∣∣
z=0

.

Similar to previous methods, for S3,1
6,3 , an integration by parts for ∂ yields

S3,1
6,3 = −

ˆ
U

∂
[
µ̃v∗ tr

(
C1
)]︸ ︷︷ ︸

=OL2 (1)

(
1 +

z

4

)
∂e(Φ1+Φ2)/h∂r̃2 dx = O(h−1/2+ε),

and same estimate holds for S3,2
6,3 . Now, we have limh→0

(
hSm5,3

)
= limh→0

(
hSm6,3

)
=

0, then this implies that the lower terms satisfy limh→0

(
hSr5,3

)
= limh→0

(
hSr6,3

)
=

0 as well. Hence, one has

lim
h→0

(
hS3

5,3

)
= lim
h→0

(
hS3

6,3

)
= 0.

Step 6-4. Analysis of S5,4 and S6,4.

For S5,4, using (2.62.6) and similar to previous arguments, one can compute

∂xk
(
eΦ2/hr2

)
= OL2(h−1/2+ε),

for k = 1, 2. Thanks to the better estimate for r1, ∂r1, ∂r1 = OL2(h), from the
above computations, one can easily see that

S5,4 =

ˆ
U

µ̃v∗
[

tr
((
D2
(
eΦ1/hr1

))︸ ︷︷ ︸
=OL2 (1)

C · ∇
(
eΦ2/hr̃2

)︸ ︷︷ ︸
=OL2 (h−1/2+ε)

)]
dx = O(h−1/2+ε),

which implies

lim
h→0

(
hS5,4

)
= 0.

For S6,4, note that ∇
(
eΦ1/hr1

)
= OL2(1), by (2.62.6), then there holds that

S6,4 =

ˆ
U

µ−1v∗
[

tr
(
C · ∇

(
F−1
A1
eΦ1/hr1

)
·
[
A∂2(FA2

eΦ2/hr̃2) +B∂
2
(FA2

eΦ2/hr̃2) + 2I2×2∂∂(FA2
eΦ2/hr̃2)

]}]
dx.

As in the previous analysis, the term S6,4 involves second derivatives acting on r̃2.
Hence, by applying the Calderón–Zygmund estimate (5.265.26) to r̃2, we obtain

|S6,4| = O(h−1/2+ε).
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In particular, this implies

lim
h→0

(
hS6,4

)
= 0.

Step 7. Analysis of S7.

In S7, there is only one derivative on v(1) and v(2), from the above analysis, we
know that

∇v(1) =
1

h

(
1
i

)(
1 +

z

4

)
eΦ1/h +O(1), ∇v(2) = − 1

h

(
1
−i

)
z

2
eΦ2/h +O(1).

Using the same trick as before, an integration by parts argument between the
holomorphic and antiholomorphic functions ensures that

lim
h→0

(
hS7

)
= 0.

Step 8. Finalization.

From Step 1 to Step 7, with the integral identity (7.87.8) at hand, we can conclude
that the only nonzero terms come from S1 and S5, which are

0 = lim
h→0

(
h

7∑
k=1

Sk

)
= π∂

(
F−1
A∗ ∂G̃0 + F−1

A∗ (Xg · ∇Φ∗)G̃0

)∣∣
z=0
− 16π∂G̃1

∣∣
z=0

+ π∂
{
µ̃
[

tr
(
AC1

)
− i tr

(
AC2

)]}∣∣
z=0

+ 2πi∂
−1

(E(w))V
∣∣∣
z=0

,

(7.37)

where E(w) := µ̃(w)
(

tr(AC1(w)) + i tr(AC2(w))
)(
− 1 + w2

16

)
V ′(w). We next vary

the critical point z = 0 to the entire domain U by shifting the phases of the CGOs.
By doing so, the local terms will be just evaluated at z ∈ U instead of z = 0.

However, in the nonlocal term ∂
−1

(E(w))(z) in (7.377.37) the function
(
− 1 + w2

16

)
is

obtained from phase functions with evaluating point w = 0. Thus, changing the

phase, changes the function
(
− 1 + w2

16

)
in the nonlocal term.

Let us give more details to the above observation regarding the nonlocal term.
When we choose the critical point to be a ∈ C, the corresponding phase functions
become

Φ1(z) = (z−a)+
(z − a)2

8
, Φ2(z) = −1

4
(z−a)2, and Φ∗(z) = −(z−a)+

(z − a)2

8
.

Following similar derivations as in Step 6-3, we can see that the nonlocal lower order

term will be given by ∂
−1
(
µ̃
(

tr(AC1) + i tr(AC2)
)(
− 1 + (w−a)2

16

)
V ′
)

(z)V (z)
∣∣∣
z=a

.

More concretely, one may compute

∂
−1
(
µ̃
(

tr(AC1) + i tr(AC2)
)(
− 1 +

(w − a)2

16

)
V ′
)
V
∣∣∣
z=a

= −∂−1
(
µ̃
(

tr(AC1) + i tr(AC2)
))
V
∣∣∣
z=a

+
1

16

ˆ
µ̃
(

tr(AC1) + i tr(AC2)
) (w − a)2

w − z
dw ∧ dw

∣∣∣
z=a

= −∂−1
(
µ̃
(

tr(AC1) + i tr(AC2)
))
V
∣∣∣
z=a

+
1

16

ˆ
µ̃
(

tr(AC1) + i tr(AC2)
)
(w − a) dw ∧ dw

= −∂−1
(
µ̃
(

tr(AC1) + i tr(AC2)
))
V
∣∣∣
z=a

+ c1a+ c2,
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where

c1 := − 1

16

ˆ
µ̃
(

tr(AC1) + i tr(AC2)
)
dw ∧ dw ∈ C,

c2 :=
1

16

ˆ
µ̃
(

tr(AC1) + i tr(AC2)
)
w dw ∧ dw ∈ C,

are some constants, and we used the function µ̃
(

tr(AC1)+i tr(AC2)
)

= µ̃
(

tr(AC1)+

i tr(AC2)
)
c is compactly supported in C, so that the above integrals must be finite.

Let us write
H(z) = −2i(c1z − c2),

for the linear function in z, which is thus holomorphic. Using (7.57.5) and (7.77.7), by
translation, we can vary the critical point z = 0 (or z = a) of the phase functions
in CGOs to arbitrary points z ∈ U , then the identity (7.377.37) yields that

∂
(
F−1
A∗ ∂G̃0 + F−1

A∗ (Xg · ∇Φ∗)G̃0

)
− 16∂G̃1

+ ∂
{
µ̃
[

tr
(
AC1

)
− i tr

(
AC2

)]}
= 2iV︸︷︷︸

:=β

∂
−1
(
µ̃
(

tr(AC1) + i tr(AC2)
)︸ ︷︷ ︸

:=γc

)
+H in U.

(7.38)

Using the definitions (7.147.14), (7.197.19), (7.327.32) and (7.77.7) of G̃0, G̃1, µ̃ and Ck (k = 1, 2),
respectively, by setting

c := 1− c−2 ∈ C2(R2),

where c has been extended by zero to R2 \Ω at the outset of the proof, the equation
(7.387.38) will take the form

(7.39) ∂
(
A∂c + αc

)
= β(z)∂

−1
(γc) +H in U,

for some functions α, β, γ independent of c, where the leading coefficient A of the
second derivatives in the equation (7.397.39) is non-vanishing. In particular, we can
find A explicitly by

A := µ−1F−1
A∗ F

−1
A1
FA2

,

γ := µ−1F−1
A1
FA2

(
tr(AC1) + i tr(AC2)

)
,

and α, β are some functions that can be computed and are independent of c. Note
that by (5.155.15), A(z) 6= 0 for all z ∈ U .

Since c = 0 in U \ Ω and recall that H is holomorphic, the UCP of Lemma 6.16.1
applied to (7.397.39) yields c ≡ 0 in all of U . As c = 1− c−2 = 0 in U , it follows that
c−2 = 1 in U , and in particular in Ω. Finally, using c > 0 in Ω, we conclude

c ≡ 1 in Ω,

which completes the proof. �

8. Proof of Theorem 1.21.2

With all arguments in previous sections, we have proved Theorem 1.21.2. For the
sake of completeness, let us explain the arguments again.

Proof of Theorem 1.21.2. Let us split the proof into several steps:

• Step 1. Using F1|∂Ω = F2|∂Ω, the boundary determination (see Lemma

3.13.1) shows that D2u
(1)
0

∣∣
∂Ω

= D2u
(2)
0

∣∣
∂Ω

.

• Step 2. Lemma 4.14.1 shows that the relation (1.91.9) determines ,

(8.1) Λ′g1
(φ) = Λ′g2

(φ), for any φ ∈ C∞(∂Ω),

where Λ′gj denotes the DN map of (4.84.8), for j = 1, 2.
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• Step 3. Since Ω is a uniformly convex domain, it must be a simply connected
domain. Hence, applying Theorem 4.44.4, the condition (8.18.1) implies that
there exists c > 0 with c|∂Ω = 1 such that g1 = cg2 in Ω.
• Step 4. Theorem 7.47.4 yields that c = 1 in Ω. This shows that g1 = g2 in Ω.

In other words, D2u
(1)
0 = D2u

(0)
2 in Ω, which implies

F1 = detD2u
(1)
0 = detD2u

(0)
2 = F2 in Ω,

where we used u
(j)
0 are solutions to (3.13.1), for j = 1, 2.

This concludes the proof. �
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