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ABSTRACT. We extend the study of inverse boundary value problems to the
setting of fully nonlinear PDEs by considering an inverse source problem for
the Monge—Ampere equation

det D?u = F.

We prove that, on a convex Euclidean domain in the plane, the associated
Dirichlet-to-Neumann (DN) map uniquely determines a positive source func-
tion F'. The proof relies on recovering the Hessian of a solution to the equa-
tion, which is interpreted as a Riemannian metric g. Interestingly, although
the equation is posed on a Euclidean domain, the inverse problem becomes
anisotropic since the metric g appears as a coefficient matrix in the linearized
equation.

As an intermediate step, we prove that the DN map of the non-divergence
form equation

g™ dgpv =0

uniquely determines the conformal class of the metric g on a simply connected
planar domain, without the usual diffeomorphism invariance. To address the
challenges of full nonlinearity, we develop asymptotic expansions for complex
geometric optics solutions in the planar setting and solve a resulting nonlocal
-equation by proving a unique continuation principle for it. These techniques
are expected to be applicable to a wide range of inverse problems for nonlinear
equations.
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1. INTRODUCTION

The Monge—Ampere equation is a paradigmatic fully nonlinear (possibly degen-
erate) partial differential equation (PDE), introduced nearly two centuries ago by
Monge [Mon84] and Ampere [Amp19]. In general form, it is written as

(1.1) det D*u = f(x,u,Vu) in Q,

where 2 C R™ is an open domain, v : £ — R is a solution, D?u denotes the
Hessian matrix of u, and f: Q x R x R® — R is a given source function. Under
mild assumptions on the solution, f and €2, the equation becomes elliptic, enabling
the application of classical regularity theory (see Remark 1.3). Notably, Figalli
was awarded the Fields Medal in 2018 in part for his contributions to the Monge—
Ampere equation: see [Figl7] for a comprehensive introduction to its elliptic theory
and applications.
The Monge—-Ampere equation is deeply intertwined with geometry, analysis, ap-
plied mathematics, and physics.
e An optimal transport Vu between mass densities py and p; with quadratic
cost is governed by the Monge-Ampere equation

2 po(z)
det D*u(x) (Vua)
Optimal transport appears in many applications such as economics, meteo-
rology, image processing and computer vision, and fluid dynamics. We refer
to the book [Vil09] by Villani for further details about the applications.

e In differential geometry, the graph (z,u(z)) of a solution to

det D*u = K (z)(1 + |Vu|2)n22,
has prescribed Gaussian curvature K (), relating to the classical Minkowski
problem [Min97, Min03] of constructing convex hypersurfaces with specified
curvature.

e The Calabi—Yau conjecture asserts that a compact Kéhler manifold with
zero first Chern class admits a Ricci-flat Kahler metric, which reduces to
solving the complex Monge-Ampere equation. We refer readers to [Yau78,
Aub82] for further studies.

For more comprehensive introduction and studies of the Monge-Ampere equation,
see [Cal72, CY86, TWO00, TW02, TWO05, Figl7].

In this work, we focus on the spatially dependent source case,
f(z,u, Vu) = F(x),
and study an inverse source problem of recovering the function F' from boundary
measurements. In this case, the equation (1.1) reads
(1.2) det D*u = F(z),
for some positive function F satisfying suitable regularity conditions. Our pri-

mary objective is to investigate the recovery of the function F' from the DN map
corresponding to (1.2).
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To the best of our knowledge, this work establishes the first uniqueness result
for an inverse source problem governed by a fully nonlinear PDE. A central nov-
elty lies in the recovery of the metric only up to a conformal factor, but without
a natural diffeomorphism from the first linearized equation. Moreover, after some-
what involved asymptotic analysis for the integral identity of the second linearized

equation, the resulting equation is a second-order d-equation with a nonlocal 571
lower-order perturbation. We prove a unique continuation property (UCP) for this
non-local 0 equation, specifically the equation to show that the conformal factor is
identically equal to 1. We also anticipate that these methods will have influence
well beyond the Monge—Ampere model. The reason for the nonlocal equation seems
to be in the full nonlinearity.

Inverse problems of parameter identification, encompassing both coefficients and
source functions, in nonlinear partial differential equations have attracted consider-
able interest in recent decades. Among these, the determination of nonlinear laws
presents profound challenges due to inherent nonlinearity and severe ill-posedness.
The modern approach to such problems can be traced back to the early 1990s,
notably through Isakov’s pioneering work [[sa93], which introduced the idea of
linearizing the nonlinear Dirichlet-to-Neumann (DN) map C*(9§2) — C*(0Q).
This linearization reduces the nonlinear inverse problem to one for a linear PDE,
enabling the use of classical techniques. Subsequently, second-order lineariza-
tions, involving data depending on two parameters, have further advanced the field
[AZ

More recently, a novel method has emerged in the study of inverse problems for
semilinear elliptic equations [FO20, LLLS21a]. These works exploit nonlinearity not
as an obstacle, but as a constructive tool, building on the foundational insights of
[KLU18], which examined inverse problems for nonlinear equations on Lorentzian
manifolds and developed the so-called higher order linearization method. By har-
nessing nonlinear interactions via higher order linearizations, these approaches have
solved inverse problems in contexts where methods for linear equations fail.

Following these breakthroughs, a substantial body of literature has developed
using higher order linearization techniques to address inverse problems for vari-
ous nonlinear PDEs. Let us mention here works that address nonlinear elliptic
equations. Key contributions include [LLLS21b, LLST22, KU20b, KU20a, FLL23]
on semilinear elliptic equations, often with partial boundary data. Quasilinear
elliptic inverse problems have been studied in [KKU23, CFK*21, LW23], while
inverse problems for the minimal surface equation (quasilinear) are treated in
[ABN20, CLLO24, CLLT23, CLT24, Nur24]. The latter have also led to novel ap-
plications in AdS/CFT physics [JLST25]. Other related works, including semilinear
elliptic equations under various settings and fractional elliptic inverse problems, can
be found in [LL19, LL22, LSX22 HL23, ST23, LL25]. We refer the reader to the
recent survey [Las25] for a comprehensive introduction and for further references
to inverse problems for semilinear elliptic and hyperbolic equations.

o

21, CNV19, KN02, Sun96, Sun10, SU97].

1.1. Mathematical formulations and main results. The main contribution of
this work is a uniqueness result for an inverse source problem for the Monge-Ampere
equation in a convex planar domain. The mathematical formulation is as follows.

Let  C R? be a bounded, uniformly convex domain with C°°-smooth boundary
0. Given a source function F' = F(z) € C*°(Q) satisfying F > ¢y > 0 for some
constant ¢y > 0, let u : 2 — R be the solution to the Dirichlet boundary value
problem:

2 _ .
(1.3) {detD u=F in Q,

U= on 092,
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where D?u denotes the Hessian matrix of u.

To ensure ellipticity (i.e., convexity of solutions), we assume that the source
function satisfies

F(z)>co>0 inQ,

for some constant ¢g > 0. We also assume that the boundary data ¢ € C°°(99).
Under these conditions, the boundary value problem (1.3) is (locally) well-posed.
Further details will be provided in Section 2.2 (see also [Figl7] for additional dis-
cussion). Thanks to this well-posedness, we can define the Dirichlet-to-Neumann
(DN) map associated with (1.3) as

(1.4) Ap:C®(09) = C¥(09), @ dytip]yg,

for any ¢ sufficiently small in an appropriate sense. Here u, € C>(9Q) denotes the
unique solution to (1.3), and

Oyuy, =v - Vu,
is the Neumann derivative with respect to the unit outer normal v on 9. The
inverse problem for the Monge-Ampere equation we address is as follows.

(IP) Inverse Source Problem. Can we determine the unknown source F' in
Q by using the knowledge of the DN map Ap?

Remark 1.1. Before addressing the nonlinear setting, we briefly recall the obstruc-
tion to non-uniqueness to an inverse source problem in the linear case. Let  C R"™
be a bounded open set with sufficiently regular boundary 02, where n > 2. Consider
the Poisson equation

(1.5)

Au=F inQ,
U= on 0S).

Given an arbitrary function 1 € C2(2) with vanishing Cauchy data on 0S), define
v:=u+1Y in Q. Then v satisfies

{Av:F+A1/) in €,

1.6
(L6) V= on 0S.

Then, the following observations can be made:

(i) The Cauchy data of (1.5) and (1.6) coincide. Since v € C?(2) with van-
ishing Cauchy data was otherwise arbitrary, the inverse source problem is
solvable only up to the gauge symmetry F — F+ Avp. In particular, even if
the sources agree on all orders on the boundary, the interior source cannot
be uniquely determined.

(ii) Related mon-uniqueness phenomena have been investigated in the context
of semilinear equations and shown that for some nonlinearities the gauge
symmetry breaks, leading to unique recovery: see [L1.24] for the semilinear
elliptic case and [KLL24] for the semilinear parabolic case. Very recently,
the work [LN25] determined the source uniquely for a quasilinear elliptic
equation, and [Q /,25] addresses the inverse problem of simultaneously
recovering multiple unknown parameters for semilinear wave equations.

Interestingly, for our inverse problem (IP), we can provide an affirmative answer
in two dimensions: the source function F' can be uniquely determined from the DN
map (1.4) associated with the Monge—Ampere equation (1.3). Before presenting
the main result, we introduce the following set of admissible boundary data:

(1.7) Bs(09) := {© € C™(09) : [|¢llcaaaa) <6},

for some « € (0, 1) and sufficiently small 6 > 0. With these preparations in place,
we are now ready to state our main theorem.
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Theorem 1.2 (Unique determination). Let 2 C R? be a bounded, uniformly convex
domain with C*° boundary 0Q. Let F € C*(Q) be a source with F > ¢o > 0 for
some positive constant cg. Suppose that F is known up to second order on the
boundary, then the DN map Ap of (1.3) determines the source F in Q uniquely.
More specifically, let Fy, Fy € C°°(Q) be sources, and Fy, Fy > co > 0 for some

positive constant co. Let A, be the DN map of

{det D2y = F;  inQ,

1.8 ,
(18) uld) = on 0,

for 7 = 1,2. Suppose that Fy and Fs agree up to second order on the boundary,
then

(1.9) Ar, (p) = Ap,(p) on 09,  for any ¢ € Bs(0Q),
for & > 0 sufficiently small, implies

Fi = F5 in Q.
Remark 1.3. We clarify the assumptions in Theorem 1.2:

(i) Uniform convexity of Q0 and positivity of F. These ensure global
reqularity—namely, that a solution u admits a classical second derivative
D?u and remains convex on Q (see [Figl7, Remark 1.1]). Consequently, the
Monge—Ampére equation is locally well-posed on Bs(S2), as its linearization
around a convex solution is elliptic. This local well-posedness is essential
for applying the first linearization method in the inverse problem.

(ii) F known up to second order on 0. Knowledge of the DN map along
with F and up to its second order derivatives behavior on 0 allows the
recovery of the solution to the Monge-Ampére equation up to at least fourth
order on the boundary. This assumption, while convenient for avoiding
standard boundary determination arguments in our analysis, can most likely

be lifted.

Condition (i) is essential for the forward problem of (1.3), while condition (ii)
is only used for the inverse problem.

The first linearization of the Monge-Ampere equation (1.3) (see Section 2) yields
(1.10) ul0upv =0 in Q,

where the coefficient matrix (ugb) = (aabuo)_l is defined via the solution wug to
the original Monge-Ampere equation with zero Dirichlet data (¢ = 0 on 09Q).
Meanwhile, thanks to the convexity and regularity assumptions, the equation (1.10)
is a second-order, anisotropic elliptic equation in non-divergence form, as it has
matrix-valued non-constant coefficients given by ugb. As an intermediate step in
proving Theorem 1.2, we establish a uniqueness result for the associated Calderén

problem of this linearized equation in the plane.

Theorem 1.4. Let Q C R? be a bounded open simply connected domain with
C*>-smooth boundary 02, and g = (gab) s a symmetric, positive definite and C'*°-
smooth 2 x 2 matriz-valued function. Let A; be the DN map of

(1.11) 90w = 0 in Q,

where (g*°) = (gab)_l. Then Ay determines g up to a conformal factor ¢ = c(x) > 0
in Q with clpq = 1.
More specifically, let g = g; be as above, and A;j be the DN map of the equation

g?baabvj =0 inQ,
vj = ¢ on 0f,
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for j =1,2. Suppose that
N, (6) = Ny (6) for any ¢ € C(D9),
then there exists a C°°-smooth conformal factor ¢ > 0 with c|pq = 1, such that
g1 = cga in Q.

Note that the determination of the metric in Theorem 1.4 is free from diffeomor-
phism ambiguity. In this sense, it constitutes a stronger result than the correspond-
ing one for the divergence form anisotropic Calderén problem in two dimensions.
It is not immediately clear whether the assumption that the domain €2 is simply
connected can be lifted.

Novelty of the methods and outline of the proof. Theorem 1.2 establishes,
for the first time to our knowledge, a uniqueness result for an inverse problem
governed by a fully nonlinear elliptic PDE. Key novel contributions of our method
include:

e Solving the first linearized problem: The first linearization leads to an ellip-
tic, second-order PDE in non-divergence form, where the leading coefficient
is the Hessian of the Monge—Ampéere solution (1.3) with zero Dirichlet data,
considered as a Riemannian metric g. By reformulating this non-divergence
form equation (1.11) as

(ng+Xg~V)u:(),

where the drift term X, is given by the contracted Christoffel symbols
of g (see Section 4.2). After applying a known result for the anisotropic
Calder6n problem to the above equation, we study the transformation prop-
erties of Christoffel symbols to eliminate the diffeomorphism gauge on a
simply connected domain. This leads to global recovery of the metric ten-
sor only up to a conformal factor ¢ > 0, normalized on the boundary by
clag =1 (see Theorem 1.4).

o Analysis of the second linearized equation: To resolve the remaining confor-
mal factor, we employ a class of complex geometric optics (CGO) solutions
to the first linearized PDE. The second linearization of the Monge—Ampere
equation leads to the integral identity

* 2, \=112, (1) (12, \—172,,(2)
. 0 )
(1.12) /v tr {(D?uo)~ "' D*v'" (D?ug) "' D*v'? } da
Q

where ug is the solution to (1.3) with zero Dirichlet data, and tr(A) denotes
the trace of a matrix A. Here v) and v(?) are CGO solutions of the first
linearized equation of (1.3), and v* is a CGO solution of the corresponding
adjoint equation.

The number of derivatives versus solutions in the integral (1.12) makes
classical CGO constructions and asymptotic arguments insufficient in this
context. For this purpose, we refine the earlier CGOs by deriving a polyno-
mial expansion in h for their correction terms when the associated phases
do not have critical points. Moreover, the asymptotic analysis ultimately
yields a PDE of the form

(1.13) 9(Adc(2) + a(z2)c(z)) = ﬂ(z)gil('y(z)c(z)) + H(z),

with a nonlocal lower operator 5_1, where A # 0, «,f3,~ are possibly
complex-valued functions, and H is a holomorphic function. Here, c is the
unknown, and we want to determine ¢ = 0. To address this difficulty, we
establish a unique continuation property (UCP) via a Carleman estimate
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for the equation (1.13), where the UCP holds only when H is holomorphic
(see Section 6). This is a delicate result, and allows us to conclude that the
conformal factor is identically 1, thereby guaranteeing the unique recovery
of the source F'.

1.2. Organization of the article. Section 2 presents the preliminaries: basic no-
tations from complex analysis, local well-posedness results for (1.3), and the higher-
order linearization framework. In Section 3, we prove a boundary determination
result for solutions of (1.3), which allows us to transfer the DN map from (1.3) to
its linearized equations. Section 4 shows Theorem 1.4, that is, the diffeomorphism
relating the metrics is the identity, and the metric can be uniquely determined
only up to a conformal factor for an elliptic equation of non-divergence form. In
Section 5, we present CGO solutions for the first linearized equation and carry out
a refined asymptotic analysis of the remainder terms. In Section 6, we prove a
UCP for a PDE with nonlocal lower order perturbations. This UCP, together with
the CGO solutions, is applied in Section 7 to show that the conformal factor is
identically one, via the integral identity of the second linearized equation. Finally,
Section 8 combines all these results and completes the proof of Theorem 1.2.

2. PRELIMINARIES

In this section, we will prepare several useful notations and tools for the study
of the Monge-Ampere equation.

2.1. Notations, function spaces and some fundamental tools.

2.1.1. Notations in complex analysis. Let us introduce the following standing no-
tation in this article, which is used to identify R? = C. The differential operators
V = (0z,,0z,), 0 and 9 on C, which are given by

0 1 . = 0 1 .
1) =0 =g =5 (O —i0h), D=0z = o= 3 (O +i0),
where z = x1 + iz € C, z = x1 + izg with z1,29 € R and i = v/—1. In addition,
let us use Oy = Oy to simplify the notation, for j = 1,2, then direct computations
yield that

(2.2) h=0+09, 9,=i(0-0),
and
7 -2 = i(af + 200y, Oy — 02, — O + 20,0y + 02,) = 10, Oy
Note that the Hessian of any C? function f = f(x) = f(x1,22) can be written as
=\ 2 =2
91 8 (0+9)° i(*-9)
2.3 D? :(” 12) = i _ 2);
( ) f 812 822 f i<62782) *(3*8)2 f( )

where we identify z = 2 +izy € C. In particular, as ® is holomorphic (i.e., 9® = 0),
one can obtain

=\ 2 =2
0+0 i(02—0 i
(2.4) D2® = ( 22 '( 2 P = (1 ! )a%,
i(-9) —(2-9) -1
and ¥ is antiholomorphic (i.e., 9¥ = 0), we have

9+9)° i(0?-9 N
(2.5) DU = i((82+<’)92) ((88)2 fo:(_li _1>a\11.



8 T. LIIMATAINEN AND Y.-H. LIN

Therefore, the Hessian (2.3) can be written as
(0+9)° i(0*-d

( R2 =2

i(0°-2") -(0-9)

where A, B are matrices given by

(2.7) A= G i1> and B := <1i 1)

are derived from (2.4) and (2.5), and we used 400 = A. Here, I5y> denotes the
2 x 2 identity matrix. These notations will be used throughout the article. In
particular, the formula (2.6) is crucial for the asymptotic analysis of the second
integral identity.

2

(2.6)  D*f = f =A% f + BI f + 2Lry200f,

2.1.2. Function spaces. Let us introduce the notion of function spaces that we use
in this article. The notation C*%(K) denotes the Hélder continuous space, for some
compact set K C R?, where k € N U {0} denotes the k-th order differentiability,
and the exponent a € (0,1). It is also known that C*<(K) is an algebra, in the
sense that

luvllere iy < Clullore imllvllze ) + Il o @) 191 g e, )

for some constant C' > 0 independent of u,v € C**(K). It is known that C*(K)
is a Banach space.

2.1.3. Matrices computations. We also collect several useful properties for matrix
computations. Let us first recall the Jacobi formula for a matrix, which is given by

d _ L dA(t)
(2.8) et A(t) = (det A() tr (A1) =22,
for any differentiable n x n matrix-valued functions A(t). Moreover, it also holds
29) LA = ~ADA AT,

for any differentiable matrix A(t). These formulas will be used in the forthcoming
analysis to address our problems.

2.2. Well-posedness. Let us establish the (local) well-posedness of (1.3) and prove
the continuous dependence of solutions on the Dirichlet data. Following the ap-
proach in [Figl7], consider a nonempty, bounded, and uniformly convex domain
Q1 C R2. Since the source term F is bounded away from zero, the solution u to
(1.3) is convex in 2. Moreover, under these assumptions, one can obtain improved
regularity results for certain classes of solutions.

Define the nonlinear differential operator

Q(u) := det D*u.
Our goal is to prove the following result regarding the solvability and stability of
solutions to the equation involving Q(u).
Proposition 2.1 (Well-posedness). Let Q C R? be a uniformly convexr domain
with C°°-boundary 0N2.
(i) Given o € (0,1), let F € C%*(Q) with F(x) > co > 0, for some constant
co. Then there exists a unique convex solution ug € C*+*(Q) of

(2.10) det D?ug =F  in Q,
ug =0 on 09.
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(ii) There exists constants §,C' > 0 such that for any ¢ in the set B;s(09) given
by (1.7), there exists a solution u € CH*(2) of

(2.11)

det D>°u=F inQ,
U= on 09,

which satisfies
w = uollaa@ < Cllellcsaan),
where ug € CH*(Q) is the conver solution to (2.10). Furthermore, the
solution u is unique in the class {w € C**(Q) : |w — wollcaegm) < Co}
(i) In particular, if F € C®(Q) and ¢ € Bs(00Q), the solution u of (2.11)
belongs to C>(Q). In addition, there exist C*°-Fréchet differentiable maps
S:Bs(0Q) = C™(), ¢ uy,

(2.12)
A Bs(082) — C™(09Q), @+ uuy|yg -

Proof. For (i), as the Dirichlet boundary value vanishes, since 0 < ¢g < F €
C?2(Q) in Q, using the method of continuity in [Figl7, Theorem 3.4] and [Figl7,
Remark 1.1], there exists a unique convex solution ug € C*%(Q) of (2.10). More
generally, if ' € C*(0Q), then there exists a unique solution u € C*+2:%(Q) solves
(2.10), for any integer k > 2.

For (ii), let us prove the existence of solutions to (2.11) by the implicit function
theorem for Banach spaces (see [RR04, Theorem 10.5]). Let

X :=C*(0Q), Y :=C"(Q), Z:=C*>*Q)xCh*(00)
be Banach spaces. Consider the map
(213) DX x Y_>Za (I)(QO,U) = (Q(U),U|ag _410)7

We want to show that the map ® enjoys the mapping property (2.13). This can be
seen since the map

C**(Q) 3 u = Q(u) = det D*u € C**(Q),

where we used det D?u is a polynomial in dypu, for a,b = 1,2 and C%%(Q) is an
algebra. For the same reason, the mapping ® is C*° smooth in the Frechét sense.
Now, using the equation (2.10), we have

®(0,uo) = (Q(uo), uols) = (0,0),
and the partial differential operator is given by
0uP(0,ug) : Y — Z,
9u®(0, ug)v = ((det D?up) tr ((D*uo)~"D?v),v|a0),

for any v € Y, where we used the Jacobi formula (2.8) for Q(u).

Since ug is convex with det D?ug > 0, it is known that D?uq is a positive definite
matrix-valued function. Then tr ((D2uo)_1D2 ) is a second order elliptic operator
of non-divergence form. Thanks to F' > 0in Q with F' € C%%(Q), and the ellipticity
of tr ((D?ug)~'D? - ), using the results [GT01, Chapter 6], we want to show the
map

Ou®(0,u9): Y = Z, v (Ftr ((D2U0)_1D2U),U|aﬂ)
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is a linear isomorphism. On the one hand, it is easy to see that the function
(det D%up) tr ((D?*ug) ~*D?v) € C**(Q) for any v € Y. On the other hand, consider
the Dirichlet problem

(2.14) {th ((D*uo)~'D%) =G in Q,

v=¢ on 0§,

which is equivalent to

(2.15) {tf ((D%ug)™'D*) =% inQ,

V=0 on 01},

since F' > 0 in Q, where v|gpq = ¢ € C**(9Q). If G € C**(Q), then & € C>*(QY)
because of F' > 0 and F € C*%(Q). Since the equation (2.15) has no zero order
coefficients, by [GT01, Chapter 6], there exists a unique solution v € C%%(Q) to
(2.15). Moreover, applying the (global) Schauder estimate (see [GT01, Chapter 6])
again, one can see that the solution v € C*%(Q) of (2.14).

Finally, via (i) and (ii), one can see that if F' € C°°(Q) and ¢ € Bs(912), then the
corresponding solutions ug and u to (2.10) and (2.11) are C°°(Q)-smooth functions
(the integer k > 2 in (i) can be arbitrary in the argument). Next, using the implicit
function theorem for Banach spaces (for instance, see [RR04, Theorem 10.5]), there
exists § > 0 and a unique solution map

S: Bs(09) = C=(Q), ¢+ S(yp),

such that S(0) = ug and ®(p, S(p)) = 0, for all ¢ € Bs(9N), for any sufficiently
small § > 0. Let u := S(¢), since S is Lipschitz continuous with S(0) = ug, then
there must hold

[l — u0||C4,a(§) < C”‘PHC‘*'O‘(C’?Q)'

Moreover, the solution map S is C'*° in the Frechét sense, and since the normal
derivative is a linear map, we have that (iii) holds. This concludes the proof. O

Thanks to (2.12), the (local) well-posedness ensures that one can develop the
higher order linearization scheme for the Monge-Ampere equation.

2.3. Higher order linearization. With the well-posedness of Proposition 2.1 at
hand, it is known that the equation (1.3) admits a unique solution u € C*%(Q)
provided that u|gpn € Bs for sufficiently small 6 > 0. Consider the boundary data
v = ¢ in (1.3) to be of the form

(216) Ye = 61(;51 + €2¢2 on 69,

where € = (€1, €2) with sufficiently small parameters |ex|, and ¢y can be any suffi-
ciently smooth function on 99, for k = 1,2,. With this parametrization at hand,
the corresponding solution u of (1.3) can be expressed as u.(z) = u(x;e). In ad-
dition, let us write the solution wu,. of (1.3) with the Dirichlet data (2.16) of the
form

1
(2.17) ue(x) = ug + €1v1 + €2va + 56162’[0 + 0(63)

as an asymptotic expansion when € — 0. The notation O(€?) is the Bachmann-Landau
notation. Notice that we have the well-known Jacobi formula (2.8) for the deter-
minant of matrices. In the following, we employ this formula to derive the corre-
sponding linearized equations.
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2.3.1. The first linearization. Since the unknown source ¢ is independent of €, let
us denote u. of the form (2.17), which is the solution to (1.3) with the Dirichlet
data (2.16). By differentiating (1.3) with respect to €, and combining with the
Jacobi formula (2.8), we have

(det D2u,) tr (D2u.)” ' D2(9eul)) =0 in Q,

8ekue = ¢ on 89,
for j = 1,2. In particular, as € = 0, there holds

(det D?ug) tr ((D2U0)_1D2’U(k)) =0 inQ,

o) = ¢y, on 0f).

(2.18)

(2.19)

where
up = u(z;0), and " = 9. | _,ue,

for k = 1,2. Moreover, it is easy to see that wug is the solution to (1.3) with zero
boundary data, i.e.,

(2.20) {det D?yy=F inQ,

ug =0 on Of).

Now, by plugging (2.20) into (2.19) and using F' > 0 in 2, we obtain a linear second
order elliptic equation®

(2.21)

ugbaabv(k) =0 in Q,
v ) = ¢y, on 012,

which is of the non-divergence form for k = 1,2, where

b _(p2, \!
(u§ )1§a,b§2 = (D*uo) .
By knowing the Cauchy data of (1.3), the Cauchy data {v|sq, O,v|aa} is also known.
Then we try to solve the inverse boundary value problem for (2.21), and our goal
is to recover the matrix ug®. By the positivity of ¢, even with the boundary data
f = 0, we still have det D?ug = F > 0 in ©, which implies (D2u0) is also an
invertible matrix. If we can recover the inverse matrix (ugb)l < , then F' can be
<a,b<2
simply recovered by using F' = det(D?uy) in .
In what follows, let us use the notation
(2.22) g? = ugb in Q, for a,b=1,2,
then one can derive
900" =0 = /]glg®0uv® =0
= 8a( |g|g“babv(k)) — aa( |g\gab)8bv(k) =0,

for k = 1,2, where we used |g| = det(g) = det(gqp) > 0 in 2. Hence, we can rewrite
(2.21) into

(2.23) {(Ag +X,-V)o =0 inQ,

o) = ¢y, on 0},
for £k = 1,2, where

1
(2.24) Ay =——=0.(V19l9"°0s) = g**0ar — X0,

VIl

1Th]roughout this work, we used the Einstein summation convention that A%B,, =
E?:l AgpBap and A®PC, = Zi:l A%b(C,, for repeating indices. Any repeated indices will be
regarded as a summation with respect to a certain index.
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stands for the Laplace-Beltrami operator, and

Xy = (X,(x), X} (2)) : Q= R?,

(2.25)

12
Xbi= a(Vglg®®), for b=1,2,
g /|g| {; ( )

which denotes the vector-valued coefficient of the first order term. We will adapt
the above standing notations (2.24) and (2.25) in the rest of this paper.

2.3.2. The second linearization. Consider the Dirichlet data of the form (2.16) in
(1.3), and let us rewrite (2.18) as

{tr ((D?u,) "' D2(0quc)) =0 in Q,

(2.26)
86ku5 — ¢ on BQ,

for k = 1,2, where we used det D*>u. = F > 0 in Q. Differentiating (2.26) with
respect to ¢, (for k # £) again then direct computations yields that

0= 0., { tr ((D*u) " D*(0eyuc))}
= [tr (9, (DQue)_l)D2 (Deyue) + tr ((D2u€)_ 0., D? (Oeyue))]
= —tr ((DQuE)_1D2 (Deyue) (Dzue)_lD2 (Oeyue))
+tr ((D?u) " D202, ),

€1€2 €

(2.27)

where we used the fact (2.9). Inserting e = 0 into (2.27), we can obtain the second
linearized equation as

(2.28) tr ((DQUO)_lDQw) =tr ((DQUO)_lDQU(l)(DQuO)_lDQW(Q)) in €,
. w=20 on 01},

where w = 82| _, ue, and we utilized det (D?*u.) = F > 0 in Q. Similar to the

first linearized equation (2.21), we can rewrite (2.28) as

{(—Ag + X, V)w =tr (¢ (D*W) g7 (D?v?))  inQ,

(2.29)
w=20 on 01},

where g and X are given by (2.22) and (2.25), respectively. Let us emphasize again
that v is the solution to the first linearized equation (2.21) for k = 1,2.

3. BOUNDARY DETERMINATION

In this section, we derive the boundary determination for the Hessian D?uq on
%) from the DN map under the additional assumption that the source F' is known
on the boundary. Presumably, this assumption can be removed by considering
standard-like boundary determination techniques for the first and second linearized
equations.

Lemma 3.1 (Boundary determination). Adopting all assumptions in Theorem 1.2,
let ug € C°(S2) be the solution to (2.20). Suppose that F is known up to second
order on the boundary, then D5u0|aQ can be determined by Ap(0), where f =
(B1,82) € (NU{0})? is a multi-indez, with |3| = B1 + B2 < 3.

In other words, let Fy, F» € C°°(Q) be positive sources, and suppose that Fy and
Fy5 agree up to second order on the boundary, then

Ar, (0) = AR, (0) on 09
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implies Dﬁu(()l) 00 = Dﬁuéz)‘ém, for all|5| < 4, where u(()j) € C>(9Q) is the solution
to

51) det DY) = F;  inQ,
u((f) =0 on 09,
forj=1,2.

Proof. We aim to show that for any point xg € 92 and any multi-index § with
|B| < 4, the derivative DPug(xg) can be determined using the data F|aq with its
boundary derivatives up to order three, and the Dirichlet-to-Neumann map A g(0).

Without loss of generality, we assume zy = 0. Near x(, we parameterize the
boundary 9 locally as the graph xs = ¢(z1), where ¢ is a convex function defined
for 1 € (=4,6), for some § > 0. We further assume ¢(0) = ¢’(0) = 0, which can
be achieved via rotation and translation of coordinates.

Since 2 is uniformly convex and the source function satisfies F' > ¢g > 0, the
solution uy € C°°(Q) is strictly convex by Proposition 2.1. In particular, the
Hessian matrix D?uq is positive definite in €, which implies:

(3.2) O11ug > 0 in ﬁ,

by the smoothness of ug. Meanwhile, since 0 is the tangential derivative at 0 on
09, with the given information of ug|aq,

Since up = 0 on 052, we have ug(x1, p(x1)) = 0 for all 1 € (—6,0), as well as its
tangential derivatives. Thus, differentiating this identity twice with respect to x1,
we can compute

d2

0=-——
dz?

ug(w1,p(71))

Xy =0

tangential derivative
= (91110) (0) + 2(D1210) (0)¢"(0) + (D22u0) (0)(¢'(0))
Using ¢'(0) = 0, this simplifies to
(D11u0) (0) + (D2u0) (0)" (0) = 0.

? 1+ (Bau0) (0)¢" (0).

Hence,

(311U0) 0) = - (62U0) (0)410”(0)-

The right-hand side is known: 0dau(0) is obtained from the DN map Ap at zo =
0 € 99, and ¢"(0) is the curvature of the boundary at xg = 0, which is computable
from the parametrization. Thus, (811u0) (0) is determined.

Next, it is known that Ap provides d,ug on 9Q and ug = 0 is known on the
boundary, daug is known on the boundary. Consequently, d12ug(0) is also deter-
mined. Moreover, the Monge-Ampeére equation (2.20) gives:

(81110) (0) (Ba20) (0) — (d12u0)? (0) = F(0),
which yields
F(0) + (d12u0)* (0)
(O11u0)(0)
This is valid due to the positivity of (011u)(0). Therefore, all second-order deriva-

tives (9;;u0)(0) with 4, j € {1,2} are now determined. Since zo € Q was arbitrary,
this argument applies uniformly along 052, and we conclude that:

(822 uo) (0) =

Ontolgn, O12uolyn,  O22uolsg

are determined.
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We now proceed to third-order derivatives. Since daaup|aq is known, we may take
a tangential derivative along 9 to recover d122uo(0). Meanwhile, differentiating
the Monge-Ampere equation with respect to x5 yields:

811’(1,0(0)(9222160 (0) + 8211@60 (0)822’11@(0) — 2812U0(0)3122U0(0) = 82F(0)

Here, 05 F(0) = —0,F(0) is known by assumption, and all terms except da22u0(0)
are already determined. Solving for 922010 (0), we obtain:

_ 02F(0) — 0211u0(0)922u0(0) 4 201210(0)d12210(0)
8222’(1,0(0) = alluo (0) .

Again, this is valid due to (3.2). As a result, all third-order derivatives Ogpcto(0),
with a, b, c € {1,2}, are now known.

Continuing this process, we can determine ug up to fourth order on the bound-
ary by taking more tangential and normal derivatives from the preceding identities.
This completes the proof that all fourth-order derivatives of ug at any boundary
point g € 9 can be determined from the data F|sq with its higher order deriva-
tives on 91, and Ap. O

4. UNIQUE DETERMINATION OF THE METRIC

Recall that our goal is to recover the Hessian of ug in €2, where ug is the solution
to (2.20). Once the Hessian D?uq is determined, the source function F is also fully
determined. Let us adopt the notation introduced in (2.22).

Thanks to Theorem 3.1, we already know the boundary values of the metric
g = D?uq, i.e., glpo, which in turn implies that the conormal derivative Oy, Vg
(associated with the operator —A) is known.

Using the first linearized equation of the Monge-Ampere equation (see Sec-
tion 2.3), we define the DN map A’g corresponding to the boundary value problem

(41) —Ag+X,-V)v=0 1in Q,
’ v=20 on 0f),
as
(4.2) A; 1 C2(09Q) — C(09), ¢+ 0y, vy,

where vg € C°(€) denotes the solution to (4.1).

To proceed, we prove the following result, which shows that the DN map of the
fully nonlinear Monge-Ampere equation determines the DN map of its linearized
counterpart (4.1).

Lemma 4.1. Adopting all assumptions in Theorem 1.2. The DN map A of (1.3)
(see the definition (1.4)) determines the DN map A} of (4.2), where g = D?uq is
the Hessian of ug (uo is the solution to (2.20)).

Proof. The proof relies on boundary determination. By Lemma 3.1, the DN map
Ar determines D2u0|ag. Moreover, we observe that

Vulsq is determined, where w is the solution to (1.3) with u|go € Bs(09).

In addition, Proposition 2.1 implies that Vu|sq is also determined. Hence, we
obtain the complete information of the DN map

/.
Ag : gf) — 8l,gv¢|aﬂ y
which establishes the claim. O



INVERSE SOURCE PROBLEM FOR THE MONGE-AMPERE EQUATION 15

From this point onward, our goal is to solve the inverse problem of recovering the
metric g and the vector field X, from the DN map A{ associated with the linearized
equation (4.2). To facilitate this analysis, we introduce the following notation.

Let J = (JY,J%) : Q — R? be a C! diffeomorphism. Let g = (gab)1<ab<2
denote a 2 x 2 matrix-valued function representing a Riemannian metric on  (not
necessarily the Hessian matrix D?ug, and let X = (X!, X?) be a smooth vector
field. Under the coordinate transformation J, the pullbacks of the metric, vector
field, and function v are defined as follows:

Tg= (V) (g0 J)VJ,
(4.3) JX =(JHX=V(J HXolJ),
J'v=volJ,
where V.J denotes the Jacobian matrix of J, (VJ)7 its transpose, and (J~1), the

pushforward by the inverse of J. With these notations in place, we now proceed to
analyze the first linearized equation.

4.1. Determination up to isometry and conformal factor. Recalling that
the first linearized equation of the Monge-Ampere equation is of the form (2.23),
then we have the next result.

Lemma 4.2 (Simultaneous recovery). Let Q C R? be a bounded open simply con-
nected domain with C*°-smooth boundary 0S). Let A;;,»,Xj be the DN map of

(44) {<A9J+XJV)’UJO mQ,

v;=¢ on 012,
where X is a vector field, for j = 1,2. Suppose that
Ay x, (9) = Ay, x,(8), for any ¢ € C*(09),

then there exists a diffeomorphism J : Q — Q with J|pq = 1d, and a conformal
factor ¢ > 0 with clgpq = 1 such that

(1)
(4.5) gi=cJ*gs and X, =c¢'J*Xy, in Q.
(ii) Moreover, if v;, j = 1,2, are solutions to (4.4), there holds
v = J 0,.
Here, all notations in (4.5) are given in (4.3).

Remark 4.3. Note that the vector field X; in the above lemma could be independent
of the metric g;, for j = 1,2. Hence, we do not use the notation X, given by (2.25)
to denote the vector field in (4.4) for j =1,2.

Proof of Lemma 4.2. For (i), by [IUY12, Theorem 1.1], there is a conformal map-
ping J from  to itself with J|pq = Id such that

g1 =cJ g2 in Q,
for some smooth conformal factor ¢ > 0 with ¢|sqg = 1. Inspection of the proof

of the theorem, see [IUY12, Eq. (6.6)], also shows that V.J|pq = Iax2 (the 2 x 2
identity matrix). Let ve be a solution to

—Ag2U2 + X5 -Vuy =0in Q.

Let us denote
52 — V2 O J,
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then vy solves
Ay U = Apgeg,Ua = C_lJ*Agz’Ug

= L ( Xy - V) = ¢ H(J* X2)V(J*vg)

=c Y(J*X3) Vi in Q.
Since J|go = Id and VJ|sq = Iaxa, we also have that

viloo = V2lan  and  Jyvilaq = 0,02|00.
Here we also used Aj = AL. Thus, the DN maps of the equations
—Agv1+X1-Vop =0in Q

and

—Ay Uy + ¢ HJ*X) - Vi =0 in Q
agree. Since () is assumed to be simply connected, by [Nur24, Lemma 4.2] (based
on [Tz0l7] or alternatively [GT11b]), we have

N J*X,) = X1 in Q.

Thus, we have (4.5).

For (ii), since v; and U2 now satisfy the same elliptic equation (without zeroth
order term), we have v; = J*vs. U

We mention that a more general version of Lemma 4.2 on Riemannian surfaces,
based on the proof in [CLT24], will appear in a work by the first-mentioned author.

4.2. Determination of the isometry via the Christoffel symbol. In this
section, we want to claim that J = Id in §2 by using a coupled system of equations.
Thanks to Lemma 4.2, we already know that there is an isometry J :  — Q with
J|oq = Id, which relates the metrics g; and g2 via (4.5). Therefore, one can apply
the assertion (4.5) in Lemma 4.2, which shows that
g1=cJ*gs and X, =c 'J*X,, in Q
where X, is the vector field given by (2.25) with components X;j, for i,7 = 1,2.
In addition, let I'(g)%, be the Christoffel symbol associated with the metric g, which
is given by
; i (O9mk  Ogmi  Ogri ‘
r l::JM( - ) for 1<i,k,1<2,
(9l 29 ozt + dzk  dxm ort=t -
for a given metric g. We also note that

(4.6) Xy =—=g"T(9)

by standard formulas in Riemannian geometry, where X is given by (2.25).
Notice that the Christoffel symbols transform under conformal scaling

g—g=e"yg,
is
L(§)i = T(9)iy + 01010 + 6{0k0 — grid'o.
Thus, writing ¢ = €27, or 0 = %log ¢, where ¢ > 0 is the conformal factor, we have

F;;l(gl) = FZZ(CJ*QZ)

(4.7) _ 1 . . i
=T%,(J"g2) + 5(5,@61 log ¢ + 60k log ¢ — (g1)kigy 0; logc).

. 1 fori=k
Here, 0;, = ort . denotes the Kronecker delta.
0 otherwise
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Using Lemma 4.2, we can prove Theorem 1.4. For readers’ convenience, let us
recall Theorem 1.4 as follows.

Theorem 4.4. Let Q C R? be a bounded open simply connected domain with C*-
smooth boundary 0. Let A;j be the DN map of

(4.8) 95°0apv; =0 in Q,

v;=¢ on 09,
for 5 =1,2. Suppose that

Ay, () = Ay, (8) forany ¢ € C>(0Q),

then there exists a conformal factor ¢ > 0 with c|loq = 1, such that
(4.9) g1 = cga in .
Remark 4.5. In Theorem 4.4, it is not necessary to assume that ) is uniformly
convexr. However, it remains unclear whether the assumption that € is simply con-
nected can be removed. The difficulty lies in the fact that the proof ultimately relies
on the Poincaré lemma, invoked through [Nur24, Lemma 4.2]. Thus, the theorem
may be viewed as a realization of the anisotropic Calderdn problem for elliptic equa-
tions in non-divergence form.

Proof of Theorem 4.4. Let us divide the proof into several steps:
Step 1. Initialization.

First, we rewrite (4.8) in the form
(—Agj +ng)vj =0 in
v =¢ on 052,

where X, is the vector field given in (2.25) with g = g;, for j = 1,2. By
Lemma 4.2 (i), there exists a diffeomorphism J : Q — Q satisfying J \39 =1d
and a conformal factor ¢ > 0 with ¢|go = 1, such that

(4.10) g =cJ*g, X, =c'JX, inQ.
Step 2. Unique determination of the diffeomorphism.

We next claim

(4.11) J=1din Q,
or J(z) =z for all x € ﬁ To this end, let us write T = J(x) and use the typical
convention to denote by ~— the components of the differential of the inverse of J
(evaluated at J). We have the standard Christoffel symbols transform as

- ox' 07 oz° o%?zm™ Ozt
4.12 T (J*gs) = —— —1rm olJ
(4.12) (T 92) oT™ dzk Ot ab(92) © T + Ozkdal 9zm
Multiplying (4.12) by the matrix (J*g2)*, and applying (4.6), we can obtain

; 02" o%z™  ox'
4.13 X, X oJ+ (JFga)" —.
(4.13) 9 = ggm T T92)" 5 kg
y (4.7) and (4.12), one can find
; oz’ 0z ox° o%z™ Ozt
].—‘z = = T L =7 J
i(91) oxm dxk Ox! ab(92) 0 T + Ozkdzl oFm

1 . ) ;
+ 3 (5,281 log ¢+ ;0 logc — (gl)klgljaj log c).
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By (4.6), (4.7) and (4.13), one has
(J*g2)"Thi(g91) = (J792)"'Thy(cT " g2)

By g1=cJ*g2
= (J"92)" " Tk (J"g2)
3,
(4.14) + %( *ga) M (5,281 logc + 670, log ¢ — (gl)klgijaj log c)
= (g X0+ U0 S )
+ %( *gg)kl (5,’;81 logc + (5ka logc — (gl)klgijaj log c).
Via (4.5) and (4.6), the left-hand side of (4.14) is
(4.15) (J*92)"'Thi(91) = cgi'Thy(91) = —c X,

On the one hand, plugging (4.15) into (4.14), and using the second relation in
(4.10), i.e., X, = ¢ 1J*X,,, we obtain

(J*XQQ )Z = (CXgl )Z

. o O%Em o
= e o 0 TR e o

1 ) ) iy
- i(J*gg)kl (6,01 log ¢ + 6; 0y log ¢ — (g1) gy’ 9; log ).

(4.16)

On the other hand, via (4.3), we also have
_ox'
- 07m
so we can insert (4.17) into the left-hand side of (4.16), which can be canceled by
the first term in the right-hand side of (4.16). Thus, one can obtain

(4.18)

o%z™ Ozt

J* kl -
(J792) dxkdxl dxm
Finally, using g1 = ¢J* g2 to the both sides of (4.18), we have
ght o%z™  Oa’ _ lgkl
' O0xkoal oz 27!
which can also be written in an equivalent form

o 0%Fm 19Fm

(4.17) (J*X,,)" XMoo J:

1 . ) ii
= §(J*g2)kl (5,’631 log ¢ + 6,0 log ¢ — (g1) kg7’ 9; log c).

(4.19) (5};6; logc + 670y log c — (gl)klgijaj log c),

(4.20) 91 ok ol 2 op (29?61 logc — Qgijﬁj log c) =0,
where we used gf'(g1)r = tr(Iz) = 2 for the last term in the right-hand side of
(4.19).
Thus, for the individual m = 1,2, the equation (4.20) implies that
kl_9%a™  _ :
(4.21) 91 prger =0
" =™ on 01,

which is a second order elliptic equation of non-divergence form, where we apply
Lemma 4.2 to have J]gpq = Id, so that 2™ = 2™ on 99 for m = 1,2. Therefore,
by the uniqueness of the boundary value problem (4.21) (for example, see [GT01]),
this implies that ™ = 2™ in Q for m = 1,2 (it is easy to see that ™ is a solution

to (4.21)). This infers that J(x) = z in  as we wish. This proves the claim (4.11).
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Step 8. Summary.

Finally, using (4.10), we know that
g1 =cJ ga = cgo in Q,
—_

By J =1d

which proves the assertion (4.9). ]
Remark 4.6.

(i) From (4.20), the mapping J(x) satisfies the elliptic equation (4.21) without
requiring knowledge of the conformal factor ¢ > 0.

(i) In Theorem 4.4, convexity of Q is not needed; however, simple connected-
ness is essential for determining Xg.

The remainder of the paper is devoted to recovering the conformal factor ¢ > 0
in © using suitable CGO solutions for the first linearized equation.

5. COMPLEX GEOMETRICAL OPTICS SOLUTIONS

This section is devoted to constructing CGO solutions for the first linearized
equation (2.23) and its adjoint equation (7.2). We also derive expansion formulas
for the correction terms and provide estimates for the related oscillatory integrals.

5.1. Isothermal coordinates. Recall that the isothermal coordinates (see, for
example, [Ah166]) correspond to a change of variables x : © — Q := x(€2), where we
denote by x the associated quasi-conformal mapping. In what follows, we introduce
isothermal coordinates so that the metric g; takes the form

g1 = plaxa,

for some positive scalar function p = p(x), which will play a key role in our subse-
quent analysis.
Using Lemma 4.2, we can rewrite the equation (4.4) (in the case j = 1) as

1 ~
——Av; +x* -Vvy =0 inQ,
(5.1) p vi+x*Xg, - Vv in

vi=¢ox on 99,

where vy := vy o x. This reformulation is also instrumental in the identification of
the conformal factor ¢ in €.
Moreover, equation (5.1) can be further simplified to the standard form

{—Avl +Xy, -Vvi=0 in (NZ,

5.2 '~
(5.2) vi=¢oy on 09,

for some vector field X,, depending on g1, X, and p.

Since we have already applied the change of variables to transform all indices
from 2 to 1, we now consider the adjoint problem corresponding to equation (5.2).
Let v} denote a solution to the adjoint equation:

{Av; FV- (X, vi) =0 in,

(5.3) 3
vi=¢ox on 02,

where ¢ is an arbitrary function.

Using Lemma 4.2, we may also perform the same change of variables for the
adjoint equation (7.2) with j = 2, while assigning the Dirichlet boundary condition
to be identical to that of v} o5 By the uniqueness of solutions to elliptic equations,
this yields that the adjoint problem for j = 2 also takes the form of equation (5.3).
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Hence, we denote the unified form of the adjoint problem in isothermal coordi-
nates as:

(5.4) {AV*—l—V-(XQV*):O in €,

vi=¢ox onaﬁ,

where ¢ = g1. From this point forward, all notations introduced above are fixed
and will be used consistently throughout the remainder of the paper.

5.2. The construction of CGOs. For X € C*(M,T*M), we recall the con-
struction of [GT11b] of CGO solutions to

(5.5) (=A, 4+ X -V)v=0on M.

Here X - Vv = g(X, dv).
We want to show that the desired CGO solutions of the linear equation

(5.6) (—Ag+ X -V)v=0in Q,
and its adjoint equation
(5.7) —Ayv—V-(Xv)=01in Q,
are of the form

Fgleq’/h(a +7),

for (small) h > 0, where X : Q — R? is a C°°-smooth vector field. Here, ® = ®(2)
be is holomorphic Morse function, r is the corresponding remainder term, F4 = e'®,
where « is a function that solves Oa = A, and A will be given by X. We have a
similar ansatz for CGOs with antiholomorphic phase, see Lemma 5.3.

The construction of solutions is based on the methods developed in [GT11a]
and [GT11b]. Although our setting only requires the construction within global
holomorphic coordinates, we follow the general framework used in these references,
which are formulated on general Riemannian surfaces. This choice facilitates cross-
referencing and provides a flexible foundation for future applications.

We begin by introducing the standard notations and definitions adopted in the
aforementioned works. Let ¥ be a Riemann surface compactly contained in an open
surface M. We extend the metric g and the vector field X smoothly to a larger
open surface M D M such that X € C°(M).

5.2.1. Calculus on Riemannian surfaces. The complexified cotangent bundle CT™* M
has the splitting

CT"M =1y M & T5 M
determined by the eigenspaces of the Hodge star operator x. In holomorphic coor-
dinates z = (w1, 22) the space T7 (M is spanned by dz and 7§, M is spanned by
dz, where

dz =dx1 +idzs and dz = dxq — idzs.

The invariant definitions of 0 and d operators are given as

0 = m0d and d = To,1d.
Then d = 0 + 0 and in holomorphic coordinates

Of =0.fdz, df =0=fdz,

where 0 and 0 are given (as in (2.1)) by

1 _ . .
0. =5 (O —i0s,) D=3 (O, +i0ss).
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By expressing dr; and dzrs in terms of dz and dz, a 1-form X = X; dxy + X5 dxo
in holomorphic coordinates can be written as

1 1
(58) X = §(X1 —IX2)dZ+§(X1+IX2)d§ =: X170—|—X071

so that m o X = %(Xl —iX5) and mp 1 X = %(Xl +iX5). Using the above formula
for X, we define B
8X = (1)(()717 8X = dXL().

In holomorphic coordinates, this is equivalent to
O(udz +vdz) =0vAdz, O(udz+vdz)=0uAdz.

The Laplacian is given by ~
—Ayf = —2i%00f.
(We note that we use the opposite sign for the Laplacian to [GT11a, GT11b].)

By [GT11b, Proposition 2.1], importantly, there is a right inverse 5_1 for 0 in
the sense that

(5.9) 99 'w=w for all w € CF(M, Ty, M)

such that & is bounded from L2 (T} M) to WP (M) for any p € (1,00). We have
analogous properties for the Hermitian adjoint of 9

9 = —ixd: W"P(T; M) — LP(M).
In holomorphic coordinates z, the operator 9" is just 0. We define
9, =R e FhE and B, =R eW/hg,

where € : WHP(X) — WLP(M) an extension operator for some M compactly con-
taining M and R is the restriction operator onto X. By [GT11b, Lemma 2.2 and
Lemma 2.3] we have for p > 2 and 2 < ¢ < p the following estimates

185" £l ogary < ORI Fllwoan s, o)

||5:z;1fHLq(M) < Chl/q”fHWl’P(M,Tl*yOMy

Moreover, there is € > 0 such that

195" Fll 2ary < 2N Fllwrscanzs oy

—*—1 €
195 Fll 2 ary < CRYZHEN fllwrsqan,rs gan)-

If ¢ has no critical points on M, we can obtain better estimates than (5.11) and
(5.10). Indeed, we have that for all f € C>(M; Ty, M),

(5.10)

(5.11)

(5.12) 5;1f _ Ré_le_mwhgf - %’Rg_l( (56_2iw/h) ;J;),

where for all w € D'(M; T, M), w/dy denotes the unique scalar function such

that 0 (w/0v) = w. In holomorphic coordinates, 2! has Schwartz kernel given
by (z — 2/)~'. Thus, writing (5.12) in local coordinates and integrating by parts

yields
g, = ezenih I T <62iw/ha (”)) |
209 2 oY
Consequently, in the case when @ has no critical points, continuity of gl
WP immediately gives the estimate

(5.13) 19, £, < Chll fllw.s,
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for p € (1,00). Similarly we have

185 111, < Chll fllwo-

If the holomorphic function ® has no critical points, we have by (the proof of)
[CLLT23, Lemma 3.5] to arbitrary order N € NU {0} the following expansion
1 o 1
(5.14) Dy (f) =€ 20NN " hIFI 4 BN, (GFN T,
j=1
where FJ, j € N, are defined iteratively by
Pt oo
2 0y

and

Fitl = 1;51” e C™.
2 9

Note that the functions F7 € C™, j =1,...,N+1in (5.14), are independent of
h. The expansion formula holds since 0 # 0 due to

2i0¢ = 0(® — @) = —0P,
which must be nonzero because ® is holomorphic. We have a similar formula for
0, f.
5.2.2. CGOs with holomorphic phase. The CGOs we next introduce have the same

form

v = F;lecp/h(a + 1),

as in [GT11b]. Here ® = ¢ + iYb is a holomorphic Morse function and a is a
holomorphic function defined on M. Moreover, the function F4 is given by
(5.15) Fy =€,
where « solves
da=A
with A = 7r0,1( - é ) = —%WOJX. Note that « always exists by (5.9).

The Laplace operator with a drift term and potential
L:=-A;+X-V+gq,

factorized as the magnetic Schrodinger operator

(5.16) L =2F 10 [F5F, ' 0Fa] +Q,
see [GT'11b, Section 5], where A and Fa are as before,
(5.17) Fy=e?,
and

i 1, 1

Note that while o solves da = A, @& solves
Oa = A.

We will apply the above in the case ¢ = 0, but we include the general case for future
reference.



INVERSE SOURCE PROBLEM FOR THE MONGE-AMPERE EQUATION 23

For concreteness and to illustrate how the computations using complex deriva-
tives work, let us verify (5.16). Let f € C°°, then one may compute

2P0 [FrFy O(Faf))
= 2P0 [F4F 0 f)]
= 2P [P4F '€ ((Af + Of)]
= 2P0 [Fx(iAf + 0f)]
= 2% FLIO[F4(iAf +Of)]
— i [iZA (Af +3f) + i(8A)f+iA/\8f+85f}
= —Ngf +2x (ANTf + ANOf) — 2 % (DA — AN A)f.

Here ANOf + ANOf =2Re(A N Of). Computing using holomorphic coordinates
z = (x1,72) we have by (5.8) that A = — (X1 +iX2)dz and consequently

ANOf = —%(X1 +iXy)dz A %(alf — 0 f) dz

= —(X; +iXo)(01f —i0af)dz NdZ

8
1
= Z(Xl + |X2)(81f - |82f) dxl A dIQ,
where we used dz A dzZ = —2idxy A dxs. Recalling that
(5.19) *dVy =1 and dVy = +/|g| dx = \/|g| dz1 A dz2,

we obtain

2% (ANOf + ANOf) =2%2Re(A A Of)
= g|7* (X101 f + X20f)

=9(X,Vf)
=X -Vf
Hence, by setting
Q=2ix(I0A—ANA)+q,
we have
Ay + X V4 q=2F'0 (FxF;'0Fa) + Q

as claimed. To have the formula (5.18), let us compute

Q—q=2i*(i0A—ANA)
= 240, E(X1 FiXo)dz A dz — 2i % i(X1 - ng)(ii(Xl + z‘X2))} dz A dz
= i[(ale + 02 X2) +i(01 X2 — Do X1)] * dz Adz — é(Xf + X)) xdz Ndz
:%V.X_3|X|2+%*dX,

which shows the identity.
Lemma 5.1 (CGO solutions). Let

1 _
V= —|Fal® and V:= §Q\FA| 2

where Fu and Q are given by (5.17) and (5.18), respectively. Then
v = Fgleé/h(a +75)
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solves the linear equation (5.5), where rj, is the remainder term given by

(5.20) rh=—0, V'sy
where
(5.21) sn="Y T}, (Va
3=0
with
5.22 T, =8, Vo, V.
v VO

Proof. Although it follows from [GT11b] of (5.5) that v is a solution, let us verify
that for concreteness. We compute

Lo — Qu=2F7'9" [FgF ' 0(e*/"(a+11))]
= 2P0 (FgFy e ory)
= 2P 10 (PP e e /My sy, ).
We have
Fszl _ |a ﬂoc _ |FA|_2
Thus
Lv—Quv= 2FZ_15* (ecb/hefmw/hsh)
= 2F2_1 9 (eg/hsh)
—_———
9 e®/h=0
= ZFileE/hg*s

—2F Y (8 (Va) +ZT36¢ Va))
= 2P P (Va1 VD,V Z T, (Va))

j=1
= —QFileé/hV (a+rp) — Qu,

since
—1 |FA|_2 — —|ae—|oz ia F 1
Thus, Lv = 0 as claimed. U
Let us next recall and derive estimates for the correction term rp. By [GT11b,
Lemma 3.1], we have
(5.23) 1Tl = ORYT) and | Tl oy g2 = O(RY279),
for any 0 < e < 1/2. We also have
(5'24) HThHleP*}WLP = O<h1/p) and HThHWL?an»? = O(hl/Z_s)’

for any 0 < € < 1/2. Indeed, if f € WP, we have for p > 2
125" Vo, V'l S NVESV | S B2 s

by continuity of 3 » - W and (5.10). For p = 2 the norm estimate in
(5.24) follows from the fact that 7T}, is uniformly bounded W" to Wbt r < 2 |
and standard interpolation result [BL76, Theorem 6.4.5]. By (the proof of) [GT11b,
Lemma 3.2] it then follows that for any € > 0 small enough

(5.25) Isull 2 + Irall g2 = O(RY/2¥),
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and similar to [CLT24, Section 4.1], we also have
sillo + Nl = O(RMEHer),

1
for all p > 2, where ¢, > 0 depends on p. Moreover, since 90  is a Calderén-
Zygmund operators, so one can use the Calderén-Zygmund estimate to derive

lrallge s 10wl [|Ora]],, = O@ P,

for all p > 2, where €, > 0 depends on p.
Before proceeding, we recall the Calderén-Zygmund estimate for ro (see, for
instance, [LW23, Section 3]), which yields

(5.26) |HD?ry|| 2 = O(h™1/2F¢),

for any sufficiently small e > 0 where H € CZ2({) can be arbitrary. To verify
(5.26), we apply the Calderén—Zygmund inequality (for example, see [GT01, Corol-
lary 9.10]) to the product of r, with H, obtaining

|ED?ral| o < [|D*(Hr)l| 2 + 2| VH @ Vra]| o + [[ra D H]| 2
< 00(Hry)|| 2 + O(h'/?*)
S 10 ) Iz + O(R/2+9)
1
S T llsnllzz + [9snllze + O(R'/2F2)
= O(h12+7),
where we have used (5.25) and (5.21) to conclude that ||0sp]| 2 = O(1).
5.2.3. CGOs with antiholomorphic phase. Next, we construct a CGO solution with
an antiholomorphic phase —®, where ® = ¢ + it is a holomorphic Morse function.

Since the coefficients of the linear equation (5.5) are real, we obtain a CGO with
an antiholomorphic phase by taking the complex conjugate of the CGO

Fgle_q)/h(a + )
given by Lemma 5.1 for the phase —®. This gives us a CGO of the form
T = Fye "1 47),
where Fx = €@ and by (5.1)

=0,V > T]0;7' (Va).
j=0
Here 1) is the imaginary part of ® as before and
Ty =) 'Vo 'V’
with
0, =R e /e and 957t = ROTTTMV/ME.

~T 6 -1 . . . .
(see also [CLT24]). Here 3*~! =3  in holomorphic coordinates. We also write

[ee]
(5.27) Thi=—0,"V'5, =) Tp05 ' (Va).

j=0
The remainder 7, enjoys the same estimates as r, (corresponding to holomorphic
Morse phase), hence, we do not repeat those estimates from the previous subsection.

Note that T}, is not exactly the same as T}, since we also changed the sign of ®.
However, T}, satisfies the same estimates as T, given by (5.23) and (5.24).
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5.2.4. Estimates and expansions for CGOs in the absence of critical points. Observe
that in the above construction, if ® has no critical points, we may apply the better
estimate (5.13) throughout the construction to get

lrallp + lIsnllp + lldrnll, < Ch,

for all p € (1,00) and for some constant C' > 0. In fact, we have even the following
asymptotic expansion formula for the correction terms associated with a phase
function that does not have critical points.

Lemma 5.2. Let r, and 7, be as above, and correspond to a holomorphic phase
without critical points. Let also N € N and k+1 <2, p > 2. Then, we can write

(5.28) rn, = hFp, + sz,p(hN), Ty = hFh + sz,p(hN),

where Fy, = Fy(z) and F, = Fh(x) are finite power series in h with C> smooth
coefficients depending only on x.

This lemma will be extremely useful when analyzing the integral identity of
the second linearized Monge-Ampere equation. The lemma implies that correction
terms of CGOs that have phases without critical points can be disregarded as lower
order terms in the asymptotic analysis due to the term hFy (or hEF},).

Proof of Lemma 5.2. Let N € N. We have
Ty : Wl’p — Wl’p

has an operator norm O(h'/P) for p > 2 and O(h'/27¢) for p = 2 by (5.24), where
T}, is defined by (5.22). We also note that
3,V W o W
with
L PR e e 0 /Y s T
where we apply [Tzol7, Proposition 2.3] with ' WP 5 WP, Recall also that

5;_11/ is uniformly bounded from L? to WP, using the above facts, then there is
K = Ky € N such that

=0, V'Y T}, (Va)

k=0
K
= -3,V ( N TFD, (Va) + O (hN)>
Ilz:O
=3, V'S TF,  (Va) + h ' Owen (V).
k=0

Thus, it remains to analyze the finite sum above.

We expand using [CLLT23, Lemma 3.5] as

N+1

—x—1 ; . B

3y (Va)=eXW/MV' Y " hiF 4 BN o Y (oFN T,
j=1
where the functions F7 € C°°(M) are defined recursively by
1 iVa i1 ;
=22 pitlo L g,
20¢’ 20y

Since 1 has no critical points, these functions are smooth. In the following, we
denote by
Fi [k ete.
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unspecified smooth functions in C*°, which may vary from line to line.
For each k > 0, we have:

TE (@, (Va)) = (@, Vo, V)@, (Va)
N+1
_ (5;71‘/5;1‘/,)1@(62@/;1 Z Wi 4 hN+181;1(6FN+1))
j=1
1 1 e
= (@, Va V) (ST WFT) 4 YT Op (1),
j=1
Now
—x—1_ ——1 k . N+l s o .
(@, Vo, V) (ST W )
j=1
P 1 1 1 1
=S w0, Ve, V)@, v, Ve
j=1

N+1
k—1x*—1

=3 W@, 'va, v e,
j=1

— i (a1, k=1, 9 hN+1 1 gl N+1g-1/ a7 N+1
=Y W0y VO, V)TV W FI 4 nN o (0FIN )
j=1 =1
N+1
= S W@, Ve, V) B 4 AN O (1)
Jl=1
N+1
— .= 2iW/h Z Ptk findenr 4 pNFLO (1),
Jiseeje1=1
Thus

K
rTh = —5;1‘/, Z T;fg;_l(Va) + hilsz‘p (hN)

k=0
K N+1
= — E 5’;1‘/1 (ezlw/h Z hj1+”.+jk+le1”.jk+l + hN+1OW1,p(1))
k=0 j17-~~,jk+1:1

+h 7 Oz (BY)
K N+1

=3 > W e BN Oy (1) + hT Oy (BY).
k=0j1,..,jr+1=1

The decrease of the pover of h in the middle term resulted from 5; Lowte o
W2P with norm O(h~1). Redefining N as N + 1 yields the first identity in (5.28).
The proof of the second identity is similar. O

To conclude this subsection, and for the readers’ convenience in the forthcoming
analysis, we now summarize all the CGO solutions introduced above.
Lemma 5.3 (CGO solutions).
(i) There exist CGO solutions with holomorphic phases

Fglleq)‘/h(l +7r1) and File® /M1 471)
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to the equations (5.6) and (5.7), respectively, where ®1 and ®* are holo-
morphic functions without critical points. Here, Fgll and FX} are smooth
non-vanishing function independent of h > 0, and r1 and r. are remainders
fulfilling (5.28).

(i) There is a CGO solution with an antiholomorphic phase

Py e /M1 4 7)

to the equation (5.6), where @4 is a holomorphic Morse function with critical
points. Here, Fz— is a smooth non-vanishing function independent of h > 0,
and To is the remainder fulfilling (5.27).

In Section 7, we will carefully select these phase functions ®;, ®5, and ¥, to

recover an unknown conformal factor ¢ uniquely.

6. CARLEMAN ESTIMATE AND UNIQUE CONTINUATION

In this section, A is a non-vanishing, possibly complex-valued function. We prove
a unique continuation principle (UCP) for solutions of

(6.1) A(Adc(z) + a(2)e(2)) = B(2)D ' (v(2)e(2)) + H,

1. . . .
where 9  is the standard Cauchy-Riemann integral operator and H is a holomor-
phic function. We state it as follows

Lemma 6.1 (Unique continuation property). Let U C R? be a bounded connected
open set with C*-boundary OU, and ¢ a C?*-solution to (6.1). Let A € C*(U) be
a non-vanishing function and o, B,y € C*(U). Given a nonempty open subset
W C U, thenc=0 on W impliesc =0 in U.

We prove the above lemma by applying a two-parameter Carleman estimate (see
[GT1la, Lemma 3.2]):

(6.2) |le™ "%

22y < Celle ™07z 17y,

for all v € C°(U), where C > 0 is a constant independent of €, 7, v, and

(63) Be(2) = pl2) — 5 |21

with ¢ a harmonic function (such estimates are often referred to as Carleman
estimates with convexified weights).
Let us choose

p(2) = log(|2[*),
which is harmonic away from z = 0, blows up at the origin, and hence allows us
to apply the Carleman estimate on an annulus. This yields the (weak) UCP for
equation (6.1).

Note that 7¢. = 7¢ — i |z|27 so the weight function involves two independent
parameters, € and 7. Concretely, the small parameter € is first used to absorb
lower-order terms, after which the large parameter 7 is employed to establish the
UCP. We want to emphasize that Lemma 6.1 holds only when H is a holomorphic
function; otherwise, the result may not hold.

Proof of Lemma 6.1. Without loss of generality, we may assume that the equation
(6.1) holds in a ball of radius R and that ¢ = 0 on a ball of radius r < R. We show
that ¢ then vanishes on the larger ball B(0,r + 0), for any 6 € (0, R — r), and this
implies u = 0 in B(0, R).

First, we use conjugation for the term Adc(z) + a(z)c(z). For this, let § solve

00 = A" (a — 0A).
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Such @ exists due to the existence of &' operator (for example, see (5.9)). Consider
the function ¢ := e? Ac, then ¢ satisfies
0¢ = ¢’ (Adc + 00 Ac + dAc) = €’ (Adc + ac),
which is equivalent to
e ?9¢ = Adc + ac.
Using this, we can transform the equation (6.1) into
d(e~?0¢) = 5o (vA™te™%¢) + H,
and we aim to prove unique continuation for the above equation. To simplify the
notation, we set
u==c,

and redefine v as YA~ 'e? in the rest of the proof.
With these notations, we prove UCP for the equation of the form

(6.4) (e Du) = BB (yu) + H.
Let us then start to estimate. Let x € C°(B(0, R)) and recall that u vanishes on
a ball of radius r. Thus yu is supported on an annulus

A= B(0,R)\ B(0,r)

(since w = 0 in B(0,r) by assumption), and the Carleman estimate (6.2) holds
for the domain A. We will choose x more precisely later. By using the Carleman
estimate consecutively, we have

eleEfﬂbe —T e

xullfaey =€ e ™ xull 72 a
S ||€_T¢65(XU)||i2(A)
By (6.2)
S lle P (@)l Z2a) + lle™ 7P XxOu) 224

= e

Ju)
@x)u)l 72y + lle™ ™ xe’ (e )| a)

S e (@x)w)lI72 ) + lle ™ (Xe_(’%)ll2

S e (0x)w)lI72(a) + elle™ ™D (xe™ 0u)) |2 )

By (6.2)
S e (@x)ull7za) + elle™ ¢ (Dx)e " ul 72 a
+elle” ™ xd(e ™ )| 72 a)-

Here < refers to an inequality with unspecified constants independent of 7 and e.
Next, let us insert the equation (6.4) to the last term in the right-hand side of
(6.5). Then we have

(6.6)
e (@x)ullZ2(ay + elle™ ™ (Dx)e ™ Du| 724y + elle™ ™ x (89 (yu) + H)|[724)
S Nl TP (@x)ull72ay + €lle ™ (Dx)Du| 22 +elle ™ x(@ ' (u) + H)|Z2(a)
S e (@x)ull7za) + €lle™ ™ (Ox)Dul|72(a +62||€_T¢63(X(571(W) + H))[[22(a)
By (6.2)
S e (@x)ull7zcy + elle ™™ (Dx)Dull72cy + €l @)@ (yu) + H)|%2c)
+ e xull 2




30 T. LIIMATAINEN AND Y.-H. LIN

where we crucially used the fact that 9H = 0 since H is holomorphic. We will
denote ||-[/z2(c) by | -|lz> from now on. In short, the above estimates (6.5) and
(6.6) mean that there is C' > 0 independent of 7 and €, such that

e e xullFe < C(lle” T (Dx)ullFe + elle” % (Dx)Dul®
—T A a1 —T e
+ele T (0X) (@ (yu) + H)|[F2 + €*lle” ™ xull72).

We first absorb the last term on the right-hand side of (6.7), assuming that € > 0
is so small that

(6.7)

Ce? < Zel «—= e<(20)715

[N

With such values of ¢ € (0, (2C)~*/3), we have
e e xul[z. < 2C(le™™?(Ox)ull7z + elle™ ™ (Ox)e ™" Oulz
b A AL
+ e (@)@ (yu) + H)[72)-

In the forthcoming analysis, we will not change ¢ anymore and it is fixed.

Next, we choose the Carleman weight ¢. and the cutoff function x appropriately,
and argue by contradiction. For the harmonic function ¢, we take ¢ = log(|z|?).
Then

(6.8)

e—Tng6 — |Z|—27'e—2i€‘z‘27

where ¢, is given by (6.3). Since € is fixed from this point onward, the exponential
factor e~3<*1”* can be regarded as a bounded weight, both above and below, in the
forthcoming estimates. On the other hand, the term

|Z|—2T

decays rapidly as 7 — oo, because |z| > 0 for all z # 0.
Let 6 > 0. We choose the cutoff function x such that

1 if 2] <r+4,
0 if|z| > R.

It follows that dx is supported on the annulus r +§ < |z| < R. With these choices,
the right-hand side of (6.8) is bounded by

2010x|| Lo |:||67T¢Eu||2L?(B(O,R)\B(O,7'+6)) + EH677—@5“”%2(B(O,R)\B(O,r—ﬁ-é))

o, A1
+eT(D (yu) + H)H%Q(B(O,R)\B(O,r+5))}
< C'lle™ ™| T2(B0.R)\B0.r+6));

——1 =—1
sinceuis Ctand @ = : L> — L* is bounded. In particular, we have |0 (yu)||r~ <
||lu|| L, which follows directly from the definition of & .
Since |2/ 727 is decreasing in |z|, we obtain

le=T% H%z(B(O,R)\B(O,H»é)) = / e 20 dy S+ 67
B(0,R)\B(0,r+5)

Thus, the right-hand side of (6.8) is bounded by
C//|T+5|—2~r’

for some constant C” independent of 7 and € (note that C”" may depend on u and
H, but this will not affect the argument).
On the other hand, since x =1 on B(0,r + J), we have

—T¢e

le ™ ullZ2(porrsy < le” % xull72c)-
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/ 6727'(;55
B(0,r+9)

Recalling that e~ 7% = |z|72T e~ 321" this inequality becomes

Consequently,
ul>dz < C"|r + 677",

/ |27 u* dz < eC"r+ 77,
B(0,r+9)

or equivalently,

|Z| >2T 2 "
6.9 / ( uldz < C,
(6.9) B(0,r+8) \ |7+ 9] e

for some constant C" > 0.
Assume then that there is zg € B(0,r 4 ) such that |u(z9)| # 0. Thus, by
continuity of u there is a neighborhood N' C B(0,r + d) of 2z such that

|u(z)| > o for 2 € N,

for some o > 0, where
(6.10) |z| <r+d—s, forall z €N,

for some s > 0. Thus, using (6.9) we have

—27 —27
(6.11) 02/ (7"|i|5> dz S/ <r|j5) lul?*dz < C"
N B(0,r+9)

Note that for z € N, we have the condition (6.10), so that
|z] s 0—s ! s

r+6 = r+6 = 1490
which is strictly less than 1. Thus, on the open set N, there holds

—27
(—T—|(5> — 00 as 7 — OQ.
r

As a result, using this to (6.11) leads to a contradiction as the left-hand side blows
up with 7 — co. We conclude that v = 0 on B(0, R), which is larger ball than
B(0,r), and u was assumed to be zero in B(0,r). Finally, due to the standard
propagation of smallness argument in UCP, one can conclude that v = 0 in U, by
using v =0 in B(0,r) C U. This concludes the proof. O

7. UNIQUE DETERMINATION OF THE CONFORMAL FACTOR

In the previous section, we determined the 2 x 2 matrix D?ug up to a conformal
factor ¢ > 0 with ¢|pqo = 1. We now turn to the problem of recovering this con-
formal factor inside the domain . To this end, we employ the second linearized
equation together with its associated integral identity. The analysis will be some-
what involved due to two reasons: (1) The full nonlinearity leads to complicated
asymptotic analysis, (2) The second linearized equation is not coordinate invariant.
These complications seem to be unavoidable and lead to a non-local d-equation.

Let u(()J) € C**(Q) denote the solution to (3.1) for j = 1,2. The second linearized
Monge—-Ampere equation then takes the form
1) (= Ay, + Xy, - V)w; =tr (g;l(D2v§1))g;1(D2v§2))) in €,

wj =0 on 0,

where g; and X, are given by (2.22) and (2.25), respectively, with g = g; and
j =1,2. As discussed in Proposition 2.1, the problem (7.1) is well-posed.
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Lemma 7.1. Under the assumptions of Theorem 1.2, the DN map A associated
with (1.3) determines the Neumann derivative 8ng’89. In particular, the condition
(1.9) implies 8,,91 wy = 8%2 wy on OS).

Proof. The argument is analogous to Lemma 4.1, but applied to the second lin-
earization of solutions to (1.3). Combining Lemmas 3.1 and 4.1, and differentiating
twice with respect to the small parameter ¢, yields the desired result. O

7.1. The second integral identity. We now turn to the derivation of the integral
identity arising from the second linearization, which will be the key to proving our
main result. In particular, we first extract from the first linearization an identity
that enables the recovery of the metric g. To this end, we introduce the adjoint
problem associated with the first linearized equation (2.23):

1
Ayv* + ——= 0 (1/]g] X2v*) =0 in Q,
(7.2) VP ( av")

v* = ¥ on 012,

where ¢* € C*°(09) is an arbitrary boundary function. The vector field X here is
the drift term appearing in the non-divergence-to-divergence recasting of the first
linearized equation (see Section 2). Notice that v/[g]A, = V- (1/]glg~!V), and let
w be the solution to the second linearized equation (2.28), then an integration by
parts implies

/ Vgle®0,,wdS

o0

:/U*MAgwdac—i—/ Vl0glg~'Vu* - Vw dx
Q Q

:/v*\/EAgwdx—i—/ \/\g\aygv*wdS—/w\/|g|Agv* dx
Q oQ Q

= [V (X0t (7 (D) (%)) s+ [ (VIR
Q

Q

By (2.29) By (7.2)
/ Vglv* (Xgabw —tr(g7! (Dzv(l))g_l (DQU(Q)))) dx — / v*\/@Xgabw dx
Q Q
= —/ v tr (g_1 (D211(1))g_1 (D2v(2))) dvy,
Q

where we used [, wu*/|g] Xt dS = 0 (since w|pq = 0). Here v = (vy,1s)
denotes the unit outer normal to 02, and 8l,gw|6£2 = \g|g““0iw Vk|asz is the
conormal derivative. We employ the standard notation from (5.19), which will be
used throughout the rest of the work. Finally, recall that v denotes the solution of
the first linearized equation (2.23). Combining all of the above computations, we
arrive at the following result.

Lemma 7.2 (Integral identity for the second linearization). The following integral
identities hold:

(i) Let Ap be the DN map of (1.3), then there holds
/ Vlgle™ 0y, wdS = —/ v* tr (g_l(DQU(l))g_l(D%(Q))) avy,
o0 Q

where g is given by (2.22), v®) 4s the solution to the first linearized equation
(2.23) and w is the solution to (2.28), for k =1,2.
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(ii) Let Ap; be the DN map of (1.8) for j = 1,2, and suppose the condition
(1.9) holds. Then

/Qvi‘ tr (g7 (D%gl))gfl (D2v§2))) avy,

— /Qv; tr (g;1 (D2v§1))g51 (D2v§2))) avy, =0,

where v} is the solution to the adjoint problem (7.2) with respect to the first
linearized equation, for j =1,2.

(7.3)

Proof. We already proved (i) by the previous computations. Combining Lemma
7.1, one can prove the integral identity (ii) directly. d

Remark 7.3. To recover the conformal factor ¢ appearing in Lemma 4.2 from the
integral identity (7.3), we analyze it using global isothermal coordinates. A compli-
cation arises because the Hessian D? in the identity is not the invariant Hessian
for either metric g1 or go. Consequently, the change to isothermal coordinates
introduces additional coordinate artifact terms, which we collectively denote by Y
(see (7.6)). These terms Y will ultimately lead to a mon-local O equation for the
conformal factor ¢, which we then solve.

7.2. Change of variables for the Hessian. Recalling that D?u denotes the
Hessian matrix of u, let x : R? — R? denote a change of coordinates (can be
arbitrary), then we have
2
2~ o T2 2k
D*u=Vx"D u|XVX+ZD X -8ku|x,
k=1
where & = uox, and x(z) = (x*(z1,%2), x*(1,72)) denotes the change of variables
in the plane. This follows from

(D), = Oap(u 0 x) = Da (OrulrDbx")
= Ot Oa X" OpX" + Optt] OapX*
= (DXT)’;(DQU)km‘xDXbm + ak“|xaabxkv
for 1 < a,b < 2, and we denote
OkulyOapx® = D?x - Vuly,

where we still adopt the Einstein summation convention for repeated indices.

Let us also denote D%y as a three tensor by (D2x)f§b, which is symmetric in
the lower indices, i.e., (D?x)k, = (D?x)F, for all 1 < a,b,k < 2. Recalling that
the change of variables for a Riemannian metric g is given by (4.3). Note that the
preceding computations hold not only in dimension two but also in any dimension.

Thus, we have
tr (71 (D*M) g~ (D))
_ —1/2, (D) —1(12,,(2)
=tr (g7 (D*W)g (D)) |
(7.4) +tr (g 1|X(D211(1))971|X(D2X . VU(Z)))
+tr (g7 [ (Dx - Vo) g [ (D*®)) |
(9_1|X(D2X ) VU(1)|X)9_1|X<D2X : V’U(2)‘X))’

where § = x*¢g and %) = v(®) o y, for k = 1,2. Let us emphasize again that the
mapping x can be any change of variables at the moment.

Applying the isothermal coordinates, we can transform the Laplace—Beltrami
operator into the standard (isotropic) Laplacian, up to a conformal factor. This

+tr
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change of variables is central to the argument that follows. On the one hand in the
isothermal coordinates , using (7.4), one has
tr (97" D0 gy ' D)
= u 2t (D) (D2P) + 2t (DO - wvi?)
+u 2t (C- VvV D) 4 2t (0 - wviVe - wv?),

where C = (C’fj )1<a b r<y 18 some function with 3 indices and depends on the
change of variables to the isothermal coordinates.

On the other hand, by Lemma 4.2, one known that the mapping J changes from
quantities with index 2 to the index 1 with v§1) = v]@) oJ, for j = 1,2. Consider the
map Y := J o x, using the same isothermal coordinates mentioned in the previous
section, then we can obtain

tr (g5 ' D03 g5 D*of?)
= 202t (D) (D) + ¢ 22 o (D) C - wvi?)
4+ (5 . val) (D2v§2))) +c 2% tr (C~' . val)é . Vv§2)),
where C is some function with 3 indices égb, and C is actually depends on the

function C' and J. Meanwhile, the function C and C have the same value on the
boundary 0f2, since we have utilized only one quasi-conformal mapping x, and
Jloa = Id.

Now, adopting all notations introduced in Section 5.1, plugging all the above
changes of variables of Hessian into (7.3), we can obtain

0= /Q o tr (g7 (D) gr ! (D?0?)) v,
_ /Q ot (g5 (D*0s)) gy ' (DP02))) v,
_ /Q ot (g7 (D) gy (D*02)) VV]gn] da
_ /Q o5t (g3 (D% g3 (D*02))) V/Tgal d

_ /~ [Gv* tr (D) (D)) + Y] da,

where

(7.5) G=p"(1-¢c?) in Q,

|g1] = p (after the change of variable), and v* is given by (5.4). Here, Y denotes
the lower order terms with

pY =v*tr (DO v — e 2yt (D) C - wv?)
+vitr (C- val)DQVEZ)) —c Avrtr (6’ . Vv§1) (D2V§2)))
(7.6) +vir (C- val)C : va)) —c v r (5 . Vv§1)C~' . vaz))
=v*tr (DY wvi?) v tr (D3vPC - vvil)
+ (1 =c?)viir(C- val)C . VV?)),
where we use the notation

(7.7) C:=C—-c2C=(1-c?)0C,
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for the three tensor function in the rest of the paper, where we use Lemma 4.4 to
conclude C' = C as J = Id in Q.

Now, we have already transformed the metric from go to ¢g; and then to the
isothermal coordinates. In what follows, we will work on the g;-domain, and let
us denote g = ¢; and v(%) = vgk) for k = 1,2 to simplify our notations. With the
above analysis at hand, we can have the next key result, which is used to prove the
uniqueness of the conformal factor ¢ in 2.

Theorem 7.4. Assume that

(7.8) /Q [Gv*tr ((D*v) (D*v®)) + Y] dz =0,

for any v, v solving (5.2), and v* solving (5.3), where Y is given by (7.6). Let
G be the function given by (7.5), then ¢ =1 in Q.

Remark 7.5. Thanks to the boundary determination of Lemma 3.1, utilizing c|aq =
1 and d,¢cloq = 0, we can rewrite the integral identity (7.8) as

(7.9) / [Gv* tr (D*v0) (D>®)) + Y] d = 0,
U

where Q is compactly contained in U since we have G =Y =0 in U\ Q. Thus, we
are going to use the integral identity (7.9) to claim ¢ =1 in U so that ¢ =1 in
in the rest of the paper.

Since v(Y), v(2) and v* can be taken as arbitrary solutions to (5.2) and (5.4), re-
spectively, we will employ isothermal coordinates and the associated CGO solutions
summarized in Lemma 5.3 for the first linearized equations to prove Theorem 7.4.

7.3. Asymptotic analysis for the second integral identity. To prove Theo-
rem 7.4, let us review the known stationary phase formula.

e Stationary phase formula. For any ¢ € C§°(R?), we have the asymptotic
expansion of the oscillatory integral

! i@ /h =k k
9 h - e o(x)dr = 2 T ((Tﬁmaw) @) (0,0) + Ry (g3 h)
(7.10) a0
- ﬁ((@z—32))k<p)(0,0)+RN(@;h),
k=0

for N € Nand h > 0. Here, Ry (p; h) denotes the error term of the expansion that
can be estimated by

ChN Ao N
ag+az<N
for any N € N, and a = (a1, a3) € (NU {0})* denotes the multi-indices. Now, we

can prove Theorem 7.4.

Proof of Theorem 7.4. The proof relies on the asymptotic behavior of CGO so-
lutions for the first linearized equation. Using the stationary phase method, we
extract the principal contributions. Unlike semilinear or quasilinear cases, the full
nonlinearity of the Monge—Ampere equation introduces two derivatives of the CGOs
in the integral identity, making the asymptotic analysis substantially more delicate
and dependent on the estimates from Section 5 and Section 6.
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This asymptotic analysis leads to a second-order differential equation with a
lower-order nonlocal perturbation

B(Ade(2) + al2)e(2) = B(2)D (v(2)e(2)) + H(z) in U,

for ¢ = 1 — ¢72 (see (7.39)), where the coefficients in the above equation can be
explicitly determined (see the last step of the proof). In particular, the leading coef-
ficient A is non-vanishing, and the function H is holomorphic. Therefore, applying
UCP of Lemma 6.1, we can deduce ¢ = 0 in U, hence ¢ = 1 in U. Here U is an
open set fulfilling the property Q2 € U that is given in Remark 7.5. Moreover, since
G and Y (defined in (7.5) and (7.6)) vanish on 9 up to higher orders, integration
by parts can be performed (at least twice) without any boundary contributions.
Meanwhile, we also set ¢ = 1 in the exterior domain R™ \ Q, so that ¢ € C?(R?).
The proof is organized into eight steps.

Step 0. Initialization.
Let us consider the holomorphic functions
L, L,
Dy(z) =z+ g% and Po(z) = ~17

in holomorphic coordinates. We may assume by scaling the coordinates z that &,
does not have critical points in U. Let us compute tr ((ng(l)) (D2v(2))), where

v = Fglle®1/h(1 +71), v® = FATequ/h(l +72)

are CGO solutions for the first linearized equation, for sufficiently small A > 0,
where 71,72 are remainders (see Lemma 5.3 for the formulas). We have

tr (D) (D))
= tr (D(F le® /") D?(Fe®/M)) + tr (D2(F3 'e® /M) D? (Fe®/M))
+tr (D*(Fye®/M D?(Ppe®/ ")) + tr (D (Fy ' e®/Mry) D (Fpze®/ 7)),

where we used the matrix representation formula (2.3) for the Hessian to derive the
above identities.

Let us begin by analyzing the first term in (7.8), which can be written as the
sum

/ Gv* tr (D) (D*v®)) dz := Sy + S5 + S5 + S,
U
where
Sp = / Gv™*tr (D2(Fglleél/h)Dz(FAjequ/h)) dz,

U
Sy = / Gv™*tr (D2(Fglle‘bl/hrl)Dz(FEe@/h)) dz,
(7.11) v B
S3 1= / Gv™*tr (D2(Fglle‘bl/h)D2(Ffze%/h?g)) dz,

U
Sy = / Gv* tr (D2(Fglle‘bl/hrl)D2(FAjequ/th)) dx.

U
Here, 1 and 75 are the remainder terms in the CGO solutions satisfying

(712) T = 75;1‘//81 and ’]72 = 781;1‘//:;2
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with s; and s; satisfy the decay estimates as constructed in Section 5. In the rest
of the article, the function ¢ is chosen as

1T
For the solution to the adjoint equation, we take
(7.13) v =F! e® M (aF + 1),
where h > 0 is sufficiently small and ®* is the holomorphic phase function
1
O (2) :=—2z+ gzz.

By scaling the coordinates again, if needed, we may assume that ®* neither has
critical points in U. Here FA_} is a smooth, nowhere-vanishing function as given
in Lemma 5.3, and the remainder r* satisfies the same better decay estimates as
r1. In the following, we will analyze the contributions Sy for k = 1,2, 3, 4 separately.

Step 1. Analysis of S1.
We define the notation

(7.14) Go = F PG = Py P (1 - ¢ 7).

Using the expression (2.6), a direct computation yields
* - 1/h 72 — 1 P18 2 1
Sy = /UGV tr{[A0*(Fe®/") + BO™ (F'e®/") + 215,200(F le®/™)]
A0 (Pye®/M) + BY' (Faze™ /™) + 215,200(Fize®/")] } da
= / GV tr{[A(Fy0%e®™ /" 4+ 20F 19e® /" + e®/h)?F 1)
U

+ BeM M FL! 4 20 (¢ M OOF ! + OF 0]
=2 2 = = 32 35/ ha2
- [B(Pg;0" e/ + 20F-0e™/" + e®2/M0" )
+ Ae® /MO Pz + 21542 (/" 00 P + 0F-0e®*/") ] } da
where A, B are complex-valued matrices given in (2.7), which satisfy
tr(AB) =4, tr(AA) =tr(BB) =tr(A) =tr(B)=0.

The above relations are used to reduce the computations throughout the asymptotic
analysis. Next, let us write

S1:= 511+ 51,2,
where
S11 :/ Gov* tr(AB) 82(6‘1’1/h)52(6@/h)dm
v =4
:4/ 85(@0V*)3(eq>1/h)5(6@/h) dx
U
1
T2
1
T2

/ <60AV* + 48V*géo + 45V*aéo + V*Aéo>a®1@€(¢l+@)/h dx
U
/ ( — GoV - (Xgv*) + 40v*0Go + 49v* G + v*Aéo)

U

. 6@18@26(¢1+@)/h dx,

and we have employed integration by parts and the adjoint equation (5.4) in the
above identities.
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Let us emphasize that, throughout the remainder of the proof, integration by
parts will produce no boundary contributions due to the boundary determination
established in Section 3. Furthermore, we note that the term Sy, = S — Si1
consists of integrals in which at least one derivative falls on either Fgll or Fig.
As we shall demonstrate, these contributions are of lower order and do not affect
the leading order behavior. For convenience in future computations, we collect the
following identities:

1 — 1_ . 1
0P =14+-2, 0by=—-%z, 00" =-1+ -2z

4 2 4
(7.15) 1 )
9’ = 9" = 7 0 P=—3

Step 1-1. Analysis of S 1.
Using the CGO solution of the form (7.13), we can write

51’] = S{T’Ll + Sil,

where
St =g [ (= Go¥ - (R 1™ /) 4 a0( e 1)
L AB(F MO + Fite® /hAGO)(a(b )(5F)e® T /h gy
and
(7.16)

+AD(F7Le® )Gy + Frle® /h *AGO)(acpl)(aTQ)e(@l@Vhda;.

We will show that ST is a governing term in the asymptotic analysis.
To proceed, using 9e® /" = 0, we can compute ST as
(7. 17)

(P o
g STh =g h/ — GoV - (Fi!Xg)e® /M — - GoF 3 X, Vore® /h
+40(F3 ™ /MGy + 4e¥ MF 5 0G) + Fxle® /" AG)

. (8@1)(T%)e(¢1+®2)/h dx
1
~ 2rh

~ 1 ~

s (= Gov - (Fz'X,) - ZGoF !X, - Vo'

+A(OF L + hFA}acp )0Go + 49F{10Gy + F. AG0>

(0D (0By)ei 12/ M g
27rh/ { [F3l (= 1+ 2)8Go — F3!(X, - V)G

+ [~ GoV - (Fi!X,y) +40F19G, + 40F oG,
+ FIIAG] } (14 iz)(—%z) @2/l g
By (7.15)
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where we used ®; + &5 + &* = i(zQ — 22) = ix1x2 = 2itp. Applying the stationary
phase expansion (7.10) to the identity (7.17), we can see that

(7.18)
]‘ m
ﬂsl,l
= (0" - ){(Fz (= 1+ )90 - F}(X, - VO*)Go)

(147952

9 (132 (= 1+ )80~ Fi! (%, - 991)Go) 1+ 12)(~ 7))
_%5{(53(_ 14 2300 - X, V8)Go) L+ iz)}

1— ~ ~
= 58(1?;}300 + N (X, - V®*)Go)|,_, + O(h),

- +O(h)

+ O(h)

z=0

+ O(h)

z=0

where we used

02 (Fi!(~ 1+ 2300 - Fy!(X, - Va")Go)(1 + =) (-3

={(- %z)az [(F32(= 1+ 2)8Go — F3!(X, - VO*)Go) (1 + iz)
~0.

z=0

Furthermore, in view of (7.18), one can conclude that

lim (ASTY) = 70(F4. 0G0y + Fy (X - VE)Go)| -

Next, we want to show ST ; has a faster decay in h than ST;. Recalling that S7 ; is
given by (7.16), which has a very similar form as ST1"- The only difference is that the
integral contains an extra error term, r*, and its first derivative. Thanks to Lemma
5.2 and analysis in Section 5, the remainder term r* has better decay properties,
so that one can apply the stationary phase formula to ensure limy_ (hS’il) =0.
Hence, we can ensure

z=0’

lim (hS11) = 7d(F;!8Co + Fx! (X, - V&*)Go)

=

which will play an essential role in the recovery of the conformal factor.
Step 1-2: Analysis of Si 2.

Since every term in the integrand of Si 2 involves at least one derivative acting
on either Fgll or Fz, it is expected that many of these terms contribute only to
lower-order effects and do not influence the leading-order behavior. To illustrate
this, let us examine representative terms in S; o that exhibit the highest possible
asymptotic order with respect to the small parameter h. The asymptotic behavior
of the remaining terms can be analyzed in a similar manner, and in most cases,
they exhibit even faster decay. It is straightforward to verify that there are two
terms of order O(1/h%), and we compute them term by term below.
We denote that

(7.19) Gy 1= GF ! F ' oF = p 'F FU O (1 - c72)
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is a bounded function independent of h > 0, then an integration by parts with
respect to 0 and the stationary phase expansion imply that

2 / GF 0P v tr(AB) 9%(e®/")3(e®*/") dx
U

i
(7.20) _ /*~ o me L Zve by @dm
8 U((“)Gl)e (h2(1+4) +4h)e dz 4+ O(1)
167

- 775G1 |z:0 + 0(1),
as h — 0, where we utilize 9e® /" = 0 and

V* — FZ}@@*/}L(I —|—’I“*),

where the integral including r* contribute O(1) by Lemma 5.2 in the middle line
of (7.20). Thus, we obtain

}1L1—>H10 (Zh/UGFAllaFMV* tr(AB)@Q(e(bl/h)@(e%/h)dx) = —16775G1‘Z:0.
Similarly, we can use the same approach as above for the other term to obtain

2 / GaFgllFTQU‘(AB>V*8€<D1/}L52@W dx
U

= % /Ué(GaFgllFA—zv*) (1+ Z)Ze@l*@)/h dzx

—o(1)

= 0(1).

Therefore, we can obtain
lim (2h | GOF;'Fr tr(AB)v*ae‘bl/hEQe%/h dx ) =0.
h—0 U Ar T Az

Since the above two terms contribute O(1/h) and O(1), and it is not hard to see
the rest terms in S; 2 have at least one more h factor. This implies

lim (hS)2) = ~1670G |, _,-

Therefore, combining all the analyses, we can ensure

(7.21) (hS1) = 7O(F 110Gy + F i (Xy - V&*)Go)|,_, — 1679G|

}ILI_>H10 z= z=0"

We remark that the terms G and G4 on the right-hand side each contain (1 — ¢ 2)
as a multiplicative factor. Ultimately, our analysis will lead to a partial differential
equation for (1 —c™2).

Step 2. Analysis of So.

Recall that A and B are 2 x 2 complex-valued matrices (see (2.7)), and D? denotes
the Hessian operator in R2. The contributions of S,, arising from the remainder
term ry, are associated with the linear part of the phase function and can be handled
similarly to previous terms. The more challenging components are S3 and Sy, whose
analysis will be presented in the subsequent sections. For S5, let us compute the



INVERSE SOURCE PROBLEM FOR THE MONGE-AMPERE EQUATION 41

matrix BD? as

=\ 2 . =2
- <1. _i) (a+a)2 |(62—82
- 2 \i(e2-9") - (0-9)
C( 20%+200 (20 — 200)
—\—i(20%4+200)  20%-200 )’
so that
(7.22) tr(BD?) = 40%.

With the above computations, applying an integration by parts formula and 8(6@/ hy =
0, we can see

(7.23)
Sy = / Gv* tr (D2(F;11e¢1/hr1))D2(FEe@/h) de
U

= /U Gv* i {(DA(Fle® /")) [B(Fd e/ + 20F 0%/ 4 /5" )

+ AeP2/ MG P 4 2050 (%200 P + OF-0e™2/M)] } da
1821 + S22

where

)

Soq = / GFEV* tr (BDZ(Fglleq)l/hrl)gzeE/h) dx
U
and
* — = 7 By o/ n=2
SQ’Q = /UGV tr { (DQ(FA11€<I>1/hT1)) [B(Q@Fgae%/h + 6<I)2/ha FA72)

+ Ae®2 /NP P + 200 (e 00 g + OF;0e/") ]} da.

Notice that the integral Sz » contains at least one derivative of F'i-, and generate
one extra h than the first integral in the right-hand side of (7.23). Let us analyze
Sa2.1 as follows. Using (7.22), we have

5271 = 4/ GFEV*82(F;lleél/hrl)52€$2/h dl‘
U
= 4/ 65(62"*)6(F,211€q>1/h7“1)56@/h dx
U
+4/;a(62v*)8|.5F2116@1/h,’,.1 +F;11€(I>1/h57"1]5€@/h d,fE’
where

éQ = GFE

Observing that the analysis of the term S3 1 closely parallels that of S;, the only
difference being the appearance of the remainder term 1, which enjoys better decay
properties for h > 0 as described in Lemma 5.2, we can proceed analogously. By
repeating exactly the same arguments used in the analysis of S7, and taking into
account the improved decay of r; and its derivatives, we immediately obtain

lim (1S,1) = 0.

For S32, as explained earlier, there is an extra factor of h compared to Sy 1, so
we omit the detailed derivation. In short, one can ensure that lim;_,q (th,g) =0,
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which in turn yields
(7.24) lim (hS5) =0
Step 8. Analysis of Ss.
Similar to the analysis for Sy, we have a similar formula for AD?, such that

(7.25) tr(AD?) = 47

Different from the analysis of Sy, using (2.6) again, an alternative integration by
parts formula yields that

S‘*‘/ Gv* tr (D?(Fye™ /") D (Fype®™/"7)) do
- / GV tr{[A(Fy0%e™ /" + 208 0™ " + M /MO FLT)

+ BeM /MG FL Y 4 20000 (¢ ODF ! + OF 10/
- DX(Fe®/"y)) da
=: 931+ 53,2,

where
S3.1 :—/ GF, V tr ADQ(F P2/ 2)0% q>1/h)d ,
and
Sso = /U Gv*tr{[A(20F '0e™ /" + ™ /" P? F i 1)

+ BeM /MG FL Y 4 20500 (¢ /OO + OF; 10/
- D*(Fye®/"7)) da.

We also analyze S3; and S5 2 separately.
Let us review an integration by parts as in [LW23, Section 3.1], which yields

(7.26) /U @ f)pde = — /U 1) da

for f € L' and ¢ € LP for some p > 2, such that both f and ¢ vanish on the
boundary OU. For Ss 1, using (7.25) and an integration by parts, we have

S31 = 4/ GF;llv*gz(FA—ZGE/h%)yeqn/h da
U

_a | FPror-1em (L4 22 o(@1+E5) /R
_4/U<3 (GFAlv)FA2(h2(1+4) +4h) 10%2)/0p, dx

By de®1/h=0

~ 71 2 1 ;
= /[]G:;(ﬁ(l + 1) + E>671x2/h’f2 dx

where

Gy = [0°(GFLN) (1 +7) + 20(GF ) ar* + GF ' 0° 1" Py = Op2(1),
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we used the properties of v*, r* again. To proceed, using (7.12), we can rewrite
S371 into

S0 =1 [ Go(p+ 2+ ) e

1
_ |:v1:v2/h 1y~
/Gg( (1+4) +4h) 8 V'sodx

_ —1 ~ i E 2 1 iz1x2/h 1~ II)1I2/h
_4/Ua (Ga( 5 (1+2)7 + ) e/ vis, dx
=079, as h—0,

(7.27)

where we used [GT11b, Lemma 2.2] with
3, f = 0p(h/?*) and 9" f = Op2(h/>*) as h 0,

and ||s2| 2y = O(hY/?**€), for € > 0 sufficiently small. The derivation (7.27)
ensures that the limit

lim (S3.1) =0

holds. Similarly, since S5 contains at least one addition h factor, similar analysis
gives rises to limy_.q (thyg) = 0, which infers that

(7.28) Jim (hS3) =0

as we expect.
Step 4. Analysis of Sy.
Using the Hessian representation (2.6), direct computations imply that
tr (D2(F3 e®/ ) D? (Fe®/M7y))
= tr {D2 1 Ql/h )
[A@Q( ~eP/15y) + BY (Fze®/"y) + 2055000(Fze ™/ 7)) }
_tr(ADQ( 1 <I> /h ))82( <I>2/h~)
+ tr (BDZ(F L1/ )) (F—e%/’“)
(729) 4260 (D2(F3 e® /")) 9(Fyse®/7s)

=2A(F, P‘I’l/"rl)

=40 (Fj ™ /M )0 (P e/ ") + 407 (Fy ) e/ )D (Pype™/ ')
By (7.25) By (7.22)

+800(F ! e® /M) 00(Fze®/ 7).

By A =499
Inserting (7.29) into Sy given by (7.11), we can write

Sy :=S41+ Ss2+ Sa3,
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where
Saq = 4/UGv*52(F;lleq)l/hr1)82(FAje<E/h?2)dx,
Sypi=4 /U GV O (Fyle® /M) (Fpe®/"7y) da,
Syz:=8 /U Gv*OD(F 5 e® /M) 00(Fze®/"7y) da.
Now, for S4 1, direct computations yields that
Su1] = 4‘ /U GV*EQ(F;}rl)a?(FA—Q@)AW@/’L dz| = O(h™1/?%¢),
where we use the better estimate for 71 and (5.26) for r2. This implies that
’lliirb (hS41) = 0.

For S42, we can apply a similar method as in Step 1, then an integration by parts
gives

Sa2 :4/ 85(Gv*)8(Fglle¢1/hrl)g(FAje@/h?g) dx
U
4 /U O(Gv™)0 (e /M B(Fy 1)) B Foe ™/ 17) di
4 / B(GV))O(E e M B (e7 /RO For)) da
U
44 / Gv*0(e® /M B(Fy 1)) (7 M O(F)) de
U

Using (5.20) as in the previous step, it is not hard to see the above integral is of
O(h=1/2+€), which implies

lim (hSy2) = 0.

i, (ASs.2)
Similarly arguments can be used in the derivation of S 3, and we can conclude that

(7.30) (hS4) =0

lim
h—0

as wanted. Hence, using (7.21), (7.24), (7.28) and (7.30), we can summarize that

lim (h /U v tr (D) (D)) d:c)

h—0
= 10 (F;'9Go + Fil (X, - VO)Go)|,_, — 1679G |

z= z=0’

where v(D, v(?) v* are the CGO solutions described as before. It remains to ana-
lyze the integral of Y.

Step 5. Analysis of the integral of Y.

Using the relation (7.6), we can write

/Yda; = S5 + Sg + 57,
U
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where

S5 = / pive tr (D D3>vWe. Vv(2)) dz
U

S = / poivetr (C . Vv(l)D2v(2)) dz,
U

S7 = / /fl(l — 0_2)v* tr (C vve. VV(Z)) dx
U

Similar to the previous analysis, we exploit the structures of the CGO solutions v*,
vD and v®. Since S5 and S share the same structural form, we analyze them
jointly.

Step 6. Analysis of S5 and Sg.
Recall the tensor function C = (Cfb)lga,b,kg, which is independent of h > 0. Using

the CGO solutions v(¥) for k = 1,2, the leading terms in S5 and Sg can be written
as

tr (D2 (1)C~Vv(2))
=t (DA (F1e® /)0 -V (Fpe™/M)) + tr (D2 (e9/,)C - V (Fyme® /1))
1 (D (Fale™/M)C - V (e /7))
D

+tr ( 2(FAlleq)l/hrl)C . V(FAje%/th))
and

tr (C - VvV D?v(?)

—tr(C V( 1 @l/h)Dz(F e%/h))+tr(C-V(Fgllei’l/hm)DQ(FA—Qe‘E/h))
bt (0 W (5 e ) (0 (g5
+tr (C- V(Fy e/ M) D (Fre®/ 7).

Then we can write S5 and Sg into

Ss := 551+ S52+ S53 + 55,4,
Se := 86,1 + 56,2 + 56,3 + 56,4,

where

Soa = [ [ (DR e M)C - ¥ (™)

U

Soaim [0 T (D2 (5 e e W (e )
U

Sosim [ [t (DR (3 e MC - ¥ (B
U

Ssa = / p [t (D2 (F e/ )C -V (Fae /7)) da,
U
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and

Se. _/U” v [t (C - V(Fyle® /") D (Fc®/M))] de,
Soai= [ v [ (€ V(FRLM ) DF (P 1)) o
Sos = /U W (C- V(Fyte® /M) D2 (Fe /7)) de,
So :z/wv [tr (C- V(Fyle® /) D?(Fae™/7))] d.

Step 6-1: Anazyzs of S5 and Sg 1.

Let us use the same technique in previous steps, using (2.6) and the stationary
phase expansion (7.10), then direct computations give

551 _Z/ M—lv*aQ 1 <I> /h)azk(FA <I>2/h>tr (Ack)d
+ Z/ e (Fxle® /M), (Fe®™/M) tr (BCY) da
k=1"U

2
2} / WV OB(E e M) o, (Fe™/) tr (CF) de,
_1JU

. . . . k k:
where A is the 2 x 2 complex-valued matrix given in (2.7), and C (Cab)1<a,b<2

is given by (7.7), for k = 1,2. Using (2.2), we note that Dy, €22/ = (04 D)e ®2/h =
fzihfe%/h and 8,,e®2/" = i(0 — 9)e®2/" = ﬁ?e%/h so that 9, (e %/h) will con-
tribute a factor of z for kK = 1,2. Moreover, as in the previous steps, the governing

®1/h D5 /h

terms arise when the derivatives act on e and e

Ss.1 = Sg’y + 55,1, where

Thus, we can write

2
S5 = Z /U ,Lflv*FgllFAfza2 (eq)l/h)é'g,,,C (e%/h) tr (ACk) dz

and Sg | = S51 — Sg" is of lower order, as it contains an additional factor of h.
Here, we use 8 (Fjy'e®/h) = ¢®/hg Fy 1 and 00(F;'e®/h) = a(e®/"9F;))
that produces an extra h factor.

Therefore, the stationary phase expansion (7.10) can be applied to compute S&
such that

(7.31)

551_2 / VP (/M) 0, (%M tr (AC) do

1 ~ * 1 1 i ix122
:E/(]M(1+r )[ﬁ(l [ 5 tr (AC") §tr(AC2)}e M da
+ O(1)

(5 ) {1+ 2% [znu ¢ +gtr(act)]}]
= oA ey (e - g e} +oa

=2 1+ 2 b (ac) 2H2ﬂ+01
= Ta{al (Act) it (Ac?)]}] _,

[\3\— l\D\—
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as h — 0, where
(7.32) o= M_lF,leF,TQ

is a bounded function independent of & > 0. Meanwhile, it is clear that S% ; = O(1),
and we omit the derivation.
Similar analysis can be utilized for Sg 1. By writing Se1 := Sg’y + 5¢ 1, where

2
st =S /U Fiv*a,, (/M3 (¢72/") tr(BCH) do
k=1

(7.33) B -

=0(1) as h—0,

where we have applied twice integration by parts in the above computations, and
[ is given by (7.32). Here we used the Dirichlet and Neumann data of C* are zero,
for k = 1,2. To summarize, on the one hand, using (7.31) and S;; = O(1), one
can see that
. af~ 1 . 2
lim (151) = 77 tr (ACY) — itr (AC%)]}]
On the other hand, with (7.33) at hand, we can ensure
lim (hSGJ) = 0,
h—0
since S ; has a better decay in h than Sg’.

Step 6-2. Analysis of S5 2 and Sg2.

Note that the difference between S5 2 and S5 1 lies in the presence of an additional
remainder term r; in the integrand, which enjoys better decay properties and admits
a favorable asymptotic expansion. On the one hand, when the derivative does not
act on 71, the analysis proceeds in the same way as the analysis for S5: applying
the stationary phase method (7.10) yields the desired vanishing limit. On the other
hand, if the derivative falls on 71, we can still invoke the stationary phase expansion,
as an additional factor of Z is always present due to the absence of any remainder
term 75 in these computations.

A similar strategy applies to Sg 2. By integrating by parts in the d operator and
exploiting the holomorphic properties of v* and v() from their phase functions,
the analysis mirrors that of (7.33). As the arguments follow closely, we omit further
details. In summary, we can obtain

lim (hS52) = lim (hSg,2) = 0.
It remains to analyze the terms S5 3, S5 4, 56,3, and S 4, which involve the remain-
der term 7.

Step 6-3. Analysis of Ss 3 and Se 3.

Let us first analyze Sy 3 with the same strategy by using (2.6) as before, then we
can compute each term in 55,3 as

. am T
S5,3 1= S5'3 + 553,
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where
2 _
S 3 [ T ACR ()0, ()
k=1"U
- / v te(ACY)9 (%17 (8 + D) (¥2/77)) da
U

y / v e(AC?)9 (%17 (8 — D) (¥2/77y)) dar.
U

Here, the term S 5 consists of those contributions in which at least one derivative

acts on either F;ll or F, and /i is the function defined in (7.32).
k.0

By writing SZ := Y7 ,_, Sa’s, such that
Shl = /U Fiv* tr(ACY)5? (M1 /M) 3 (% /7)) dr,
M2 = /U 7v* tr(AC?)3? (M1 /M) 3 (% /7)) d,
521 = /U 7v* tr(ACY)3? (M1 /7) 3 (% /77y dar,
So3 = i/Uﬁv*tr(Acz)a2(e‘bl/h)a(e@/%))dx.

Let us only analyze Sé; , and Sg; has a similar structure. Applying the integration
by parts, one can obtain

Sé; :/ av* tr(AC )82( <I>1/h)5(eqT2/h?72))cl:v

[pv* tr(AC )]82(e¢1/h) /M7y da

| |
\

(7.34) = / Ofptr(ACH] (1 +17) (h12 (1+ ) 41}1)6“”2/}%2 dx

1+ + L er1 w2/, dy
/ ( ( 4) 4h)

By 3( * /h(l—',-?" )) rI /haT

It is easy to see that the second term in the right-hand side of (7.34) is of order
O(h~1/%%¢) and we only need to consider the first term in the right-hand side of
(7.34). To this end, we can apply [CLLT23, Proposition 3.9], such that the first
term is of order o(1/h). Therefore, we can have
S’;; =O(h™"9), as h — 0,
which leads
lim (hS5;) = 0.

h—0

Similar arguments can be applied to S51§ , and one can conclude
lim (hSy3) = lim (hS53) =
h—0 ( 5’3) h—>0( 5’3)

When 0 hltb e®2/hry the analysis will become more complicated. Before analyzing
S5 and S35, let us look into Sg 3.
Similar to the analysis for S5 3, let us write Sg 3 = S¢'s + 5S¢ 5, where

Sy = / vt [r (C - V(€% /%) (D2 (e72/77%)))] dar 1= Sy + 524 + 524,
U
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and S§ 3 = Se .3 — S¢'3 contains those contributions in which at least one derivative
acts on either F;ll or Fiz—. Thanks to (2.6) again, we can write Sg’ := S§ 3+ 57 3+
S’g’yg, where

2
5573 = Z/ v tr (BCk)ark (eél/h)EQ (6¢2/h7~’2) dr = Sﬁljé + Sé:g,
k=1"U
2 —_
53’3 = Z/ v’ tr (Ack)au (eq’l/h)82 (e%/h?g) dx = Sg:; + S’g:g,
g=1"U

2 _
S84 = 22 / iv* tr (CF) 0y, (e®/7) 00 (e®/"72) da := Sg'5 + Sg'3-
k=1"U

Here
Se = e (BCYHYd(e™ /M) 3 (e¥2/7) da
b2 = /U v tr (BC?)(c1/M) 5 (%2 /7y) da,
§21 = /U v tr (ACY)D(e® /M) 0 (¢¥/7) d,
Ses =1 / fiv* tr (AC?)9 (/)02 (/7)) da
and :

531 =2 / v tr (C1)0(e™ /M) 93(% /7y de,
U

3,2
Se3

2i / v tr (€2)0(e™ /M) 93(% /7y d.
U
For Sé:;, via twice integration by parts for 9, one can obtain

1 [ B2V /h~
Si3 = 1 [ 9" (BEY) (14 )T da = O(n 2+,

)

where we used 1y = Op2(h'/?1¢) and the term 7 (av* tr(BC)) will not generate

extra 1/h since its phase is holormorphic. Similar assertion holds for Sé:g , SO we
can conclude

lim (hSg4) = 0.
fraed (hS6,5)

Recalling that Sg 3 can be written as Sg 5 = 5627’?1 + Sg:g, let us first analyze 562?1
Applying an integration by parts formula, one has

Sgs = — / A(v* tr (ACY))A(e® /M) (e®>/"7) da
U

- / v*tr (ACY) 0 (/1) (e®/17,) du,
U

2,1
=553

which implies

s

21452 = - /U O(iv* tr (AC1))D(e® /") D (cT/"7,) da-
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Now, for the right-hand side in the above equation, direct computations imply
/ (V" tr (ACY))D(c?/M)a(T2/7) do
U
:/ A tr (ACY))v*a(e®/M)e®=/" o7y da
U

- / fitr (ACH)ov*a(e® /M) e®=/" o7y du

(7.35) ) U . B

= E/ o(atr (ACl))v*(1+Z)e(q’l*%)/h@%}dm
U

+%/ fitr (ACh)a(e® /M) (1 + Z)e@ﬁ@/h% dz
U
1

2
~ Z ix1x ~
+ﬁ/;ﬂtr (ACI)(*l‘i’E)e 1 z/ha’l"gdl.

It is easy to see that the first two terms in the right-hand side of (7.35) can be
estimated by O(h~1/2%€), which gives rise to

i m * o 1+ s
%%/U&'(utr (ACl))V (1—|—1)e(¢ +o )/h3r2 dx

h—0

= lim [ ptr (ACl)a(eq)*/hr*) (1 + Z)e(‘l’ﬁ@)/ha@ dx
U
=0.

Thus, it remains to estimate the last term in the right-hand side of (7.35).
For a certain term, using the relation

Ty = 0,5 = —0 le" /M,

we can conclude that

3 1 -~ 22 ia:lazz >
%gr%) E/Uutr (ACI)(—l—i——)e /hargdx>
. 1 2 iz122 - —iz172 s
=~ lim (h/ulm (ACh)(—1+ Tk Moo~ (e hY'3,) dx)
:e—izle/hV/§2
(7.36) e 2\
. _—}ILI_T% E/Uutr(AC)(_1+T)V52dm

+ fo’fa*_l (ei““/hV))} dx

k=1

Let us look at the first term in the right-hand side of (7.36). Applying the integra-
tion by parts formula (7.26) and the stationary phase formula (7.10), we have

2
l/ ﬁtr(ACl)(— 14+ i)vla*fl (eixlxz/hv) dx
hJu 16

2
- / o (A (— 1+ Z) V) (@M%Y da
U

h 16
o (T (ACH (— 1+ v\
=200 (A (= 1+ V)V
2
=1/ z
= 270 (u tr(ACY)(—1+ 1—6)V’)V -
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as h — 0. Recalling that here we also extended C' by zero, outside . This
extension is C? thanks to the boundary determination (recall that since we are in
holomorphic coordinates 9*~! = 5_1). Since the first term in the right-hand side
of (7.36) is of O(1), note that T}, satisfies (5.23), which ensures that the second
term in the right-hand side of (7.36) decays faster than O(1) as h — 0. Hence,

: 1 ~ 1 Z2 iziz2/h g~
}ILILI%) (h/Uutr(AC )(—1+E)e Ory dx

1 2
=270 (ftr(ACH) (— 1+ V')V

. o 2,2 . 2,2
Similarly, one can use the same derivation for Sg’; together with Sz’;. Therefore,
to summarize, we must have

z:O-

2
. ) a1/~ z
lim (825 +553)] =2mid  (er(Act) (— 1+ E)V’)v

2
i ) , 1/ 2
Jim, [h(S35 + S633)] = —2r0 (utr(Ac2)( 14 E)V/>V

)

2=0

z:O'
Similar to previous methods, for Sg:; , an integration by parts for J yields
st =~ [ 3vier (¢Y)] (1 + Z)ae@ﬁ@)/ha?g dz = O(h~1/2+e),
U N——o —/ ——
=0,2(1)

and same estimate holds for Sgg Now, we have limj,_,q (hS})'fg,) = limy,_,¢ (th?:;) =
0, then this implies that the lower terms satisfy limy_,q (th,s) = limy_,0 (thyg) =
0 as well. Hence, one has

lim (hS55) = lim (hSg;) = 0.

Step 6-4. Analysis of S5 4 and Sg 4.

For S5 4, using (2.6) and similar to previous arguments, one can compute
8wk (e@/hrfb) = OL2 (h_1/2+6)7

for k = 1,2. Thanks to the better estimate for r1,0r1,0r; = O2(h), from the
above computations, one can easily see that

Soa= [ v [ (D)) € V() )] de = 0025,

=0,2(1) =0, 2 (h=1/2+¢)

which implies

lim (hS5.4) = 0.

For S 4, note that V(e®1/hr1) = Or2(1), by (2.6), then there holds that

Soa = / e (€ V(Fy e /)
U

. [A62(FA726@/}L’72) + BEQ(FTZGE/}L?Q) + 2[2X285(FA726E/}1772)} }] dl‘

As in the previous analysis, the term Sg 4 involves second derivatives acting on 7.
Hence, by applying the Calderén—Zygmund estimate (5.26) to 72, we obtain

|56,4| — O(h_1/2+5).
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In particular, this implies

Jim (hSe,4) =0

Step 7. Analysis of Sr.

In S7, there is only one derivative on v and v(?), from the above analysis, we
know that

1/1 1/1\7Zz 5
vvD = m <|) (1+ Z)e‘bl/h +0(1), vv® = -5 (I) %e%/h +O(1).

Using the same trick as before, an integration by parts argument between the
holomorphic and antiholomorphic functions ensures that

}1111)1%) (hS7) =0.
Step 8. Finalization.

From Step 1 to Step 7, with the integral identity (7.8) at hand, we can conclude
that the only nonzero terms come from S; and S5, which are

0= hm ( Zsk)
=70 (F 0G0 + Fil (X, - VO)Go)|,_, — 1670GH | _,
+m0{a[tr (ACY) —itr (AC)]}|,_, +27i0  (E(w))V

(7.37)

)

z2=0
where E(w) := fi(w)(tr(AC! (w)) + itr(AC*(w)))( — 1 + T—;)V’(w). We next vary
the critical point z = 0 to the entire domain U by shifting the phases of the CGOs.
By doing so, the local terms will be just evaluated at z € U instead of z = 0.
However, in the nonlocal term 571(E(w))(z) in (7.37) the function (—1+ T—;) is
obtained from phase functions with evaluating point w = 0. Thus, changing the
phase, changes the function ( -1+ %) in the nonlocal term.

Let us give more details to the above observation regarding the nonlocal term.
When we choose the critical point to be a € C, the corresponding phase functions
become

(z —a)? (z —a)?

8 8
Following similar derivations as in Step 6-3, we can see that the nonlocal lower order
term will be given by 0 ( (tr(ACY) +itr(AC?))(—1+ (w a) )V’)( )V(z)‘

zZ=a

More concretely, one may compute

®1(2) = (z—a)+

, Pa(z) = —%(z—a)Q, and ®*(z) = —(z—a)+

5*1( (tr(ACh) +itr(AC?))(—1+ %)V’)V .
=0 (i t(ach) +it(ach) V|
+%/,u(tr(AC +itr(AC? )%d@/\dw .
=9 (A +itr(ach) )v|
+%/y(tr(AC )+ 1tr(AC?)) (w — a) d A dw
=0 (A(6(ACH) +it(AC)) V| +erates,
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where
e = —% L tr(ACY) +itr(AC?)) dw A dw € C,
_
16
are some constants, and we used the function fi( tr(AC!)+itr(AC?)) = fi( tr(AC*)+

itr(ACz))c is compactly supported in C, so that the above integrals must be finite.
Let us write

Co: i tr(ACY) +itr(AC?))wdw A dw € C,

H(z) = =2i(c1z — ¢a),
for the linear function in z, which is thus holomorphic. Using (7.5) and (7.7), by

translation, we can vary the critical point z = 0 (or z = a) of the phase functions
in CGOs to arbitrary points z € U, then the identity (7.37) yields that

A(FraGy + F1H (X, - VO*)Go) — 160G,
+ o{pa[tr (ACl) —itr (AC2)]}
- %Eg_l<ﬁ(tr(Acl) +itr(AC?)) ) Y HinU.

(7.38)

=vc
Using the definitions (7.14), (7.19), (7.32) and (7.7) of Gy, Gy, Ji and C* (k = 1,2),
respectively, by setting
c:=1-c?ecC*R?,

where ¢ has been extended by zero to R?\ §2 at the outset of the proof, the equation
(7.38) will take the form
(7.39) 9(Adc + ac) = 6(2)5_1(7@ +HinU,
for some functions «, 3,7 independent of ¢, where the leading coefficient A of the
second derivatives in the equation (7.39) is non-vanishing. In particular, we can
find A explicitly by

A= P F P

= M_ngllFA—Q(tr(ACl) +itr(AC?)),
and «, 8 are some functions that can be computed and are independent of c. Note
that by (5.15), A(z) # 0 for all z € U.

Since ¢ = 0 in U \ 2 and recall that H is holomorphic, the UCP of Lemma 6.1
applied to (7.39) yields c=0in allof U. Asc=1-c¢"2 =0 in U, it follows that
¢ 2 =11n U, and in particular in €. Finally, using ¢ > 0 in Q, we conclude

c=1 in Q,
which completes the proof. O

8. PROOF OF THEOREM 1.2

With all arguments in previous sections, we have proved Theorem 1.2. For the
sake of completeness, let us explain the arguments again.
Proof of Theorem 1.2. Let us split the proof into several steps:
o Step 1. Using Fi|y, = Fblyq, the boundary determination (see Lemma
3.1) shows that D2ué1)|aQ = DQU(()2)|59-
o Step 2. Lemma 4.1 shows that the relation (1.9) determines ,
(8.1) N (8) = A (6), for any ¢ € C=(99),
where Ay denotes the DN map of (4.8), for j = 1,2.
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e Step 3. Since () is a uniformly convex domain, it must be a simply connected
domain. Hence, applying Theorem 4.4, the condition (8.1) implies that
there exists ¢ > 0 with ¢|gq = 1 such that g1 = cgs in Q.

e Step 4. Theorem 7.4 yields that ¢ = 1 in Q. This shows that g; = g» in Q.
In other words, Dzu(()l) = Dzugo) in Q, which implies

Fy = det D*u{" = det D*u”) = F, in Q,

where we used uéj) are solutions to (3.1), for j =1,2.

This concludes the proof. O
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