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1. Introduction

In this work, we study a nonlocal analogue of the Calderón problem for nonlocal
parabolic operators. The mathematical formulation in this work is given as follows:
Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary ∂Ω for n ≥ 2, and
T > 0 be a real number. Consider the parabolic equation

Hv = 0 in ΩT := (−T, T )× Ω,

v(t, x) = f(t, x) on ΣT := (−T, T )× Σ,

v(−T, x) = 0 for x ∈ Ω,

(1.1)
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where

H := ∂t −∇ · (σ∇)(1.2)

denotes the parabolic operators and Σ := ∂Ω. Consider the coefficient σ(x) =
(σik(x))1≤i,k≤n to be a positive definite Lipschitz continuous matrix-valued function
satisfying


σik = σki, for all i, j = 1, 2, . . . , n,

c0|ξ|2 ≤
n∑

i,k=1

σik(x)ξiξk ≤ c−1
0 |ξ|2, for any x and ξ = (ξ1, . . . , ξn) ∈ Rn,

|σ(x)− σ(z)| ≤ C0|x− z|, for x, z ∈ Rn,

(1.3)

where c0 ∈ (0, 1) and C0 > 0 are constants. Meanwhile, we also adapt the notation

BT := (−T, T )×B,

for any B ⊂ Rn.
It is known the well-posedness of (1.11.1) always holds whenever f satisfies suit-

able regularity assumptions (see Section 22). Once the well-posedness holds for
certain equations, we can study inverse problems via either the Cauchy data or
the Dirichlet-to-Neumann (DN) map. In this work, we utilize the lateral boundary
Cauchy data as our measurements, which is given by

CΣT
⊂ L2(0, T ;H1/2(ΣT ))× L2(0, T ;H−1/2(ΣT ))

with

CΣT
:=

vf |ΣT
,

n∑
i,k=1

σik∂xk
vfνi

∣∣∣∣∣∣
ΣT

 ,(1.4)

where vf is a solution of (1.11.1), and ν = (ν1, . . . , νn) is the unit outer normal on
Σ. The classical Calderón problem for the space-time parabolic equation (1.11.1) is
to determine σ by using the information Λσ on ΣT .

As a matter of fact, we are interested in the Calderón problem for nonlocal
parabolic equations, which can be formulated as an initial exterior value problem.
Throughout this work, we restrict the function σ = (σik)1≤i,k≤n to be the n × n

identity matrix In outside Ω, so that σ still satisfies the condition (1.31.3) in Rn.
Given s ∈ (0, 1), consider

Hsu = 0 in ΩT

u(t, x) = f(t, x) in (Ωe)T ,

u(t, x) = 0 for t ≤ −T and x ∈ Rn,
(1.5)

where H is the parabolic operator given by (1.21.2), and

Ωe := Rn \ Ω
stands for the exterior domain. Due to the definition Hs (see the rigorous definition
ofHs in Section 22), we cannot only pose the initial condition for (1.51.5), but we require
the whole past time information in order to make the equation (1.51.5) well-defined. In
short, with suitable regularity assumptions for exterior data f , the well-posedness
of (1.51.5) holds (see Section 22).

Furthermore, we can formulate the Calderón problem for nonlocal parabolic
equations as follows. Let W ⊂ Ωe be an arbitrarily nonempty open set, and we
define the corresponding exterior partial Cauchy data given by

CWT
⊂
(
H̃s((Ωe)T )

)
×
(
H̃s(WT )

)∗
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with

CWT
:=
{
u|(Ωe)T , H

su|WT

}
,(1.6)

where H̃s((Ωe)T ) is a suitable function space which will be introduced in Section

22, and
(
H̃s(WT )

)∗
denotes the dual space of Hs(WT ). Our inverse problem is

to ask whether can we determine σ by using the corresponding exterior partial
Cauchy data or not. In particular, we propose the following two inverse problems
in space-time domain for both local and nonlocal parabolic equations:

(1) Local Calderón’s problem. Can one determine the coefficient σ from
the local Cauchy data (1.41.4) of (1.11.1)?

(2) Nonlocal Calderón’s problem. Can one determine the coefficient σ
from the nonlocal Cauchy data (1.61.6) of (1.51.5)?

In this work, we will answer the above two questions, and describe the relations
between nonlocal and local Calderón’s problems for both nonlocal and local par-
abolic equations. We want to show that the above nonlocal Calderón problem
(2) can be reduced to the local Calderón problem (1), and new unique continua-
tion/determination results are established in this work.

• Literature review. The fractional Calderón problem was first proposed and
solved in the work [GSU20GSU20], where the authors determined the zero order poten-
tial for the fractional Schrödinger equation by using the exterior partial Cauchy
data. The main tools in the study of fractional inverse problems are based on the
global unique continuation property and the Runge approximation property. Using
these methods, many researchers have investigated inverse problems for fractional
equations under various settings of mathematical models, such as [BGU21BGU21, BKS22BKS22,
CRZ22CRZ22, CLL19CLL19, CL19CL19, CLR20CLR20, CMRU22CMRU22, FGKU21FGKU21, GLX17GLX17, GRSU20GRSU20, KLW22KLW22,
KW22KW22, Gho21Gho21, HL19HL19, HL20HL20, LL22aLL22a, LL22bLL22b, LL19LL19, RS20RS20, LLR20LLR20, Lin22Lin22, QU22QU22,
RZ22aRZ22a, RZ22bRZ22b, RS18RS18] and some references therein. In addition, several interesting
properties for nonlocal parabolic operators have been studied in [ABDG22ABDG22, BG18BG18,
BGMN21BGMN21, BG22BG22].

Meanwhile, the Calderón problem to determine the lower order coefficient for
a fractional space-time parabolic equation has been considered by [LLR20LLR20] for
constant coefficients and [BKS22BKS22] for variable coefficients. More precisely, given
0 < s < 1, consider the following fractional parabolic equation

Hsu+ qu = 0 in ΩT ,

u = f in (Ωe)T ,

u(t, x) = 0 for t ≤ −T and x ∈ Rn,

where q = q(t, x) ∈ L∞(ΩT ). It has been shown that one can determine zero order
potential q by using the exterior DN map.

Before stating our main results, let us characterize our mathematical setups in
the following.

(S) For n ≥ 2, Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary ∂Ω,

and T > 0 be a number. Let σ(j) =
(
σ
(j)
ik

)
1≤i,k≤n

satisfy (1.31.3) in Ω, and

further assume that σ
(j)
ik (x) = δik to be the Kronecker delta, for x ∈ Ωe and

j = 1, 2. Consider Hj to be of the form (1.21.2), for j = 1, 2. For 0 < s < 1,
let W ⊂ Ωe be arbitrarily nonempty open subsets, and define the exterior
partial Cauchy data by

C(j)
WT

=
{
uj |(Ωe)T , (Hj)

s
uj |WT

}
,
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where uj ∈ Hs(Rn+1) is the solution of
(Hj)

s
uj = 0 in ΩT

uj = f in (Ωe)T ,

uj(t, x) = 0 for t ≤ −T and x ∈ Rn,
for j = 1, 2. Throughout this paper, we always assume the exterior Dirichlet
data f ∈ C∞

c ((Ωe)T ) for the sake of convenience. Moreover, we define the
local Cauchy data as usual to be

C(j)
ΣT

:=
{
vj |ΣT

, σj∂νvj |ΣT

}
,

where vj is a solution of
Hjvj = 0 in ΩT ,

vj = f on ΣT ,

vj(−T, x) = 0 for x ∈ Ω,

and we use the following notation

σj ∂νvj |ΣT
:=

n∑
i,k=1

σ
(j)
ik ∂xk

vjνi

∣∣∣∣∣∣
ΣT

(1.7)

to denote the Neumann data, for j = 1, 2. Here ν = (ν1, . . . , νn) denotes
the unit outer normal on Σ.

Then we are ready to state the first main theorem.

Theorem 1.1. Adopting all statements and notations given in (S), suppose that
the exterior partial Cauchy data

C(1)
WT

= C(2)
WT

,(1.8)

then the lateral boundary Cauchy data are the same that

C(1)
ΣT

= C(2)
ΣT
.

Via the result of Theorem 1.11.1, we are able to reduce the Calderón problem for
nonlocal parabolic equations to the Calderón problem for local parabolic equations.
Based on Theorem 1.11.1, one can immediately obtain the following result.

Corollary 1.1 (Global uniqueness). Adopting all statements and notations given
in (S), let σj be positive Lipschitz continuous scalar functions defined in Rn with
σj = 1 in Ωe. Suppose that the nonlocal Cauchy data

C(1)
WT

= C(2)
WT

,

then
σ1 = σ2 in Ω.

Next, we are also interested in the case that the leading coefficient is a matrix-
valued function. For the local case (i.e. s = 1), the non-uniqueness result has
been investigated by [GAV12GAV12], and we recall the result as follows. Let σ(x) =
(σij(x))1≤i,j≤n be a Lipschitz continuous matrix-valued function satisfying (1.31.3).

Let F : Ω → Ω be a C∞ diffeomorphism with F|∂Ω = Id (the identity map). It is
known that if v(t, x) is a solution to

∂tv −∇ · (σ∇v) = 0 for (t, x) ∈ ΩT

if and only if ṽ(t, y) := v(t,F−1(y)) is a solution to

F∗1(y)∂tṽ −∇ · (F∗σ∇ṽ) = 0 for (t, y) ∈ ΩT ,
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where F∗ denotes the push-forward as
F∗1(y) =

1
det(DF)(x)

∣∣∣
x=F−1(y)

,

F∗σ(y) =
DFT (x)σ(x)DF(x)

det(DF)(x)

∣∣∣
x=F−1(y)

.

Here DF stands for the (matrix) differential of F and DFT is the transpose of DF.
Due to the fact that F|∂Ω = Id, one can see that the (lateral) Cauchy data are the
same, i.e.,

CσΣT
:=
{
v|ΣT

, σ∂νv|ΣT

}
=
{
ṽ|ΣT

, F∗σ∂ν ṽ|ΣT

}
:= CF∗σ

ΣT
,

which implies the non-uniqueness property holds for local parabolic operators.
Similar to the local case, our last main result in this paper is to show that

non-uniqueness also holds for the nonlocal parabolic case.

Theorem 1.2 (Non-uniqueness). Adopting all statements and notations given in
(S), let W = W1 = W2 ⋐ Ωe be an arbitrary nonempty open subset, and σj be
globally Lipschitz continuous matrix-valued function in Rn satisfying (1.31.3). Suppose
that the exterior Cauchy data

C(1)
WT

= C(2)
WT

,

then there exists a Lipschitz invertible map F : Rn → Rn with F : Ω → Ω and
F|Ωe

= Id (the identity map) such that

σ2 = F∗σ1 in Ω,

where F∗ denotes the push-forward of the map F of the form

F∗σ1(y) =
DFT (x)σ1(x)DF(x)

det(DF)(x)

∣∣∣∣
x=F−1(y)

.

The paper is organized as follows. In Section 22, we recall the well-posedness
for both local and nonlocal parabolic equations, and review several function spaces
which are used in this work. We also provide a rigorous definition for the nonlocal
parabolic operator Hs for 0 < s < 1, which is defined via the evolutive heat
semigroup. In Section 33, we derive a new equation, which plays an essential role in
the study of this problem. Meanwhile, we show novel Carleman estimates in order
to prove the unique continuation property for the new equation. In Section 44, we
prove Theorem 1.11.1. In particular, we demonstrate a fact that any solution of local
parabolic equations can be approximated by solutions of some nonlocal parabolic
equations. Finally, we show both global uniqueness and non-uniqueness results for
nonlocal parabolic equations in Section 55.

2. Preliminaries

In this section, we provide fundamental properties for both local and nonlocal
parabolic equations. We first review the definition of weak solutions and well-
posedness for the local linear parabolic equation (1.11.1), which can be found in [Eva98Eva98,
Chapter 7].

Consider the local parabolic equation (1.11.1), and consider a function f̃ defined

on ΩT such that f̃ |ΣT
= f . Let w := u− f in ΩT , then w solves

Hw = F in ΩT := Ω× (−T, T ),
w(t, x) = 0 on ΣT := Σ× (−T, T ),
w(−T, x) = g(x) for x ∈ Ω,

(2.1)
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where F = −Hf̃ and g = −f̃(−T, x). Define the bilinear form B[w,φ; t] by

B[w,φ; t] :=

∫
Ω

σ(x)∇xw(x, t) · ∇xφ(x) dx,

for any φ ∈ H1
0 (Ω). Then we are able to define the concept of weak solutions of

(2.12.1).

Definition 2.1 (Weak solutions). A function w ∈ L2(−T, T ;H1
0 (Ω)) with ∂tw ∈

L2(−T, T ;H−1(Ω)) is called a weak solution of the initial boundary value problem
(2.12.1) if w satisfies the following conditions:

(a)
∫
Ω
∂tw(t, x)φ(x) dx + B[w,φ; t] =

∫
Ω
F (t, x)φ(x) dx, for any φ ∈ H1

0 (Ω)
and for almost every (a.e.) time t ∈ [−T, T ],

(b) w(−T, x) = g(x).

With the definition of weak solutions at hand, we have the following result.

Lemma 2.2 (Well-posedness). Let σ = (σik)1≤i,k≤n be a Lipschitz continuous

matrix-valued function satisfying (1.31.3). For any g ∈ L2(Ω), F ∈ L2(−T, T ;L2(Ω)),
the parabolic equation (2.12.1) admits a unique weak solution w ∈ L2(−T, T ;H1

0 (Ω)).
Moreover,

max
0≤t≤T

∥w∥L2(Ω) + ∥w∥L2(−T,T ;H1
0 (Ω)) + ∥∂tw∥L2(−T,T ;H−1(Ω))

≤ C
(
∥F∥L2(−T,T ;L2(Ω)) + ∥g∥L2(Ω)

)
,

for some constant C > 0 depending on Ω, T and σ.

Notice that given arbitrary lateral Dirichlet data f ∈ L2(−T, T ;H3/2(Σ)), there

exists f̃ ∈ L2(−T, T ;H2(Ω)) such that f̃ = f on ΣT in the trace sense.

2.1. The nonlocal parabolic operator Hs. The definition for the nonlocal par-
abolic operator Hs can be found in [BDLCS21BDLCS21, BKS22BKS22]. In the rest of this paper,
we adopt the notation

L := −∇ · (σ∇)

to denote the second order elliptic operator of divergence form, where σ = (σik)1≤i,k≤n
is a matrix-valued function given via (1.31.3) in Ω, and we define σik = δik in Ωe, for
i, k = 1, . . . , n. With this positive definite matrix-valued function σ defined in the
whole Rn, we assume that the parabolic operator ∂t + L in R × Rn possesses a
globally defined fundamental solution p(x, z, τ), which satisfies

Pt1(t, x) =
∫
Rn

p(x, z, τ) dz = 1, for every x ∈ Rn and τ > 0,

where Pt stands for the heat semigroup.
Consider the following evolution semigroup

PH
τ u(t, x) :=

∫
Rn

p(x, z, τ)u(t− τ, z) dz, for u ∈ S(Rn+1),(2.2)

where p(x, z, τ) is the heat kernel corresponding to ∂τ + L and S(Rn+1) denotes
the Schwarz space. In addition, the heat kernel p(x, z, τ) satisfies

C1

(
1

4πτ

)n/2
e−

c1|x−z|2
4τ ≤ p(x, z, τ) ≤ C2

(
1

4πτ

)n/2
e−

c2|x−z|2
4τ ,(2.3)

for j = 1, 2, for some positive constants c1, c2, C1 and C2. Noticing that
{
PH
τ

}
τ≥0

is

a strongly continuous contractive semigroup such that ∥PH
τ u− u∥L2(Rn+1) = O(τ).

We are able to give the explicit definition of Hs.
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Definition 2.3. Given s ∈ (0, 1) and u ∈ S(Rn+1), the nonlocal parabolic operator
Hs can be defined via the Balakrishnan formula (see [BKS22BKS22]) as

Hsu(t, x) := − s

Γ(1− s)

∫ ∞

0

(
PH
τ u(t, x)− u(t, x)

) dτ

τ1+s
.(2.4)

One may also use the definition from [BDLCS21BDLCS21] to define the nonlocal parabolic
operator Hs. In further, by using the Fourier transform with respect to the time-
variable t ∈ R, one can express Hsu in terms of the Fourier transform. It is known
that the heat semigroup {Pt}t≥0 can be written by spectral measures as an identity
of gamma functions:

Pt =
∫ ∞

0

e−λt dEλ and − s

Γ(1− s)

∫ ∞

0

e−(λ+iρ)t − 1

τ1+s
dτ = (λ+ iρ)s,(2.5)

for λ > 0 and ρ ∈ R, where i =
√
−1. Consider the Fourier transform Ft of PH

τ u
with respect to the t-variable, then we have

Ft
(
PH
τ u
)
(ρ, ξ) = e−iρτPτ (Ftu(ρ, ·)) (ξ),

which infers that the Fourier analogue of the definition (2.42.4)

Ft (Hsu) (ρ, ·) =− s

Γ(1− s)

∫ ∞

0

1

τ1+s

∫ ∞

0

(
e−(λ+iρ)τ − 1

)
dEλ (Ftu(ρ, ·)) dτ

=

∫ ∞

0

(λ+ iρ)s dEλ (Ftu(·, ρ)) .

2.2. Function spaces. We next turn to define several function spaces. By using
previous discussion, for any u ∈ S(Rn+1), one can write

∥Ft (Hsu) (ρ, ·)∥L2(Rn) =

∫ ∞

0

|λ+ iρ|2s d∥Eλ (Ftu(ρ, ·))∥2,

for ρ ∈ R. With this relation at hand, we can define the space H2s(Rn+1) to be
the completion of S(Rn+1) under the norm

∥u∥H2s(Rn+1) =

(∫
R

∫ ∞

0

(
1 + |λ+ iρ|2

)s
d∥Eλ (Ftu(ρ, ·))∥2 dρ

)1/2

.(2.6)

Now, let r ∈ R and O ⊂ Rn+1 be an open set, then one can define

Hr(Rn+1) =
{
Completion of S(Rn+1) with respect to the norm :∫

R

∫ ∞

0

(
1 + |λ+ iρ|2

)r/2
d∥Eλ (Ftu(ρ, ·))∥2 dρ

}
,

Hr(O) =
{
u|O : u ∈ Hr(Rn+1)

}
,

H̃r(O) =closure of C∞
c (O) in Hr(Rn+1).

Moreover, we define

∥u∥Hr(O) := inf
{
∥v∥Hr(Rn+1) : v|O = u

}
.(2.7)

We also denote the dual spaces

H−r(O) =
(
H̃r(O)

)∗
and H̃−r(O) =

(
H−r(O)

)∗
.

On the other hand, given a ∈ R, one may consider the parabolic type fractional
Sobolev space

Ha(Rn+1) :=
{
u ∈ L2(Rn+1) :

(
|ξ|2 + iρ

)a/2
û(ρ, ξ) ∈ L2(Rn+1)

}
,

where û(ξ, ρ) =
∫
Rn+1 e

−i(t,x)·(ρ,ξ)u(x, t) dtdx denotes the Fourier transform of u
with respect to both t and x variables.
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Meanwhile, the graph norm of Ha-functions is given by

∥u∥2Ha(Rn+1) :=

∫
Rn+1

(
1 +

(
|ξ|4 + |ρ|2

)1/2)a/2
û(ρ, ξ) dρdξ.(2.8)

In addition, one can express the space

Ha(Rn+1) = Ha/2,a(Rn+1),

where the exponents a/2 and a denote the (fractional) derivatives of time and space,
respectively. In particular, as a = s ∈ (0, 1), via the discussion in [BKS22BKS22], it is
known that

Hs(Rn+1) = Hs(Rn+1), for s ∈ (0, 1),(2.9)

and we denote

HsE :=
{
u ∈ Hs(Rn+1) : supp(u) ⊂ E

}
,

for any closed set E ⊂ Rn+1.

2.3. Initial exterior value problems. In this section, let us consider the initial
exterior value problem of (1.51.5). In order to study the well-posedness of the initial
exterior value problem (1.51.5), as shown in [BKS22BKS22, LLR20LLR20], one can consider the
adjoint operator Hs

∗ of Hs. More precisely, Hs
∗ can be defined in terms of the

spectral resolution via

Ft (Hs
∗u) (ρ, ·) =

∫ ∞

0

(λ− iρ)s dEλ (Ftu(ρ, ·)) ,

for u ∈ S(Rn+1). Furthermore, one has that Hs
∗ = (−∂t + L)s for s ∈ (0, 1).

Next, for any f, g ∈ S(Rn+1), one can derive that

⟨Hsf, g⟩Rn+1 =
〈
Hs/2f,Hs/2

∗ g
〉
Rn+1

= ⟨f,Hs
∗g⟩Rn+1

=

∫
R

∫ ∞

0

(λ+ iρ)s d⟨EλFtf,Ftg⟩(ρ, ·) dρ

≤C∥f∥Hs(Rn+1)∥g∥Hs(Rn+1),

(2.10)

for some constant C > 0 independent of f and g. In view of (2.102.10), one has the
mapping property Hs : Hs(Rn+1) → H−s(Rn+1), where H−s(Rn+1) stands for the
dual space of Hs(Rn+1). In the rest of this paper, we adopt the notation ⟨·, ·⟩D to
denote the natural pairing between a function and its duality, where D ⊂ Rn+1 is

an arbitrary set. For instance, given g ∈ H̃s(D), we can write

⟨Hsf, g⟩D = ⟨Hsf, g⟩H̃s(D)∗×H̃s(D) ,

where H̃s(D)∗ stands for the dual space of H̃s(D) for some set D ⊂ Rn+1.
With these properties of Hs and Hs

∗ at hand, we can define the bilinear map
B(·, ·) on Hs(Rn+1)×Hs(Rn+1) via

B(f, g) :=
〈
Hs/2f,Hs/2

∗ g
〉
Rn+1

.

By (2.102.10), it is known that

|B(f, g)| ≤ C∥f∥Hs(Rn+1)∥g∥Hs(Rn+1),

for some constant C > 0 independent of f and g, which shows the boundedness of
the bilinear form B(·, ·). On the other hand, for the coercive, one can consider the
cutoff solution akin to [LLR20LLR20, BKS22BKS22] by considering

uT (t, x) := u(t, x)χ[−T,T ](t),
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where χ[−T,T ](t) =

{
1 for t ∈ [−T, T ]
0 otherwise

is the characteristic function. Moreover,

χ[−T,T ] is also a multiplier in the fractional Sobolev space Ha(Rn), for |a| ≤ 1
2 (for

example, see [LM12LM12, Theorem 11.4 in Chapter 1]).
More precisely, the coercivity can be seen via〈
Hs/2f,Hs/2

∗ f
〉
Rn+1

=

∫
R

∫ ∞

0

(λ+ iρ)s d∥Eλ (Ftf) (ρ, ·)∥2 dρ

=

∫
R

∫ ∞

0

|λ+ iρ|s (cos(sθ) + i sin(sθ)) d∥Eλ (Ftf) (ρ, ·)∥2 dρ

=

∫
R

∫ ∞

0

|λ+ iρ|s cos(sθ) d∥Eλ (Ftf) (ρ, ·)∥2 dρ,

where tan θ = ρ
λ such that θ ∈ (−π/2, π/2) since λ ≥ 0. Here we used that sin(sθ)

is an odd function so that the third identity holds in the preceding identities.
Moreover, due the range of θ ∈ (−π/2, π/2) and s ∈ (0, 1), one can obtain that

cos(sθ) ≥ cos(sπ/2) := Cs > 0,

so that〈
Hs/2f,Hs/2

∗ f
〉
Rn+1

≥ Cs

∫
R

∫ ∞

0

|λ+ iρ|s d∥Eλ (Ftu) (ρ, ·)∥2 dρ ≥ C∥f∥2L2(Rn+1),

for some constant C > 0 independent of f . This proves the coercivity for the
bilinear form B(·, ·).

Moreover, as shown in [BKS22BKS22, LLR20LLR20], the information of u(t, x)|t>T will not
affect the behavior of the solution u|ΩT

, so we can define the weak solution of (1.51.5)
with the cutoff function.

Definition 2.4 (Weak solutions). Let Ω ⊂ Rn and T > 0 be given as before.

Given F ∈
(
Hs

ΩT

)∗
and f ∈ Hs((Ωe)T ). A function u ∈ Hs(Rn+1) is called a weak

solution of 
Hsu = F in ΩT

u(t, x) = f(t, x) in (Ωe)T ,

u(t, x) = 0 for t ≤ −T and x ∈ Rn,
(2.11)

if v := (u− f)T ∈ Hs
ΩT

and

B(u, ϕ) = ⟨F, ϕ⟩Rn+1 , for any ϕ ∈ Hs
ΩT
,

or

B(v, ϕ) = ⟨F −Hsf, ϕ⟩Rn+1 , for any ϕ ∈ Hs
ΩT
.

Now, the well-posedness of (2.112.11) can be stated as follows.

Proposition 2.5 (Well-posedness). Let Ω ⊂ Rn and T > 0 be given as before.

Given F ∈
(
Hs

ΩT

)∗
and f ∈ Hs((Ωe)T ). Then there exists a unique uT ∈ Hs(Rn+1)

with (u− f)T ∈ Hs
ΩT

satisfying HsuT = F in ΩT , and

∥uT ∥Hs(Rn+1) ≤ C
(
∥F∥(Hs

ΩT
)∗ + ∥f∥Hs((Ωe)T )

)
,

for some constant C > 0 independent of u, f and F .

With boundedness and coercivity of B(·, ·) at hand, the proof of Proposition 2.52.5
is based on the Lax-Milgram theorem for the bilinear map B(·, ·) (a similar trick
as in [BKS22BKS22, LLR20LLR20]), so we skip the detailed proof.
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In addition, once we obtain the well-posedness of (1.51.5), we are able to define the
corresponding exterior Cauchy data (or Dirichlet-to-Neumann map) via the bilinear
form B(·, ·) (same relation has been investigated in the works [BKS22BKS22, LLR20LLR20]). In
fact, given arbitrarily open sets W1,W2 ⊂ Ωe, the nonlocal Cauchy data is given
by

C(W1)T ,(W2)T :=
{
u|(W1)T , H

su|(W2)T

}
⊂ (Hs((W1)T ))× (Hs((W2)T ))

∗,

where the adjoint space (Hs((W2)T ))
∗ can be verified by B(·, ·).

2.4. The extension problem for Hs. We now review the extension problem for
Hs, which is a degenerate parabolic equation. Given u ∈ Hs(Rn+1), let U =
U(t, x, y) be the solution of the Dirichlet problem in Rn+2

+ := Rn+1 × (0,∞){
LsU = y1−2s∂tU −∇x,y ·

(
y1−2sσ̃(x)∇x,yU

)
= 0 in Rn+2

+ ,

U(t, x, 0) = u(t, x) on Rn+1,
(2.12)

where

σ̃(x) =

(
σ(x) 0
0 1

)
denotes (n + 1) × (n + 1) matrix. It is known that (2.122.12) can be viewed as the
parabolic counterpart as the famous Caffarelli-Silvestre extension problem of the
fractional Laplacian (see [CS07CS07]) for Hs.

For any open set D ⊂ Rn+1 × (0,∞), we define the weighted Sobolev space

H1(D; y1−2sdtdxdy) :=
{
U : ∥U∥H1(D;y1−2sdtdxdy) <∞

}
,

where

∥U∥2H1(D;y1−2sdtdxdy) :=

∫
D
y1−2s

(
|U |2 + |∇xU |2 + |∂yU |2

)
dtdxdy.

Then we have the following result.

Proposition 2.6 (Extension problem). Let s ∈ (0, 1) and u ∈ Hs(Rn+1), then
there is a solution U = U(t, x, y) of (2.122.12) such that

(1) lim
y→0+

U(·, ·, y) = u(·, ·) in Hs(Rn+1),

(2) lim
y→0+

21−2sΓ(s)

Γ(1− s)
y1−2s∂yU(·, ·, y) = Hsu in H−s(Rn+1),

(3) ∥U∥H1(Rn+1×(0,M);y1−2sdxdtdy) ≤ CM∥u∥Hs(Rn+1), where CM > 0 is a con-
stant depending on M , which is independent of u and U .

The proof of the above proposition was shown in [BKS22BKS22, Theorem 3.1], so we
omit the proof.

3. The new equation and its properties

Recall that Hj := ∂t + Lj is a parabolic operator, where Lj = −∇ · (σj∇), and
σj is a matrix-valued function satisfying (1.31.3) in Rn, such that σj = In in Ωe,
for j = 1, 2. Due to the definition of Hj , it is not hard to see that H1|(Ωe)T

=

H2|(Ωe)T
= (∂t −∆)|(Ωe)T

is the heat operator.
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3.1. Basic properties of the new equation. Given arbitrarily nonempty open
sets W1,W2 in Ωe and 0 < s < 1, let f ∈ Hs((W1)T ), and by utilizing the well-
posedness of the initial exterior value problem, there exists a unique solution uj ∈
Hs(Rn+1) of 

(Hj)
s
uj = 0 in ΩT

uj = f in (Ωe)T ,

uj(t, x) = 0 for t ≤ −T and x ∈ Rn,
(3.1)

for j = 1, 2. With the condition (1.81.8) at hand, one can always assume that

(H1)
s
u1 = (H2)

s
u2 in (W2)T .(3.2)

Notice that the global unique continuation property for nonlocal parabolic equa-
tion has been studied by [LLR20LLR20, Theorem 1.3] and [BKS22BKS22, Theorem 1.3], for
constant coefficients and variable coefficients nonlocal parabolic operators, respec-
tively. However, even given u1 = u2 = f in (Ωe)T , with the condition (3.23.2), one
cannot apply the global unique continuation property directly in this work. Thus,
we need to analyze the relation (3.23.2) in a more detailed way.

Let pj(x, z, τ) be the heat kernel corresponding to ∂τ +Lj in Rn×R for j = 1, 2,
which was introduced in Section 22. By using the notation (2.22.2), we consider the
function

Uj(t, τ, x) := PHj
τ uj(t, x) =

∫
Rn

pj(x, z, τ)uj(t− τ, z) dz,(3.3)

for j = 1, 2. Unlike the (nonlocal) elliptic case as in [GU21GU21], the function Uj defined
by (3.33.3) is no longer a solution to any parabolic equation. As a matter of fact, the
next lemma plays an essential role in our study.

Lemma 3.1. Let uj ∈ Hs(Rn+1) be the solution of (3.13.1) and Uj be the function
defined by (3.33.3), then Uj solves


(∂t + ∂τ )Uj(t, τ, x) + LjUj(t, τ, x) = 0, for (t, τ, x) ∈ (−T, T )× (0,∞)× Rn,
Uj(t, 0, x) = uj(t, x) for (t, x) ∈ (−T, T )× Rn,
Uj(−T, τ, x) = 0 for (τ, x) ∈ (0,∞)× Rn.

(3.4)

Proof. The following arguments hold for j = 1, 2. With the definition (3.33.3) of
Uj(x, t, τ) at hand, a direct computation yields that

(∂τ + Lj)Uj

=

∫
Rn

[(∂τ + Lj) pj(x, z, τ)]uj(t− τ, z) dz

+

∫
Rn

pj(x, z, τ)∂τ (uj(t− τ, z)) dz

=

∫
Rn

pj(x, z, τ)∂τ (uj(t− τ, z)) dz,

(3.5)

for (t, τ, x) ∈ (−T, T )× (0,∞)×R, where we used that pj(x, z, τ) is the heat kernel
of ∂τ +Lj , for j = 1, 2. By interchanging the derivatives of τ and t, the right hand
side of (3.53.5) can be rewritten as

(∂τ + Lj)Uj =− ∂t

(∫
Rn

pj(x, z, τ)uj(t− τ, z) dz

)
=− ∂tUj for (t, τ, x) ∈ (−T, T )× (0,∞)× Rn,
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which shows the first equation of (3.43.4) holds. Meanwhile, it is not hard to see that

Uj(t, 0, x) = lim
τ→0

PHj
τ uj(t, x)

= lim
τ→0

∫
Rn

pj(x, z, τ)uj(t− τ, z) dz = uj(t, x), for (t, x) ∈ (−T, T )× Rn.

Finally, since the parameter τ ∈ (0,∞), one can directly find that

Uj(−T, τ, x) =
∫
Rn

pj(x, z, τ)uj(−T − τ, z) dz = 0, for (τ, x) ∈ (0,∞)× Rn,

where we used uj(−T − τ, x) = 0 for τ > 0 and j = 1, 2. This proves the assertion.
□

Lemma 3.2. Adopting all notations in Lemma 3.13.1, we have

max
−T≤t≤T

∫ ∞

0

∫
Rn

|Uj |2 dxdτ +
∫ T

−T

∫ ∞

0

∫
Rn

|∇Uj |2 dxdτdt ≤ C∥uj∥Hs(Rn+1),

(3.6)

for some constant C > 0 independent of Uj and uj, for j = 1, 2.

Proof. Multiplying (3.43.4) by Uj , an integration by parts with respect to the x-
variable yields that

∂t + ∂τ
2

(∫
Rn

|Uj |2 dx
)
+

∫
Rn

σj∇Uj · ∇Uj dx = 0.(3.7)

We next integrate (3.73.7) with respect to both t and τ variables, which gives rise to

0 =

∫ ∞

0

∫
Rn

|Uj |2(t̃, τ, x) dxdτ −
∫ ∞

0

∫
Rn

|Uj |2(−T, τ, x) dxdτ

+

[∫ t̃

−T

∫
Rn

|Uj |2(t, τ, x) dxdt

]τ=∞

τ=0

+ 2

∫ t̃

−T

∫ ∞

0

∫
Rn

σj∇Uj · ∇Uj dxdτdt

=

∫ ∞

0

∫
Rn

|Uj |2(t̃, τ, x) dxdτ −
∫ t̃

−T

∫
Rn

|uj |2(t, x) dxdt

+ 2

∫ t̃

−T

∫ ∞

0

∫
Rn

σj∇Uj · ∇Uj dxdτdt

(3.8)

for any t̃ ∈ (−T, T ), where we used

lim
τ→∞

Uj(t, τ, x) = 0

from theheat kernel estimate (2.32.3). By rewriting (3.83.8), we have

∫ ∞

0

∫
Rn

|Uj |2(t̃, τ, x) dxdτ + 2

∫ t̃

−T

∫ ∞

0

∫
Rn

σj∇Uj · ∇Uj dxdτdt ≤ ∥u∥Hs(Rn+1).

(3.9)

Combined with the ellipticity of σj , the inequality (3.63.6) holds. □

With Lemma 3.23.2 at hand, we immediately obtain the following result.

Corollary 3.3. The equation (3.43.4) possesses a unique solution.

Proof. If there are two solutions with the same initials Uj(t, 0, x) and Uj(−T, τ, x),
then the right hand side of (3.63.6) is zero. Therefore, the solution is unique. □
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3.2. The Carleman estimate. The proof of main theorem are based on suitable
Carleman estimates. In the rest of this section, we will derive the needed Carleman
estimates. In fact, our aim is to derive Carleman estimates with the weight

φβ = φβ(x) = exp(ψ(y)),

where β > 0, y = − log |x| and ψ(y) = βy + 1
16βe

−y/2. From [KLW16KLW16, Appendix],
ψ(y) is a convex function satisfying

(3.10)


1

2
β ≤ ψ′ ≤ β,

dist(2ψ′,Z) + ψ′′ ≥ 1

32
.

Further, h satisfies that for any C > 0 there exists R0 > 0 such that

(3.11)
1

16
|x|β ≤ (1 + ψ′′(− ln |x|))

for all β and |x| ≤ R0.
We will modify the arguments of [LW22LW22, Lemma 2.1]. First, let us introduce polar

coordinates in Rn\{0} by writing x = rω, with r = |x|, ω = (ω1, · · · , ωn) ∈ Sn−1.
Using new coordinate y = − log r, we obtain that

∂

∂xj
= ey (−ωj∂y +Ωj) , 1 ≤ j ≤ n,

where Ωj is a vector field in Sn−1. We could check that the vector fields Ωj satisfy

n∑
j=1

ωjΩj = 0 and

n∑
j=1

Ωjωj = n− 1.

Since r → 0 if and only if y → ∞, we are interested in values of y near ∞.
It is easy to see that

∂2

∂xj∂xℓ
= e2y (−ωj∂y − ωj +Ωj) (−ωℓ∂y +Ωℓ) , 1 ≤ j, ℓ ≤ n.

then the Laplacian becomes

e−2y∆ = ∂2y − (n− 2)∂y +∆ω,

where ∆ω =
∑n
j=1 Ω

2
j denotes the Laplace-Beltrami operator on Sn−1. Let us recall

that the eigenvalues of −∆ω are k(k+n− 2), k ∈ N, and denote the corresponding
eigenspaces are Ek, where Ek is the space of spherical harmonics of degree k. We
note that

(3.12)
∑
j

∫∫
|Ωjv|2dydω =

∑
k≥0

k(k + n− 2)

∫
|vk|2dy,

where vk is the projection of v onto Ek. Let

Λ =

√
(n− 2)2

4
−∆ω,

then Λ is an elliptic first-order positive pseudodifferential operator in L2(Sn−1).
The eigenvalues of Λ are k + n−2

2 and the corresponding eigenspaces are Ek which
represents the space of spherical harmonics of degree k. Hence

Λ =
∑
k≥0

(
k +

n− 2

2

)
πk,(3.13)
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where πk is the orthogonal projector on Ek. Let

L± = ∂y −
n− 2

2
± Λ,

then it follows that

e−2y∆ = L+L− = L−L+.

Denote L±
β = ∂y − n−2

2 ± Λ− ψ′(y). Then we have that L±
β v = eψ(y)L± (e−ψ(y)v)

and e−2yeψ(y)∆
(
e−ψ(y)v

)
= L+

β L
−
β v = L−

β L
+
β v.

Lemma 3.4. Let χ(t), ζ(τ) ∈ C2
0 (R). There are sufficiently large constants β1,

depending on n, such that for all v(t, τ, y, ω) ∈ C1(R2;C∞(R× Sn−1)) and β ≥ β1
with β ∈ N+ 1

4 , we have that∫
|χζ(L+

β L
−
β v − e−2y∂tv − e−2y∂τv)|2 +

∫
|χ′ζe−2yv|2 +

∫
|χζ ′e−2yv|2

≳
∑

j+|α|≤1

β2−2(j+|α|)
∫
(1 + ψ′′)|∂jyΩα(χζv)|2,

(3.14)

where suppv(t, τ, y, ω) ⊂ R2 × (0,∞)× Sn−1.

Proof. By diagonalizing v =
∑
k vk and L

+
β L

−
β v = (∂y−ψ′+k)(∂y−ψ′−k−n+2)vk,

it is enough to prove that∑
j≤1

∫
(1 + ψ′′)|(β2−2j + k2−2j)∂jy(χζv)|2

≲
∫

|χζ(L+
β L

−
β v − e−2y∂tv − e−2y∂τv)|2 +

∫
|χ′ζe−2yv|2 +

∫
|χζ ′e−2yv|2,

where we abuse the notation v = vk. By direct computations, we can have that

χζ(∂y − ψ′ + k)(∂y − ψ′ − k − n+ 2)v = χζ(∂2yv − b̃∂yv + ãv),(3.15)

where {
ã = (ψ′ − k)(ψ′ + k + n− 2)− ψ′′

b̃ = 2ψ′ + n− 2.

It is helpful to note that

ψ′ = β − β

32
e−y/2, ψ′′ =

β

64
e−y/2, ψ′′ = − β

128
e−y/2.

We obtain from (3.153.15) that

4|χζ(L+
β L

−
β v − e−2y∂tv − e−2y∂τv)|2 + 4|χ′ζe−2yv|2 + 4|χζ ′e−2yv|2

≥|χζ(∂2yv − b̃∂yv + ãv)− e−2y∂t(χζv)− e−2y∂τ (χζv)|2

=|H(v)|2 − 2b̃∂y(χζv)H(v)− 2e−2y∂t(χζv)H(v)− 2e−2y∂τ (χζv)H(v)

+ |b̃∂y(χζv) + e−2y∂t(χζv) + e−2y∂τ (χζv)|2,

(3.16)

where H(v) := χζ
(
∂2yv + ãv

)
. Now we write

(3.17)

− 2

∫
b̃∂y(χζv)H(v) = −2

∫
b̃∂y(χζv)∂

2
y(χζv)− 2

∫
ãb̃χζv∂y(χζv)

− 2

∫
e−2y∂t(χζv)H(v) = −2

∫
e−2y∂t(χζv)∂

2
y(χζv)− 2

∫
ãχζve−2y∂t(χζv)

− 2

∫
e−2y∂τ (χζv)H(v) = −2

∫
e−2y∂τ (χζv)∂

2
y(χζv)− 2

∫
ãχζve−2y∂τ (χζv).
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Direct computations imply that

(3.18)


− 2

∫
b̃∂y(χζv)∂

2
y(χζv) = 2

∫
ψ′′|∂y(χζv)|2,

− 2

∫
ãb̃χζv∂y(χζv) =

∫
∂y(ãb̃)|χζv|2,

(3.19) −2

∫
e−2y∂t(χζv)∂

2
y(χζv) = −4

∫
e−2y∂t(χζv)∂y(χζv),

(3.20) −2

∫
ãχζve−2y∂t(χζv) = 0,

(3.21) −2

∫
e−2y∂τ (χζv)∂

2
y(ζv) = −4

∫
e−2y∂t(χζv)∂y(χζv),

(3.22) −2

∫
ãχζve−2y∂τ (χζv) = 0.

Note that here ã is independent of t, τ . Combining (3.163.16) to (3.223.22) yields∫
|χζ(∂2yv − b̃∂yv + ãv)− e−2y∂t(χζv)− e−2y∂τ (χζv)|2

≥
∫ (

|H(v)|2 + |b̃∂y(χζv) + e−2y∂t(χζv) + e−2y∂τ (χζv)|2
)

+2

∫
ψ′′|∂y(χζv)|2 − 4

∫
e−2y∂t(χζv)∂y(χζv)− 4

∫
e−2y∂τ (χζv)∂y(χζv)

+
17

3

∫
(ψ′)2ψ′′|χζv|2 − 2

∫
(k2 + nk − 2k)ψ′′|χζv|2(3.23)

for β ≥ β1. It is helpful to remark that ψ′′ > 0.
Likewise, we write



|b̃∂y(χζv) + e−2y∂t(χζv) + e−2y∂τ (χζv)|2

= |(b̃− 2)∂y(χζv) + e−2y∂t(χζv) + e−2y∂τ (χζv) + 2∂y(χζv)|2

= |(2ψ′ + n− 4)∂y(χζv) + e−2y∂t(χζv) + e−2y∂τ (χζv)|2

+4(2ψ′ + n− 3)|∂y(χζv)|2 + 4e−2y∂t(χζv)∂y(χζv) + 4e−2y∂τ (χζv)∂y(χζv).
1
2 |H(v)|2 = 1

2 |H(v) + 3ψ′′χζv|2 − 3ψ′′χζvH(v)− 9
2 (ψ

′′)2|χζv|2.

(3.24)

It is easy to check that

− 3

∫
ψ′′χζvH(v)

= −3

∫
ψ′′χ2ζ2v(∂2yv + ãv)

≥ 3

∫
ψ′′|∂y(χζv)|2 −

10

3

∫
(ψ′)2ψ′′|χζv|2 + 3

∫
(k2 + nk − 2k)ψ′′|(χζv)|2

(3.25)
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for all β ≥ β1. Moreover, via (3.233.23)-(3.253.25), we have that for β ≥ β1∫
|χζ(∂2yv − b̃∂yv + ãv)− e−2y∂t(χζv)− e−2y∂τ (χζv)|2

≥ 8

∫
ψ′|∂y(χζv)|2 + 2

∫
(ψ′)2ψ′′|χζv|2 +

∫
k2ψ′′|(χζv)|2

+
1

2

∫
|H(v)|2.

(3.26)

Now, we write that

1

4

∫
|H(v)|2 =

1

4

∫ ∣∣∣∣H(v)− β(ψ′ − k)χζv

10|β − k|

∣∣∣∣2 + ∫ β(ψ′ − k)

20|β − k|
χζvH(v)

−
∫
β2(ψ′ − k)2

400|β − k|
|χζv|2

≥
∫
β(ψ′ − k)

20|β − k|
χζvH(v)−

∫
β2(ψ′ − k)2

400|β − k|
|χζv|2

and note∫
β(ψ′ − k)

20|β − k|
χ2ζ2v∂2yv =−

∫
β(ψ′ − k)

20|β − k|
|∂y(χζv)|2 +

∫
βψ′′′

40|β − k|
|χζv|2

=−
∫

β(β − k)

20|β − k|
|∂y(χζv)|2 +

∫
β2e−y/2

640|β − k|
|∂y(χζv)|2

+

∫
βψ′′′

40|β − k|
|χζv|2

with ∫
β(ψ′ − k)

20|β − k|
χ2ζ2vav

=

∫
β(ψ′ − k)2(ψ′ + k + n− 2)

20|β − k|
|χζv|2 +

∫
β(ψ′ − k)ψ′′

20|β − k|
|χζv|2.

Combining (3.263.26), we have that∫ ∣∣∣χζ(∂2yv − b̃∂yv + ãv)− e−2y∂t(χζv)− e−2y∂τ (χζv)
∣∣∣2

≥ 7

∫
ψ′|∂y(χζv)|2 +

3

2

∫
(ψ′)2ψ′′|χζv|2 + 1

2

∫
k2ψ′′|(χζv)|2

+

∫
β(ψ′ − k)2(ψ′ + k + n− 2)

20|β − k|
|χζv|2 + 1

4

∫
|H(v)|2.

(3.27)

Thus, we can get the desire estimate if β ≥ β1. □

By Lemma 3.43.4, we have our main Carleman estimate.

Lemma 3.5 (Carleman estimate). Let χ(t), ζ(τ) ∈ C2
0 (R). There is a sufficiently

large number β2 depending on n such that for all w(t, τ, x) ∈ C1(R2;C∞(Rn)) and
β ≥ β2 with β ∈ N+ 1

4 , we have that∫∫∫
φ2
β(1 + ψ′′)χ2ζ2

(
|x|−n+2|∇(w)|2 + β2|x|−n|w|2

)
dxdτdt

≲
∫∫∫

φ2
β |x|−n+4χ2ζ2 (∆w − ∂tw − ∂τw)

2
dxdτdt

+

∫∫∫
φ2
β |x|−n+4|χ′ζw|2 dxdτdt+

∫∫∫
φ2
β |x|−n+4|χζ ′w|2 dxdτdt,(3.28)

where supp(w(t, τ, x)) ⊂ R× (0,∞)× {x : |x| < e}.
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3.3. Unique continuation property. This section is devoted to proving the
unique continuation property of solutions to

∂tu+ ∂τu−∆u = 0.(3.29)

The arguments are motivated by the proof of [Ves03Ves03, Theorem 15].

Theorem 3.1. Let u ∈ H1(R;H1((0,∞));H2(Rn)) be a nontrivial solution of
(3.293.29). Given t0, τ0, τ̂ > 0 such that t < T and τ0 < τ̂/2. Assume that u(t, τ, x) = 0
in {(t, τ, x) : ∥x∥ < R1, 0 < τ < τ̂ , |t| < T}. Then u(t, τ, x) = 0 in {(t, τ, x) : x ∈
Rn, 0 < τ < τ̂ , |t| < T}.

Proof. Let χ be defined as

(3.30) χ(t) =


1, |t| ≤ T2,

0, |t| ≥ T1,

exp
(
−( T

T1−|t| )
3( |t|−T2

T1−T2
)4
)
, T2 < |t| < T1,

where T1 = T − t0
2 , T2 = T − t0.

Similarly, we define ζ as

(3.31) ζ(τ) =


1, |τ − τ̂ /2| ≤ τ2,

0, |τ − τ̂ /2| ≥ τ1,

exp
(
−( τ̂

8(τ1−|τ̂/2|) )
3( |τ̂/2|−τ2τ1−τ2 )4

)
, τ2 < |τ − τ̂ /2| < τ1,

where τ1 = τ̂
2 − τ0

2 , τ2 = τ̂
2 − τ0.

Moreover, we let θ(x) ∈ C∞
0 (Rn) satisfy 0 ≤ θ(x) ≤ 1 and

θ(x) =

{
1, |x| < R2,

0, |x| > 2R2,

where R1 < R2 < R0/2. It is easy to see that for any multiindex α

(3.32) |Dαθ| = O(|x||α|) if R2 < |x| < 2R2.

Applying (3.283.28) to θu gives∫
φ2
β(1 + ψ′′)χ2ζ2|x|−n(|x|2|∇(θu)|2 + β2|θu|2)

≲
∫
φ2
β |x|−n+4χ2ζ2(∆(θu)− ∂t(θu)− ∂τ (θu))

2

+

∫
φ2
β |x|−n+4θ2ζ2|χ′u|2 +

∫
φ2
β |x|−n+4χ2θ2|ζ ′u|2,(3.33)

Here and after, C and C̃ denote general constants whose value may vary from line
to line. The dependence of C and C̃ will be specified whenever necessary.

By using (3.323.32) and (3.293.29), we obtain that∫
WT,τ̂

φ2
β(1 + ψ′′)χ2ζ2|x|−n(|x|2|∇u|2 + β2|u|2)

≲
∫
φ2
β(1 + ψ′′)χ2ζ2(|x|−n+2|∇(θu)|2 + β2|x|−n|θu|2)

≲
∫
φ2
β |x|−n+4χ2ζ2(∆(θu)− ∂t(θu)− ∂τ (θu))

2

+

∫
φ2
β |x|−n+4θ2ζ2|χ′u|2 +

∫
φ2
β |x|−n+4χ2θ2|ζ ′u|2

≤
∫
W̃

φ2
β |x|−n+4ζ2|χ′u|2 +

∫
W̃

φ2
β |x|−n+4χ2|ζ ′u|2 +

∫
Ỹ

φ2
β |x|−n|Ũ |2,

(3.34)
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where WT,τ̂ = {(t, τ, x) : |t| < T, 0 < τ < τ̂ , |x| < R2}, W̃ = {(t, τ, x) : |t| <
T, 0 < τ < τ̂ , |x| < R2}, Ỹ = {(t, τ, x) : |t| < T, 0 < τ < τ̂ , R2 < |x| < 2R2}, and
|Ũ(x)|2 = |x|4|χ′u|2 + |x|4|ζ ′u|2 + |x|−2|∇u|2 + |x|−4|u|2. Here, the same terms on
the right hand side of (3.343.34) are absorbed by the left hand side of (3.343.34). With the
choices described above, we obtain from (3.343.34) that∫

WT,τ̂

φ2
β(1 + ψ′′)χ2ζ2|x|−nβ2|u|2

≤J̃1 + J̃2 + C

∫
Ỹ

φ2
β |x|−n|Ũ |2,

(3.35)

where

J̃1 = C

∫
W̃

φ2
β |x|−n+4ζ2

∣∣∣∣χ′

χ

∣∣∣∣2 |χu|2,
J̃2 = C

∫
W̃

φ2
β |x|−n+4χ2

∣∣∣∣ζ ′ζ
∣∣∣∣2 |ζu|2.

Notice that we define χ′

χ = 0 as χ = 0. The arguments for estimating J̃1 and J̃2

are the same, so we only estimate J̃1.. To do so, one only needs to consider the
integral over W̃1 = {(t, τ, x) : T2 < |t| < T1, 0 < τ < τ̂ , |x| < R2}. To this end, we
consider the following two cases. Firstly,

C

∣∣∣∣χ′

χ

∣∣∣∣2 ≤ β3

4
|x|−3 ≤ (1 + ψ′′)β2

4
|x|−4.

In this case, J̃1 will be absorbed by the left hand side. Secondly, we consider

C

∣∣∣∣χ′

χ

∣∣∣∣2 ≥ β3

4
|x|−3.

Since
√
C

∣∣∣∣χ′

χ

∣∣∣∣ ≤ C1
T 3

(T1 − |t|)4
,

we can consider a large set

C1
T 3

(T1 − |t|)4
≥
(

β3

4|x|3

)1/2

.(3.36)

As a result, taking β ≥ β3 with β3 =
(
C2

14
9T 6

t80

)1/3
≥
(
C2

14
9R3

2T
6

t80

)1/3
, we can get

from (3.363.36) that

T1 − |t| ≤ t0/4

which implies that

|t| − T2 ≥ T1 − T2
2

.(3.37)

Combining (3.293.29), (3.363.36) and (3.373.37), we get for (t, x) ∈ W̃1 that

χ(t) ≲ exp

(
− 1

16

(
β3T 2

4|x|3

)3/8
)
.(3.38)

Thus, we have from (3.383.38) and (3.293.29) to obtain for β ≥ β3 that

J̃1 ≤ C2

∫
W̃

|u|2,(3.39)

where C2 is a positive constant depending on λ, n, T, t0.
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Combining (3.353.35) and (3.393.39), we get that

β2(R2)
−nφ2

β(R2)

∫
W2

|u|2

≤
∫
WT,τ̂

φ2
β(1 + ψ′′)χ2ζ2|x|−nβ2|u|2

≲
∫
W̃

|u|2 + (R2)
−nφ2

β(R2)

∫
Ỹ

|Ũ |2,

(3.40)

where W2 = {(t, τ, x) : |t| < T − t0, τ0 < τ < τ̂ − τ0, |x| < R2}.
Dividing β2(R2)

−nφ2
β(R2) on both sides of (3.393.39) and if β ≥ n, we have∫

W2
|u|2 ≲ β−2(R2)

nφ−2
β (R2)

∫
W̃

|u|2 + β−2

∫
Ỹ

|Ũ |2.(3.41)

Let β → ∞ on (3.413.41), we get that u = 0 on W2.
Since t0 and τ0 are arbitrary, we derive that u = 0 on {(t, τ, x) : |t| < T, τ <

τ̂ , |x| < R2}. By the standard argument, we can obtain that u = 0 on {(t, τ, x) :
|t| < T, 0 < τ < τ̂ , x ∈ Rn}. Finally, since τ̂ can be arbitrary, we have that u = 0
on {(t, τ, x) : |t| < T, τ ∈ (0,∞), |x| ∈ Rn}. □

Corollary 3.6. Given an open set D ⊂ Rn and T > 0. Let O ⊂ D be a subset.
Let u be a solution of (∂t + ∂τ −∆)u = 0 for (x, t, τ) ∈ D × (−T, T ) × (0,∞). If
u(x, t, τ) = 0 in O × (−T, T )× (0,∞), then u = 0 in D × (−T, T )× (0,∞).

4. From the nonlocal to the local

In this section, let us discuss several useful materials and prove Theorem 1.11.1.

4.1. Auxiliary tools and regularity results.

Lemma 4.1. Consider the function

Vj(t, x) :=

∫ ∞

0

Uj(t, τ, x) dτ,(4.1)

then Vj is the solution of{
HjVj = uj in (Rn)T ,
Vj(−T, x) = 0 on Rn,

(4.2)

where uj ∈ Hs(Rn+1) is the solution of (3.13.1), for j = 1, 2.

Proof. The following arguments hold for j = 1, 2. Integrating (3.43.4) with respect to
the τ -variable, one has

(∂t + Lj)Vj(t, x) =

∫ ∞

0

(∂t + Lj)Uj(t, τ, x) dτ

=−
∫ ∞

0

∂τ (Uj(t, τ, x)) dτ

=Uj(t, 0, x), for (t, x) ∈ Rn+1,

(4.3)

for j = 1, 2. and plug the above relation into (4.34.3), so that (4.24.2) holds. Finally, one
can check that

Vj(−T, x) =
∫ ∞

0

∫
Rn

pj(x, z, τ)uj(−T − τ, z) dzdτ = 0,

for t ∈ (−T,∞), and τ ∈ (0,∞), where we utilized that uj(x, t) = 0 for t ≤ −T and
x ∈ Rn (or uj(z,−T − τ) = 0 for τ ≥ 0 and z ∈ Rn). This proves the assertion. □
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From the above derivation, it is not hard to see that

Vj(ζ, x) = 0, for all ζ ≤ −T,(4.4)

which will be used in the forthcoming discussion. We next analyze the regularity
result of the solution Vj .

Lemma 4.2 (Regularity estimate). The function Vj given by (4.14.1) satisfies

(Hj)
s/2

Vj ∈ L2(−T, T ;H2(Rn)) and ∂t (Hj)
s/2

Vj ∈ L2((Rn)T ),

where Ha(Rn) denotes the (fractional) Sobolev space of order a ∈ R, for j = 1, 2.

Proof. Since uj ∈ Hs(Rn+1) is the solution of (3.13.1), it is not hard to check that

ũj := (Hj)
s/2

uj ∈ L2(Rn+1),

for j = 1, 2. Here we used the known result that (Hj)
s/2

: Hs(Rn+1) → L2(Rn+1) by
observing the Fourier symbol in the definition (2.82.8) of the function space Hs(Rn+1).

Let us consider the function

Ṽj := (Hj)
s/2

Vj

where Vj satisfies (4.24.2). Note that

Ṽj(−T, x) =
(
(Hj)

s/2
Vj

)
(−T, x)

=− s/2

Γ(1− s/2)

∫ ∞

0

PHj
τ Vj(−T, x)−Vj(−T, x)

τ1+s/2
dτ

=0,

for x ∈ Rn, where we used (4.44.4). Then Ṽj is the solution of{
HjṼj = ũj in RnT ,
Ṽj(−T, x) = 0 on Rn,

(4.5)

where we used the interchangeable property between (Hj)
s/2

and Hj , for j = 1, 2.
Meanwhile, we can have the following computations in −T ≤ t ≤ T :∫

Rn

ũ2j dx =

∫
Rn

(
∂tṼj − LjṼj

)2
dx

=

∫
Rn

[(
∂tṼj

)2
− 2LjṼj · ∂tṼj +

(
LjṼj

)2]
dx

=

∫
Rn

[(
∂tṼj

)2
+ 2σj∇Ṽj · ∂t∇Ṽj +

(
LjṼj

)2]
dx,

(4.6)

for j = 1, 2, where we have used the integration by parts in the last equality.

Moreover, 2σj∇Vj · ∂t∇Ṽj =
d
dt

(
σj∇Ṽj · ∇Ṽj

)
, and

∫ ζ

−T

∫
Rn

2σj∇Ṽj · ∂t∇Ṽj dxdt =

∫
Rn

σj∇Ṽj · ∇Ṽj dx

∣∣∣∣t=ζ
t=−T

,
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for ζ ∈ [−T, T ] and j = 1, 2. Hence, integrate (4.64.6) with respect to the time-
variable, then one can show that

c0 max
−T≤ζ≤T

∫
Rn

|∇Ṽj |2 dx+

∫ T

−T

∫
Rn

(
∂tṼj

)2
dxdt+

∫ T

−T

∫
Rn

(
LjṼj

)2
dxdt

≤ max
−T≤ζ≤T

∫
Rn

σj∇Ṽj · ∇Ṽj dx+

∫ T

−T

∫
Rn

(
∂tṼj

)2
dxdt+

∫ T

−T

∫
Rn

(
LjṼj

)2
dxdt

=2

∫ T

−T

∫
Rn

ũ2j dxdt,

(4.7)

for j = 1, 2, where we used the ellipticity condition (1.31.3) for σ and ũj ∈ L2(Rn+1).
The inequality (4.74.7) shows that for a.e. t ∈ [−T, T ],

∇Ṽj(t, ·), ∂tṼj(t, ·) and LjṼj(t, ·) ∈ L2(Rn).(4.8)

Let us denote Ṽ′
j := ∂

∂tṼj , multiplying (4.54.5) by Ṽ′
j , then the integration by

parts yields that∫
Rn

|Ṽ′
j |2 dx+

1

2

∂

∂t

∫
Rn

σ(x)∇Ṽj · ∇Ṽj dx =

∫
Rn

ũjṼ
′
j dx.

Applying the Young’s inequality and integrating with respect to the t-variable in
the above identity, for any ε > 0, we have∫ T

−T
∥Ṽ′

j∥2L2(Rn) dt+
1

2
sup

−T≤t≤T
∥∇Ṽj∥2L2(Rn)

≤ε
∫ T

−T
∥Ṽ′

j∥2L2(Rn) dt+ C(ε)

∫ T

−T
∥ũj∥2L2(Rn) dt.

In addition, by choosing ε > 0 sufficiently small, one can absorb the first term from
the right to the left so that∫ T

−T
∥Ṽ′

j∥2L2(Rn) dt+ sup
−T≤t≤T

∥∇Ṽj∥2L2(Rn) ≤ C∥ũj∥2L2(Rn),

for some constant C > 0 independent of Vj and ũj , for j = 1, 2.
On the other hand, one can write the equation (4.54.5) in terms of the weak for-

mulation so that ∫
Rn

Ṽ′
jϕdx+

∫
Rn

σj∇Ṽj · ∇ϕdx =

∫
Rn

ũjϕdx,

for any ϕ = ϕ(x) ∈ H1(Rn). The above identity is equivalent to∫
Rn

σ∇Ṽj · ∇ϕdx =

∫
Rn

Fϕdx,

for any ϕ = ϕ(x) ∈ H1(Rn), where F (t, ·) := ũj(t, ·) − Ṽ′
j(t, ·) ∈ L2(Rn) for a.e.

t ∈ [−T, T ]. This shows that Ṽj(t, ·) ∈ H1(Rn) is a weak solution of−∇·(σj∇Ṽj) =
F in Rn for a.e. t ∈ [−T, T ]. Moreover, the classical interior estimate shows that

Ṽj ∈ H2
loc(Rn). In particular, there exists a ball BR containing Ω, such that

Ṽj ∈ H2(BR). We also observe that

∆Ṽj = ∆Ṽj

∣∣∣
Ω
+ ∆Ṽj

∣∣∣
Ωe

= ∆Ṽj

∣∣∣
Ω
+ ∇ · (σ∇Ṽj)

∣∣∣
Ωe

∈ L2(Rn),

where we used σ = In in Ωe so that the first term in the right hand side of the

above identity vanishes in the set Ωe, and Ṽj ∈ H2(Ω) ⊂ H2(BR). Therefore, due

to the fact that ∥∆Ṽj∥2L2(Rn) = ∥D2Ṽj∥2L2(Rn), we can show that Ṽj ∈ H2(Rn). In
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addition, the H2 estimate is independent of t ∈ [−T, T ]. Finally, via the definition

of Ṽj . This proves the assertion. □

Remark 4.3. Via Lemma 4.24.2, it is not hard to check that

(Hj)
s/2

Vj ∈ H1,2(Rn+1),(4.9)

where one can extend (Hj)
s
Vj to be zero for (t, x) ∈ {t > T}×Rn11 without loss of

generality. The preceding lemma will give us desired function spaces for our Cauchy
data, which will be utilized in the proof of Theorem 1.11.1.

Let us state the unique continuation principle for the nonlocal parabolic equation
(1.51.5), which was shown in [LLR20LLR20, Proposition 5.6] by using suitable Carleman
estimate.

Proposition 4.4. Given s ∈ (0, 1), n ∈ N and arbitrarily nonempty open sets
W1,W2 ⊂ Ωe. Let uj ∈ Hs(Rn+1) with supp(uj) ⊂

(
Ω ∪W1

)
T
, for j = 1, 2.

Suppose that

u1 = u2 ∈ C∞
c ((W1)T ) and (H1)

s
u1 = (H2)

s
u2 in (W2)T .(4.10)

Then U1 = U2 in (−T, T )× (0,∞)×Rn, where Uj is defined by (3.33.3), for j = 1, 2.

Recalling the nonlocal parabolic operator Hs is defined via (2.42.4), with the con-
dition (4.104.10) at hand, one has that∫ ∞

0

U1(t, τ, x)−U2(t, τ, x)

τ1+s
dτ = 0, for (t, x) ∈ (W2)T ,(4.11)

where Uj is given by (3.33.3), for j = 1, 2. By utilizing the condition (4.114.11), we can
prove the proposition.

Proof of Proposition 4.44.4. Inspired by the proof of [GU21GU21, Proposition 3.1], let us
consider bounded open set Oj ⋐ Wj ⊂ Ωe (j = 1, 2) such that O1 ∩ O2 = ∅.
Without loss of generality, we may assume that supp(uj) ⊂

(
Ω ∪ O1

)
T
, for j = 1, 2.

Consider

U := U1 −U2,

then one can have

U(t, τ, x) =U1(t, τ, x)−U2(t, τ, x)

=

∫
Ω∪O1

p1(x, z, τ)u1(t− τ, z) dz −
∫
Ω∪O1

p2(x, z, τ)u2(t− τ, z) dz,

(4.12)

where we have utilized the condition supp(uj) ⊂
(
Ω ∪ O1

)
T

and pj(x, z, τ) is the
corresponding heat kernel of ∂τ + Lj , for j = 1, 2. Moreover, it is known that heat
kernels pj(x, z, τ) satisfies

C1

(
1

4πτ

)n/2
e−

c1|x−z|2
4τ ≤ pj(x, z, τ) ≤ C2

(
1

4πτ

)n/2
e−

c2|x−z|2
4τ ,(4.13)

for j = 1, 2, for some positive constants c1, c2, C1 and C2.

Claim 1.
U(t, τ, x)

τN+s
∈ L1(0,∞), for all N ∈ N, and for any given (t, x) ∈ (O2)T .

1The space H1,2(Rn+1) is introduced in Section 22, and the information in the future time
domain will not affect the solution in ΩT .
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In order to show the claim, one can examine whether the integral
∫∞
0

∣∣∣U(t,τ,x)
τN+s

∣∣∣ dτ
is finite or not. Similar to the arguments as in the proof of [GU21GU21, Proposition 3.1],
given δ ∈ (0, 1), we can divide the integral∫ ∞

0

∣∣∣∣U(t, τ, x)

τN+s

∣∣∣∣ dτ = Iδ + IIδ,

where

Iδ :=

∫ δ

0

∣∣∣∣U(t, τ, x)

τN+s

∣∣∣∣ dτ and IIδ :=

∫ ∞

δ

∣∣∣∣U(t, τ, x)

τN+s

∣∣∣∣ dτ.
For IIδ, by using the Hölder’s inequality, one can see that

IIδ ≤ C
(
∥u1∥L2(Rn+1) + ∥u2∥L2(Rn+1)

)(∫ ∞

δ

1

τ2N+2s
dτ

) 1
2

<∞,(4.14)

for some constant C > 0 independent of τ > 0. On the other hand, for Iδ, using
the Hölder’s inequality and the property of the heat kernel estimate (4.134.13), we have
that

Iδ ≤C
(
∥u1∥L2(Rn+1) + ∥u2∥L2(Rn+1)

)(∫ δ

0

∫
Ω∪O1

e−
|x−z|2

τ

τ2N+2s
dzdτ

)1/2

≤C̃

(∫ δ

0

e−
κ2

τ

τ2N+2s
dτ

)1/2

<∞,

(4.15)

for some constants C, C̃ > 0. Here we have used that Ω and O1 are bounded sets in
Rn, and x ∈ O2, such that |x−z| ≥ κ > 0, for some κ > 0 (recalling that z ∈ Ω∪O2

and Ω ∪ O2 ∩ O1 = ∅). Combining with (4.144.14) and (4.154.15), one can conclude that
U(t,τ,x)
τN+s ∈ L1(0,∞) for all N ∈ N, and for any given (x, t) ∈ (O2)T .

Claim 2.

∫ ∞

0

U(t, τ, x)

τN+s
dτ = 0, for all N ∈ N, and for any given (t, x) ∈ (O2)T .

With the equation (3.43.4) at hand, notice that

H1|(Ωe)T
= H2|(Ωe)T

= (∂t −∆)|(Ωe)T
:= H|(Ωe)T ,

then one can see that U is a solution of{
∂τU = −HU in (−T, T )× (0,∞)× Ωe,

U(t, 0, x) = 0 for (t, x) ∈ (Ωe)T ,
(4.16)

where we utilized the condition thatU(t, 0, x) = U1(t, 0, x)−U2(t, 0, x) = u1(t, x)−
u2(t, x) = 0 in (Ωe)T . Via the condition (4.114.11), the function U satisfies∫ ∞

0

U(t, τ, x)

τ1+s
dτ = 0 in (O2)T ,(4.17)

which proves the Claim 2 for the case N = 1.
Furthermore, since uj(t, x) are C∞-smooth for (t, x) ∈ (Ωe)T , and pj(x, z, τ) is

also smooth, for j = 1, 2, then we get U(t, τ, x) is smooth in the (t, x)-variables, for
(t, x) ∈ (Ωe)T . Hence, by applying the heat operator Hm to the equation (4.164.16) for
any m ∈ N ∪ {0}, one has that{

(∂τ +H)HmU = 0 in (−T, T )× (0,∞)× Ωe,

HmU(t, 0, x) = 0 in (Ωe)T .
(4.18)
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Meanwhile, similar to the arguments as in the Claim 1, we can show that

HmU(t, τ, x)

τ1+s
∈ L1(0,∞), for (t, x) ∈ (O2)T , and for any m ∈ N ∪ {0}.

For the case m = N + 1, N ∈ N, by acting HN+1 on (4.174.17), we obtain that∫ ∞

0

H
(
HNU(t, τ, x)

)
τ1+s

dτ = HN+1

(∫ ∞

0

U(t, τ, x)

τ1+s
dτ

)
= 0 in (O2)T ,

which is equivalent to∫ ∞

0

∂τ
(
HNU(t, τ, x)

)
τ1+s

dτ = 0 in (O2)T ,(4.19)

where we used the equation (4.184.18).
Now, an integration by parts for (4.194.19) yields that

0 =

[
HNU(t, τ, x)

τ1+s

]τ=∞

τ=0

−
∫ ∞

0

HNU(t, τ, x)∂τ

(
1

τ1+s

)
dτ

=(1 + s)

∫ ∞

0

HNU(t, τ, x)

τ2+s
dτ in (O2)T ,

(4.20)

where we used that
[
HNU(t,τ,x)

τ1+s

]τ=∞

τ=0
= 0. As a result, by repeating the preceding

arguments for m = N − 1, N − 2, . . . , 1, with (4.204.20) at hand, we can conclude that∫ ∞

0

U(t, τ, x)

τN+s
dτ = 0 in (O2)T ,(4.21)

and this proves the claim.

With (4.214.21) at hand, for any ξ ∈ R, since U(t,τ,x)
τ1+s ∈ L1(0,∞) for (t, x) ∈ (O2)T ,

then
∫∞
0

U(t,τ,x)
τ1+s e

iξ
τ dτ , for (t, x) ∈ (O2)T exists. Moreover, by using (4.214.21) again,

one can obtain that∫ ∞

0

U(t, τ, x)

τ1+s
e

iξ
τ dτ =

∫ ∞

0

U(t, τ, x)

τ1+s

( ∞∑
k=0

1

k!

(iξ)k

τk

)
dτ = 0,(4.22)

for any ξ ∈ R and (t, x) ∈ (O2)T . Hence, by using the change of variable τ = α−1,
the integral (4.224.22) is equivalent to∫ ∞

0

U(t, α−1, x)

α1−s eiξα dα = 0, for all ξ ∈ R,(4.23)

which can be regarded as the one-dimensional Fourier transform with respect to the
α-variable (here we can extend the function U(t, α−1, x) = 0 for α < 0). Therefore,
(4.234.23) implies that

U(t, τ, x) = 0, for (t, τ, x) ∈ (−T, T )× (0,∞)×O2(4.24)

as we wish. Finally, by using the (weak) unique continuation of (4.164.16) (Section
3.33.3), we can show that U = 0 in (Ωe)T × (0,∞), which is equivalent to

U1 = U2 in (−T, T )× (0,∞)× Ωe.(4.25)

This proves the assertion. □

Moreover, we can show the global unique continuation property for Hs.

Lemma 4.5 (Global unique continuation property). Let u ∈ Hs(Rn+1), and sup-
pose that u = Hsu = 0 in OT , where O ⊂ Rn is an arbitrarily open set. Then we
have u ≡ 0 in (Rn)T .
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Proof. The proof has been demonstrated by [BKS22BKS22, Theorem 1.3], whenever the
leading coefficient σ is globally Lipschitz continuous on Rn. The arguments are
based on suitable unique continuation properties for degenerate parabolic equations
(Proposition 2.62.6), and we refer readers to the detailed explanation in [BKS22BKS22]. □

Remark 4.6. With the preceding lemma at hand, it is not hard to see that the
global unique continuation property also holds for the adjoint parabolic operator
Hs

∗. In other words, given a nonempty open set O ⊂ Rn, if v = Hs
∗v = 0 in OT ,

then v ≡ 0 in (Rn)T as well. The proof can be achieved by repeating the arguments
from Proposition 4.44.4, where one replaces the parabolic operator H = ∂t + L by
H∗ = −∂t + L.

4.2. Proof of Theorem 1.11.1. We divide the proof of Theorem 1.11.1 into two parts.

Proof of Theorem 1.11.1–Part 1. Recalling that Vj = Vj(t, x) is the function defined
by (4.14.1), via Proposition 4.44.4, one has

V1 =

∫ ∞

0

U1(t, τ, x) dτ =

∫ ∞

0

U2(t, τ, x) dτ = V2 in (Ωe)T ,(4.26)

and Vj satisfies (4.24.2), for j = 1, 2.
Define the function

Wj := (Hj)
s
Vj in (Rn)T , for j = 1, 2.(4.27)

We observe that

PHj
τ Vj(−T, x) =

∫
Rn

pj(x, z, τ)Vj(−T − τ, x) dz = 0,(4.28)

for j = 1, 2 and for all τ ∈ (0,∞), where we have utilized that (4.44.4). Combining
with the definition of (Hj)

s
, (4.24.2) and (4.284.28), one has that

Wj(−T, x) = ((Hj)
s
Vj) (−T, x)

=− s

Γ(1− s)

∫ ∞

0

PHj
τ Vj(−T, x)−Vj(−T, x)

τ1+s
dτ

=0,

(4.29)

for x ∈ Rn. Moreover, by interchanging the local and nonlocal parabolic operators,
one has that

Hj ((Hj)
s
Vj) = (Hj)

s
(HjVj) in (Rn)T .(4.30)

Acting Hj on (4.24.2), by using (4.294.29) and (4.304.30), one obtains that{
HjWj = (Hj)

s
uj in (Rn)T ,

Wj(−T, x) = 0 in Rn.
(4.31)

By applying the condition (4.94.9), we have

Wj ∈ H1−s/2,2−s(Rn+1) (= H2−s(Rn+1)),(4.32)

so that

Wj ∈ L2(0, T ;H1(Rn))(4.33)

due to s ∈ (0, 1), for j = 1, 2. On the other hand, recalling that uj satisfies (3.13.1),
we have

HjWj = 0 in ΩT , for j = 1, 2.

We next claim that

W1 = W2 in (Ωe)T .(4.34)
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In order to show (4.344.34), we consider another function

Uj(t, τ, x) :=
∫
Rn

pj(x, z, τ)Vj(t− τ, z) dz,(4.35)

as in Lemma 3.13.1, Uj solves{
∂τUj(t, τ, x) +HjUj(t, τ, x) = 0, for (t, τ, x) ∈ R× (0,∞)× Rn,
Uj(t, 0, x) = Vj(t, x) for (t, x) ∈ Rn+1,

(4.36)

for j = 1, 2. Now, by acting the parabolic operator Hj on both sides of (4.364.36), we
can get {

∂τ Ũj +HjŨj = 0 for (x, t, τ) ∈ Rn+1 × (0,∞),

Ũj(t, 0, x) = uj(t, x) for (t, x) ∈ Rn+1,
(4.37)

where Ũj := HjUj and we used the equations (4.24.2) and (4.364.36) in the second equality
of (4.374.37), for j = 1, 2. More precisely, from (4.24.2) and (4.364.36), we have that

Ũj(t, 0, x) = HjUj(t, 0, x) = HjVj(t, x) = uj(t, x),

for j = 1, 2. Furthermore, by (4.354.35), it is known that

Uj(−T, τ, x) =
∫
Rn

pj(x, z, τ)Vj(−T − τ, z) dz = 0,(4.38)

for all τ ∈ (0,∞), where we used the condition (4.44.4). Via the definition of Ũj ,
(4.374.37), and (4.384.38), one has that

Ũj(−T, τ, x) = HjUj(−T, τ, x) = −∂τUj(−T, τ, x) = 0.(4.39)

By Corollary 3.33.3, combining with the condition (4.394.39), the equation (4.374.37) pos-
sesses a unique solution. Now, comparing the equations (3.43.4) and (4.374.37), they both
have the same initial condition

Uj(t, 0, x) = uj(x, t) = Ũj(t, 0, x) for (t, x) ∈ Rn+1,

which yields that

Uj(t, τ, x) = Ũj(t, τ, x) = HjUj , for (t, τ, x) ∈ R× (0,∞)× Rn,(4.40)

for j = 1, 2. Thus, by using (4.364.36) and (4.404.40), we have

∂τU1 − ∂τU2 = −H1U1 +H2U2 = −U1 +U2 = 0 in (−T, T )× (0,∞)× Ωe,

(4.41)

where the last equality holds due to the identity (4.254.25).
In addition, thanks to the identity (4.414.41), we know that

(U1 − U2) (t, τ, x) = (U1 − U2) (t, 0, x), for (t, τ, x) ∈ (−T, T )× (0,∞)× Ωe,

which is equivalent to

U1(t, τ, x)− U1(t, 0, x) = U2(t, τ, x)− U2(t, 0, x),(4.42)

for (t, τ, x) ∈ (−T, T )× (0,∞)× Ωe. Consequently, (4.424.42) implies that∫ ∞

0

U1(t, τ, x)− U1(t, 0, x)

τ1+s
dτ =

∫ ∞

0

U2(t, τ, x)− U2(t, 0, x)

τ1+s
dτ,

for (t, x) ∈ (Ωe)T . Meanwhile, via the definition (2.42.4) of nonlocal parabolic opera-
tors, the above identity gives rise to

(H1)
s
V1 = (H2)

s
V2 in (Ωe)T .(4.43)

Recall that the function Wj is defined by (4.274.27) for j = 1, 2, then (4.434.43) infers that
the claim (4.344.34) holds.
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Hence, combining with (4.334.33), Wj ∈ L2(−T, T ;H1(Rn)) satisfies{
HjWj = 0 in ΩT ,

{W1, σ1∂νW1} = {W2, σ2∂νW2} on ΣT ,

where σj∂νWj denotes the Neumann data on ΣT given by (1.71.7), for j = 1, 2.
Moreover, by the trace theorem, it is known that

{W1, σ1∂νW1} ∈ L2(0, T ;H1/2(Σ))× L2(0, T ;H−1/2(Σ)).

Finally, it remains to show that whether we can vary all possible Dirichlet data so
that we are able to reduce nonlocal inverse problems to local ones, and the rest of
the arguments will be given in next section. □

We want to show that the lateral boundary Cauchy data

C(j)
ΣT

=
{
Vj |ΣT

, σj∂νVj |ΣT

}
,

where Vj is a solution of the initial-boundary value problem
HjVj = 0 in ΩT ,

Vj = f on ΣT ,

Vj(−T, x) = 0 for x ∈ Ω,

for j = 1, 2. Our aim is to prove

C(1)
ΣT

= C(2)
ΣT
.(4.44)

We first demonstrate a connection between local and nonlocal Calderón prob-
lems. Adopting all notations in previous sections, we further define two solution
spaces that

Dj(ΩT ) :=

{
Vj |ΩT

:

{
HjVj = 0 in ΩT ,

Vj(−T, x) = 0 for x ∈ Ω,

}
and

Ej(ΩT ) :=

{
Wj |ΩT

:

{
HjWj = (Hj)

s
uj in RnT

Wj(−T, x) = 0 for x ∈ Rn

}
,(4.45)

where uj ∈ Hs(Rn+1) is the solution of (3.13.1), for j = 1, 2. Then we are able to
show:

Lemma 4.7. Ej(ΩT ) is dense in Dj(ΩT ) with respect to L2(−T, T ;H1(Ω)), for
j = 1, 2.

We first assume that Lemma 4.74.7 holds, then we can complete the proof of The-
orem 1.11.1.

Proof of Theorem 1.11.1–Part 2. Given any Vj ∈ Dj with V1 = V2 = f on ΣT for

arbitrary f ∈ L2(−T, T ;H1/2(Σ)), then there must exist sequences
{
W

(k)
j

}
k∈N

solves (4.314.31) such that W
(k)
j → Vj in L2(−T, T ;H1(Ω)) as k → ∞, for j = 1, 2.

Similar as the Part 1 of the proof of Theorem 1.11.1, W
(k)
j satisfies{

HjW
(k)
j = 0 in ΩT ,{

W
(k)
1 , σ1∂νW

(k)
1

}
=
{
W

(k)
2 , σ2∂νW

(k)
2

}
on ΣT ,

(4.46)
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for k ∈ N and j = 1, 2. By taking the limit k → ∞ of (4.464.46), we can have{
HjVj = 0 in ΩT ,

{V1, σ1∂νV1} = {V2, σ2∂νV2} on ΣT ,
(4.47)

for j = 1, 2. Hence, we show that (4.444.44) holds. This shows Theorem 1.11.1 holds
true. □

Proposition 4.8. Let Ω ⊂ Rn, 0 < s < 1, and u ∈ Hs(Rn+1) satisfy

Hsu = 0 in ΩT .(4.48)

Then for any open set O ⊂ Rn \ (Ω ∪ O1), the set

X ((Ωe)T ) :=
{
Hsu|(Ωe)T

: u is a solution to (4.484.48)
}

is dense in H−s((Ωe)T ).

Proof. By the Hahn-Banach theorem, it suffices to show that given φ ∈ H̃s((Ωe)T )
such that

⟨Hsu, φ⟩(Ωe)T
≡ ⟨Hsu, φ⟩H−s((Ωe)T )×H̃s((Ωe)T ) = 0,(4.49)

for any solutions u of (4.484.48), then we want to claim φ ≡ 0.
Consider the adjoint problem and let v ∈ Hs(Rn+1) be the solution of{

Hs
∗v = 0 in ΩT ,

v = φ in (Ωe)T .
(4.50)

Now, via equations (4.484.48), (4.504.50) and (4.494.49), one has that

⟨u,Hs
∗v⟩(Ωe)T

= ⟨u,Hs
∗v⟩(Rn)T

− ⟨u,Hs
∗v⟩ΩT

= ⟨Hsu, v⟩(Rn)T

= ⟨Hsu, φ⟩(Ωe)T
= 0.

(4.51)

Thus, since u|(Ωe)T can be arbitrary, by varying the value u|(Ωe)T ∈ C∞
c ((Ωe)T )

and combining with (4.514.51), one can conclude that Hs
∗v = 0 in (Ωe)T . Hence,

v = Hs
∗v = 0 in (Ωe)T , by applying Remark 4.64.6, one obtains v ≡ 0 in (Rn)T . By

using the equation (4.504.50), we have φ = v = 0 in (Ωe)T as desired. This proves the
assertion. □

We are ready to show Lemma 4.74.7.

Proof of Lemma 4.74.7. Consider F ∈
(
L2(−T, T ;H1(Ω))

)∗
, which denotes the dual

space of L2(−T, T ;H1(Ω)). Moreover, by using the definition of dual spaces via
the natural dual pairing, it is not hard to see that(

L2(−T, T ;H1(Ω))
)∗

= L2(−T, T ; H̃−1(Ω)),

where

H̃−1(Ω) :=
{
h ∈ H−1(Rn) : supp(h) ⊂ Ω

}
denotes the dual space of H1(Ω). In further, we also denote H−1(Rn) as the dual
space of H1(Rn). By the Hahn-Banach theorem, it is equivalent to show that

⟨F,Wj⟩L2(−T,T ;H̃−1(Ω))×L2(−T,T ;H1(Ω)) = 0, for all Wj ∈ Ej ,(4.52)

then it follows

⟨F,Vj⟩L2(−T,T ;H̃−1(Ω))×L2(−T,T ;H1(Ω)) = 0 for all Vj ∈ Dj ,(4.53)

for j = 1, 2.
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For 0 < s < 1, recalling that Wj is the solution of (4.314.31) for j = 1, 2. By varying
the exterior data f |(Ωe)T ∈ C∞

c ((Ωe)T ), Proposition 4.84.8 implies that the set

Y((Ωe)T ) :=
{
HjWj |(Ωe)T

: Wj is a solution of (4.314.31)
}

(4.54)

is dense in L2(−T, T ; H̃−1(O)). With the condition (4.324.32) at hand, one can directly
see that

HjWj ∈ H−s(Rn+1) = H−s(Rn+1),(4.55)

for j = 1, 2.

Suppose that there exists a function F ∈ L2(−T, T ; H̃−1(Ω)) satisfies (4.524.52),
then we have

0 = ⟨F,Wj⟩L2(−T,T ;H̃−1(Ω))×L2(−T,T ;H1(Ω))

= ⟨F,Wj⟩L2(−T,T ;H−1(Rn))×L2(−T,T ;H1(Rn)) ,
(4.56)

where we have utilized that F ∈ L2(−T, T ; H̃−1(Ω)) with supp(F ) ⊂ ΩT . In addi-
tion, there must exists a unique solution vj ∈ L2(−T, T ;H1(Rn)) of the backward
parabolic equation {

(Hj)∗ vj = F in Rn × (−T, T ),
vj(x, T ) = 0 in Rn,

(4.57)

where (Hj)∗ = −∂t+Lj denotes the backward parabolic operator, for j = 1, 2. We
next analyze the regularity of the solution vj .

Notice that F ∈ L2(−T, T ;H−1(Rn)), then we can apply the negative fractional
Laplacian (Id−∆)−1/2 = (Id−∆x)

−1/2 to regularize the source term

F̃ := (Id−∆)−1/2F,

such that F̃ ∈ L2(Rn+1). One can check that (Id−∆)−1/2 and Hj are interchange-
able, and apply the result as in Lemma 4.24.2 and Remark 4.34.3, then we can obtain
ṽj ∈ H1,2(Rn+1), where ṽj := (Id−∆)−1/2vj so that

vj = (Id−∆)1/2ṽj ∈ H1,1(Rn+1) ⊂ Hs(Rn+1).(4.58)

Next, via (4.564.56) and (4.574.57), an integration by parts yields that

0 = ⟨F,Wj⟩L2(−T,T ;H−1(Rn))×L2(−T,T ;H1(Rn))

=

∫ T

−T

∫
Rn

(Hj)∗ vj ·Wj dxdt

=

∫ T

−T

∫
Rn

vj (HjWj) dxdt

= ⟨vj ,HjWj⟩H̃s((Rn)T )×H−s((Rn)T ) ,

(4.59)

for j = 1, 2, where we have utilized (4.554.55) and (4.584.58). Via (4.454.45), one knows that

HjWj = 0 in ΩT ,

for j = 1, 2. Combining with the preceding equality, the identity (4.594.59) implies

⟨vj ,HjWj⟩H̃s((Ωe)T )×H−s((Ωe)T ) = 0(4.60)

for any Wj ∈ H2−s(Rn+1) solving (4.314.31). Moreover, by utilizing the fact that
Y((Ωe)T ) is also dense in H−s((Ωe)T ), where Y((Ωe)T ) is defined by (4.544.54). Thus,
(4.604.60) implies that vj = 0 in (Ωe)T , for j = 1, 2.
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On the other hand, recalling that vj is a solution of (4.574.57), in particular, vj
satisfies (Hj)∗ vj = 0 in (Ωe)T . Combining with vj = 0 in OT , the unique continu-
ation property for (backward) parabolic equations yields that vj = 0 in (Ωe)T . To
summarize, the function vj ∈ L2(−T, T ;H1

0 (Ω)) solves
(Hj)∗ vj = F in ΩT ,

vj = 0 on ΣT ,

vj(x, T ) = 0 in Ω,

and from the well-posedness for the regularity condition (4.584.58) of vj , one has that

vj ∈ L2(−T, T ;H1
0 (Ω)), such that σj∂νvj ∈ L2(−T, T ;H1/2(Σ)) is well-defined for

j = 1, 2. Now, since vj = 0 in (Ωe)T , one must have that σj∂νvj = 0 on ΣT for
j = 1, 2. Hence, an integration by parts infers that

⟨F,Vj⟩L2(−T,T ;H̃−1(Ω))×L2(−T,T ;H1(Ω))

=

∫ T

−T

∫
Ω

(Hj)∗ vj ·Vj dxdt

=

∫ T

−T

∫
Ω

vj · HjVj dxdt = 0,

where we used that vj(T, x) = Vj(−T, x) = 0 in Ω, and HjVj = 0 in ΩT , which
proves (4.534.53). This completes the proof. □

5. Global uniqueness and non-uniqueness

In the previous section, we have shown that the inverse problem for nonlocal par-
abolic equations and be reduced to its local counterparts. We first prove Corollary
1.11.1.

Proof of Corollary 1.11.1. With Theorem 1.11.1 at hand, it is known that the information
of the nonlocal Cauchy data can be reduced to its local counterpart. Hence, one
has that {

v1|ΣT
, σ1∂νv1|ΣT

}
=
{
v2|ΣT

, σ2∂νv2|ΣT

}
,

where vj ∈ L2(0, T ;H1(Ω)) is the weak solution of
Hjvj = 0 in ΩT ,

vj = f on ΣT ,

vj(−T, x) = 0 for x ∈ Ω,

for j = 1, 2. Moreover, one can apply the completeness of products of solutions to
parabolic equations (for example, see [CK01CK01, Theorem 1.3]), then we are able to
conclude that σ1 = σ2 in Ω as desired. □

Before proving Theorem 1.21.2, let us analyze the following changing of variables,
which can be regarded as the transformation optics in the literature. Given u ∈
Hs(Rn+1), let U(t, τ, x) be a solution of{

(∂t + ∂τ )U−∇ · (σ∇U) = 0 in (−T, T )× (0,∞)× Rn,
U(t, 0, x) = u(t, x) for (t, x) ∈ (−T, T )× Rn,

(5.1)

where σ is a globally Lipschitz continuous matrix-valued function satisfying (1.31.3).
Let F : Rn → Rn be a locally Lipschitz invertible map such that the Jacobians

satisfy

det(DF)(x), det(DF−1)(x) ≥ C > 0 for a.e. x ∈ Rn,(5.2)
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for some positive constant C. By direct computations, one can derive the following
proposition known as the transformation optics via the standard change of variables
technique (for example, see [KSVW08KSVW08]).

Proposition 5.1. U(t, τ, x) is a solution of (5.15.1) if and only if Ũ(t, τ, y) =
U(t, τ,F−1(y)) is a solution of{

F∗1(y) (∂t + ∂τ ) Ũ−∇ · (F∗σ(y)∇Ũ) = 0 in (−T, T )× (0,∞)× Rn,
Ũ(t, 0, y) = ũ(t, y) for (t, y) ∈ (−T, T )× Rn,

(5.3)

where ũ = u(t,F−1(y)). Here the coefficients are defined by
F∗1(y) =

1
det(DF)(x)

∣∣∣
x=F−1(y)

,

F∗σ(y) =
DFT (x)σ(x)DF(x)

det(DF)(x)

∣∣∣
x=F−1(y)

.

Proof. The result can be seen via the standard change of variables. More precisely,
by expressing (5.15.1) in terms of the weak formulation, one has that∫

Rn

(∂t + ∂τ )Uφdx+

∫
Rn

σ∇xU · ∇xφdx = 0,(5.4)

for any φ = φ(x) ∈ H1(Rn). Via the change of variable y = F(x) (independent of
(t, τ)-variables), it is not hard to see that∫

Rn

∑
σij

∂U

∂xi

∂φ

∂xj
dx =

∫
Rn

∑
σij

∂U

∂yk

∂yk
∂xi

∂φ

∂yℓ

∂yℓ
∂xj

det

(
∂x

∂y

)
dy,

where det
(
∂x
∂y

)
denotes the Jacobian of the change of variable x = F−1(y). Insert-

ing the above identity into (5.45.4), the assertion is proven. □

Finally, let us prove Theorem 1.21.2.

Proof of Theorem 1.21.2. Let Ω ⊂ Rn be a bounded domain and W ⋐ Ωe be a
nonempty open set. Let F : Rn → Rn be the Lipschitz invertible map described
as before, which satisfy F : Ω → Ω and (5.25.2). We also assume that F(x) = x in
W . Let u ∈ Hs(Rn+1) be a solution of (Hσ)

s
u = 0 in ΩT with u(−T, x) = 0 for

x ∈ Rn, where the nonlocal parabolic operator (Hσ)
s
can be defined by

(Hσ)
s
u(t, x) := − s

Γ(1− s)

∫ ∞

0

U(t, x, τ)− u(t, x)

τ1+s
dτ.

Here Hσ := ∂t−∇· (σ∇) and U satisfies (5.15.1). Thus, adopting all notations in this
section,

(Hσ)
s
u = 0 in ΩT and u(−T, x) = 0 in Rn(5.5)

imply that

0 =− s

Γ(1− s)

∫ ∞

0

U(t, τ, x)− u(t, x)

τ1+s
dτ

=− s

Γ(1− s)

∫ ∞

0

Ũ(t, τ, y)− ũ(t, y)

τ1+s
dτ, for (t, x), (t, y) ∈ ΩT

where Ũ(t, τ, y) is a solution to (5.35.3). Meanwhile, ũ(−T, y) = 0, which yields that
ũ ∈ Hs(Rn+1) is a solution to

(HF∗σ)
s
ũ = 0 in ΩT and ũ(−T, y) = 0 in Rn.(5.6)
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On the other hand, in viewing of the nonlocal Cauchy data, we can derive that

u(t, ·) = ũ(t, ·) in WT and U(t, τ, ·) = Ũ(t, τ, ·) in W , for (t, τ) ∈ (−T, T )× (0,∞),
then

(Hσ)
s
u(t, x) =− s

Γ(1− s)

∫ ∞

0

U(t, τ, x)− u(t, x)

τ1+s
dτ

=− s

Γ(1− s)

∫ ∞

0

Ũ(t, τ, y)− ũ(t, y)

τ1+s
dτ

=(HF∗σ)
s
ũ in WT .

The preceding derivation yields that there are two different matrix-valued functions
σ and F∗σ can generate the same exterior Cauchy data{

u|WT
, (Hσ)

s
u|WT

}
=
{
ũ|WT

, (HF∗σ)
s
ũ|WT

}
,

where u and ũ are solutions to (5.55.5) and (5.65.6), respectively. This completes the
proof. □
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THE CALDERÓN PROBLEM FOR NONLOCAL PARABOLIC OPERATORS 33

[CRZ22] Giovanni Covi, Jesse Railo, and Philipp Zimmermann. The global inverse fractional

conductivity problem. arXiv preprint arXiv:2204.04325, 2022.

[CS07] Luis Caffarelli and Luis Silvestre. An extension problem related to the fractional
Laplacian. Communications in partial differential equations, 32(8):1245–1260, 2007.

[Eva98] Lawrence C. Evans. Partial differential equations. American Mathematical Society,
1998.

[FGKU21] Ali Feizmohammadi, Tuhin Ghosh, Katya Krupchyk, and Gunther Uhlmann. Frac-

tional anisotropic Calderón problem on closed Riemannian manifolds. arXiv preprint
arXiv:2112.03480, 2021.

[GAV12] Sebastien Guenneau, Claude Amra, and Denis Veynante. Transformation thermo-

dynamics: cloaking and concentrating heat flux. Optics Express, 20(7):8207–8218,
2012.

[Gho21] Tuhin Ghosh. A non-local inverse problem with boundary response. Revista
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