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Abstract. In this work, we use monotonicity-based methods for the fractional Schrödinger
equation with general potentials q ∈ L∞(Ω) in a Lipschitz bounded open set Ω ⊂ Rn in any dimen-
sion n ∈ N. We demonstrate that if-and-only-if monotonicity relations between potentials and the
Dirichlet-to-Neumann map hold up to a finite dimensional subspace. Based on these if-and-only-if
monotonicity relations, we derive a constructive global uniqueness result for the fractional Calderón
problem and its linearized version. We also derive a reconstruction method for unknown obstacles
in a given domain that only requires the background solution of the fractional Schrödinger equation,
and we prove uniqueness and Lipschitz stability from finitely many measurements for potentials lying
in an a-priori known bounded set in a finite dimensional subset of L∞(Ω).
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1. Introduction . Let Ω be a Lipschitz bounded open set in Rn, n ∈ N, and
q ∈ L∞(Ω) be a potential. For 0 < s < 1, we consider the Dirichlet problem for the
nonlocal fractional Schrödinger equation

(−∆)su+ qu = 0 in Ω, u|Ωe = F in Ωe := Rn \ Ω, (1.1)

where the fractional Laplacian (−∆)s is defined by Fourier transform. We will consider
the Calderón problem of reconstructing an unknown potential q from the Dirichlet-
to-Neumann (DtN) operator

Λ(q) : H(Ωe)→ H(Ωe)
∗, F 7→ (−∆)su|Ωe

, where u ∈ Hs(Rn) solves (1.1),

cf. Section 2 for a precise definition of the DtN-operator and the function spaces, and
[32, Section 3] for further properties of the nonlocal DtN map Λq.

In the first part of this work [39], we proved an if-and-only-if monotonicity relation
between potentials q ∈ L∞+ (Ω) with positive essential infima and the associated DtN
operators Λ(q), where the DtN operators are ordered in the sense of definiteness of
quadratic forms (also known as Loewner order). From this relation, we obtained a
constructive uniqueness result for the Calderón problem and a shape reconstruction
method to determine unknown obstacles in a given domain.

The aim of this work is to drop the positivity assumption on the potential q and ex-
tend the results from [39] to general potentials q ∈ L∞(Ω). Note that this may include
resonant cases where 0 is a Dirichlet eigenvalue of (−∆)s + q in Ω. In such cases the
Dirichlet problem (1.1) is only solvable in a subspace of the natural Dirichlet trace
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space H(Ωe) with finite codimension, and the DtN operator Λ(q) is defined accord-
ingly, cf. Section 2. For general potentials q1, q2 ∈ L∞(Ω), we will use a combination
of monotonicity arguments and localized potentials to show that

q1 ≤ q2 if and only if Λ(q1) ≤fin Λ(q2),

cf. Theorem 4.1, where q1 ≤ q2 denotes that q1(x) ≤ q2(x) for almost every (a.e.) x ∈
Ω, and Λ(q1) ≤fin Λ(q2) denotes that the quadratic form associated with Λ(q2)−Λ(q1)
is non-negative on a subspace of H(Ωe) with finite codimension (resp. on a subspace
with finite codimension of the intersection of their domains of definition in the case
of resonances).

This if-and-only-if monotonicity relation yields a constructive uniqueness proof for the
fractional Calderón problem, cf. Theorem 4.3. For non-resonant potentials, we show
a similar if-and-only-if monotonicity relation also for the linearized DtN-operators,
and deduce uniqueness for the linearized Calderón problem, cf. Theorem 4.8, and
Corollary 4.9.

We then turn to the shape reconstruction (or inclusion detection) problem of locating
regions where a unknown (non-resonant) coefficient function q ∈ L∞(Ω) differs from a
known (non-resonant) reference function q0 ∈ L∞(Ω). We will show that this can be
done without solving the fractional Schrödinger equation for potentials other than the
reference potentials q0. In the indefinite case, with no further assumption on q0 and
q, we characterize the support of q− q0 as the intersection of all closed sets fulfilling a
linearized monotonicity condition, cf. Theorem 4.10. In the definite case, that either
q ≥ q0 or q0 ≥ q in all of Ω, we also obtain an easier characterization of the (inner)
support of q − q0 as the union of all open balls fulfilling a linearized monotonicity
condition, cf. Theorem 4.11.

Our final result uses monotonicity and localized potentials arguments to show unique-
ness and Lipschitz stability for the fractional Calderón problem with finitely many
measurements for the case that the potential belongs to an a-priori known bounded
set in a finite dimensional subset of L∞(Ω).

Let us give some references of the fast growing body of literature on inverse problems
involving the non-local fractional Laplacian operator, and relate our work to previous
results. Fractional inverse problems appear when an imaging domain is investigated
by an anomalous diffusion process and this process is more complicated than in the
standard Brownian motion modeled by the Laplacian −∆. Global uniqueness for the
Calderón problem for the fractional Schrödinger equation was first proven by Ghosh,
Salo, and Uhlmann [32], and the recent work of Ghosh, Rüland, Salo, and Uhlmann
[31] shows uniqueness with a single measurement. Note that both results rely on a very
strong unique continuation property, and we will utilize this property from [32] as a key
ingredient for our results. Furthermore, for uniqueness results, [30] and [61] solved the
Calderón problem for general nonlocal variable elliptic operators and the semilinear
case, respectively. In addition, [18] studied the fractional Calderón problem with drift,
which shows the global uniqueness result holds for drift and potential simultaneously,
which is the first example to demonstrate different results between local and nonlocal
inverse problems. Recently, [62] investigated the Calderón problem for a space-time
fractional parabolic equation. We also refer readers to [16, 17] for further studies on
the simultaneous determination of parameters in fractional inverse problems.

Arguments combining PDE-based estimates with blow-up techniques have a long his-
tory in the study of inverse coefficients problems, see, e.g., [1, 51, 54, 59, 60]. The
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technique of combining monotonicity estimates with localized potentials [29] as used
herein is a flexible recent approach that has already lead to a number of results, cf.
[6, 8, 15, 33, 34, 35, 39, 40, 44, 45, 46, 47, 49, 72]. Also, several recent works build prac-
tical reconstruction methods on monotonicity properties [24, 25, 26, 27, 28, 38, 42, 43,
48, 64, 74, 75, 76, 77, 80]. Notably, the present work shows that monotonicity-based
reconstruction methods that have been developed for standard diffusion processes
can also be applied to the fractional diffusion case and that the methods even become
simpler and more powerful due to the very strong unique continuation property of
Ghosh, Salo, and Uhlmann [32]. Moreover, we derive in this work a new result on
the existence of simultaneously localized potentials for two coefficient functions, that
may be of importance also in the study of other inverse problems.

Logarithmic stability results for the fractional Schrödinger equation and their opti-
mality were proven by Rüland and Salo in [69, 70]. Lipschitz stability for the finite
dimensional fractional Calderón problem with a specific set of finitely many measure-
ments (that depend on the unknown potentials) was shown by Rüland and Sincich in
[71]. Note that our Lipschitz stability result in Section 5 complements the result in
[71] as we show that any sufficiently high number of measurements (depending only
on the a-priori data but not on the unknown potentials) uniquely determines the po-
tential and that Lipschitz stability holds. Moreover, let us stress that the idea of using
monotonicity and localized potentials arguments for proving Lipschitz stability (that
was already utilized in [21, 37, 41, 72]), differs from traditional approaches that are
mostly based on quantitative unique continuation or quantitative Runge approxima-
tion, cf., [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 19, 52, 53, 56, 57, 58, 65, 71, 73, 78, 79]. Our
new approach of showing Lipschitz stability seems conceptually simpler as it does not
require quantitative analytic estimates. On the downside, our new approach does not
give any analytic bounds on the Lipschitz stability constants that may characterize
the asymptotic instability when the dimension of the ansatz space tends to infinity.
It may however, lead to a numerical algorithm to calculate the Lipschitz constant
for a given setting, cf. [36, 41], which might be important to quantify the achievable
resolution and noise robustness in practical applications.

The main technical difficulty in extending the results from the positive potentials case
[39] to general coefficients q ∈ L∞(Ω) is to prove two new extensions of the localized
potentials approach [29]. For general potentials, the variational formulation of the
fractional Schrödinger equation is no longer coercive but a compact perturbation of
a coercive formulation and resonances may arise. To overcome this difficulty, we use
an approach that originated in [45] and work in spaces of finite codimension where
the formulation is still coercive and resonances are excluded. This makes it necessary
to prove that any subspace of finite codimension contains localized potentials. The
second major difficulty comes from the fact that only the simpler monotonicity in-
equality in [39, Lemma 3.1] can be extended to general potentials, cf. Theorem 3.3
in this work. This makes it necessary to prove that localized potentials exist for two
different coefficients simultaneously (and in any subspace of finite codimension). It
can be expected that the idea of simultaneously localized potentials introduced in this
work will also be helpful to extend monotonicity-based methods to other applications.

The paper is structured as follows. In Section 2, we summarize the variational theory
for the fractional Schrödinger equation, introduce the DtN operator and the unique
continuation property from [32]. In Section 3, we define a generalized Loewner or-
der for linear operators, which holds up to a finite dimensional subspace of a Hilbert
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space. We also show that increasing potentials q monotonically increases the corre-
sponding DtN map Λq in the sense of this generalized Loewner order, and prove the
existence of localized potentials to control the energy terms appearing in the mono-
tonicity relations. The last two sections contain our main results. In Section 4, we
investigate a converse result for the monotonicity relations using localized potentials,
to deduce if-and-only-if monotonicity relations between the DtN map and the poten-
tials. Based on these results, we prove uniqueness for the fractional Calderón problem
in a constructive way. We also prove uniqueness for the linearized fractional Calderón
problem and develop an inclusion detection algorithm based on monotonicity tests.
Finally, in Section 5, we use the monotonicity relations and the localized potentials,
to prove uniqueness and Lipschitz stability in finite dimensional subspaces by finitely
many measurements.

2. The fractional Schrödinger equation for general potentials . Through-
out this work let s ∈ (0, 1), n ∈ N, Ω ⊆ Rn be a Lipschitz bounded open set, and
q ∈ L∞(Ω). All function spaces in this work are real-valued unless indicated other-
wise. In this section, we briefly summarize some notations and results on the fractional
Schrödinger equation and the associated Dirichlet problem.

2.1. Variational formulation of the fractional Schrödinger equation. As
in [39] we consider the fractional Laplacian (defined by Fourier transform) as an
operator

(−∆)s : L2(Rn)→ S ′(Rn),

The fractional Sobolev space is defined by

Hs(Rn) := {u ∈ L2(Rn) : (−∆)s/2u ∈ L2(Rn)}

and equipped with the scalar product

(u, v)Hs(Rn) :=

ˆ
Rn

(
(−∆)s/2u · (−∆)s/2v + uv

)
dx for all u, v ∈ Hs(Rn).

It can be shown that Hs(Rn) is a Hilbert space, cf., e.g., [20]. Let

Hs
0(Ω) := closure of C∞c (Ω) in Hs(Rn),

and note that this space is sometimes denoted as H̃s(Ω) in the literature, e.g., [32, 30].

We also define the bilinear form

Bq(u,w) :=

ˆ
Rn

(−∆)s/2u · (−∆)s/2w dx+

ˆ
Ω

quw dx for u,w ∈ Hs(Rn).

Then, for any f ∈ L2(Ω), u ∈ Hs(Rn) solves (in the sense of distributions)

(−∆)su+ qu = f in Ω

if and only if u ∈ Hs(Rn) fulfills the variational formulation

Bq(u,w) =

ˆ
Ω

fw dx for all w ∈ Hs
0(Ω), (2.1)

cf., e.g., [39, Lemma 2.1].
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2.2. The Dirichlet boundary value problem. The Dirichlet trace operator
on Ωe := Rn \ Ω can be defined using abstract quotient spaces by setting

γ
(D)
Ωe

: Hs(Rn)→ H(Ωe) := Hs(Rn)/Hs
0(Ω), u 7→ u+Hs

0(Ω).

Then, by definition, γ
(D)
Ωe

is surjective, Hs
0(Ω) = {u ∈ Hs(Rn) : γ

(D)
Ωe

u = 0}. More-
over, for all u, v ∈ Hs(Rn),

γ
(D)
Ωe

u = γ
(D)
Ωe

v implies that u(x) = v(x) for x ∈ Ωe a.e., (2.2)

cf., e.g., [39, Lemma 2.2]. This implies that γ
(D)
Ωe

is an injective mapping from C∞c (Ωe)

into H(Ωe). For the sake of readability we will write u|Ωe
instead of γ

(D)
Ωe

u throughout
this work, and identify C∞c (Ωe) with its image in H(Ωe).

Throughout this work, we will use that for all u,w ∈ Hs
0(Ω)

Bq(u,w) = ((I − ι∗ι+ ι∗Mqι)u,w)Hs
0 (Ω)

with the bounded linear operators

I : Hs
0(Ω)→ Hs

0(Ω),

ι : Hs
0(Ω)→ L2(Ω),

Mq : L2(Ω)→ L2(Ω),

denoting the identity operator, the compact restriction and embedding, cf. [66, Lemma
10], and the multiplication operator by q.

We then have the following result on the solvability of the Dirichlet boundary value
problem.

Lemma 2.1. Let F ∈ H(Ωe), f ∈ L2(Ω), and

Nq := {u ∈ Hs
0(Ω) : (−∆)su+ qu = 0 in Ω}.

(a) u ∈ Hs(Rn) solves the Dirichlet problem

(−∆)su+ qu = f in Ω, u|Ωe
= F, (2.3)

if and only if u = u(0) + u(F ), where u(F ) ∈ Hs(Rn) fulfills u(F )|Ωe
= F , and

u(0) ∈ Hs
0(Ω) solves

Bq(u
(0), w) = −Bq(u

(F ), w) +

ˆ
Ω

fw dx for all w ∈ Hs
0(Ω).

Note that for F ∈ C∞c (Ωe) one can simply choose u(F ) := F .
(b) Nq is finite-dimensional. The Dirichlet problem (2.3) is solvable if and only if

Bq(u
(F ), w) =

ˆ
Ω

fw dx for all w ∈ Nq. (2.4)

The solution u ∈ Hs(Rn) of (2.3) is unique up to addition of a function in Nq,
and u + Nq ∈ Hs(Rn)/Nq depends linearly and continuously on F ∈ H(Ωe) and
f ∈ L2(Ω).
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Proof. (a) immediately follows from the variational formulation (2.1).

To prove (b), we use the Riesz representation theorem to obtain vFf ∈ Hs
0(Ω) fulfilling

(
vFf , w

)
Hs

0 (Ω)
= −Bq(u

(F ), w) +

ˆ
Ω

fw dx for all w ∈ Hs
0(Ω).

Using (a), and that w ∈ Hs
0(Ω) implies w(x) = 0 for x ∈ Ωe a.e., we obtain that

u ∈ Hs(Rn) solves (2.3) if and only if u = u(0) + u(F ) with u(0) ∈ Hs
0(Ω) solving(

(I − ι∗ι+ ι∗Mqι)u
(0), w

)
Hs

0 (Ω)

= Bq(u
(0), w) = −Bq(u

(F ), w) +

ˆ
Ω

fw dx =
(
vFf , w

)
Hs

0 (Ω)
for all w ∈ Hs

0(Ω),

i.e.

(I − ι∗ι+ ι∗Mqι)u
(0) = vFf ,

and that

Nq = N (I − ι∗ι+ ι∗Mqι). (2.5)

Here N (A) stands for the kernel of the linear operator A. Since ι∗ι−ι∗Mqι is compact
and self-adjoint, Fredholm theory (cf., e.g., [22, Appendix D, Theorem 5]) yields that
Nq is finite-dimensional, and that (2.3) is solvable if and only if(

vFf , w
)
Hs

0 (Ω)
= 0 for all w ∈ N (I − ι∗ι+ ι∗Mqι) = Nq,

which gives the condition (2.4).

Clearly u(0) is unique up to addition of a function in Nq, and u(0) + Nq depends
linearly and continuously on vFf ∈ Hs

0(Ω). It easily follows that u = u(0) + u(F ) is
unique up to addition of a function in Nq, and that u + Nq ∈ Hs(Rn)/Nq depends
linearly and continuously on F ∈ H(Ωe) and f ∈ L2(Ω).

Corollary 2.2. Let Hs
q (Rn) ⊆ Hs(Rn) be the Hs(Rn)-orthogonal complement of

Nq, and

Hq(Ωe) := {F ∈ H(Ωe) : Bq(u
(F ), w) = 0 for all w ∈ Nq}.

Then the codimension of Hq(Ωe) in H(Ωe) is at most dimNq, and for all F ∈ Hq(Ωe)
there exists a unique solution u ∈ Hs

q (Rn) of the Dirichlet problem

(−∆)su+ qu = 0 in Ω, u|Ωe
= F, (2.6)

and that the solution operator

Sq : Hq(Ωe)→ Hs
q (Rn), F 7→ u, where u solves (2.6),

is linear and bounded.

Proof. We first show that Hq(Ωe) is well-defined. If u(F ), ũ(F ) ∈ Hs(Rn) both fulfill
u(F )|Ωe

= F = ũ(F )|Ωe
, then u(F ) − ũ(F )|Ωe

∈ Hs
0(Ω) and thus it follows from the

definition of Nq (2.5) and (2.1) that

Bq(u
(F ) − ũ(F ), w) = 0 for all w ∈ Nq.
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Next, we show that the codimension of Hq(Ωe) in H(Ωe) is at most d := dimNq. Let
(w1, . . . , wd) ⊂ Nq be an orthonormal basis of Nq, and let γ− : H(Ωe)→ Hs(Rn) be

a linear right inverse of the Dirichlet trace operator γ
(D)
Ωe

. Then, by linearity,

Hq(Ωe) = {F ∈ H(Ωe) : Bq(γ
−F,wj) = 0 for all j = 1, . . . , d} = N (A),

with a linear operator

A : H(Ωe)→ Rd, F 7→
(
Bq(γ

−F,wj)
)
j=1,...,d

.

Hence, the codimension of Hq(Ωe) = N (A) is dim(R(A)) ≤ d.

Finally, it follows from Lemma 2.1(b) that (2.6) possesses a solution ũ ∈ Hs(Rn)
which is unique up to addition of a function in Nq. Hence,

u := ũ−
d∑
j=1

wj(ũ, wj)Hs(Rn) ∈ Hs
q (Rn)

solves (2.6), and Hs
q (Rn) contains no other solutions of (2.6). Since Hs

q (Rn) is iso-
morphic to Hs(Rn)/Nq, the continuity and linearity of the solution operator Sq also
follow from Lemma 2.1(b).

2.3. Neumann traces and the Dirichlet-to-Neumann operator. We de-
fine the Neumann trace operator

γ
(N)
Ωe

: Hs
∆(Rn) :=

{
u ∈ Hs(Rn) : ∃f ∈ L2(Ω) with (−∆)su = f in Ω

}
→ H(Ωe)

∗

by setting〈
γ

(N)
Ωe

u, F
〉

:=

ˆ
Rn

(−∆)s/2u · (−∆)s/2v(F ) dx−
ˆ

Ω

(−∆)su · v(F ) dx, (2.7)

where v(F ) ∈ Hs(Rn) fulfills v(F )|Ωe = F , H(Ωe)
∗ is the dual space of H(Ωe), and

throughout this paper 〈·, ·〉 denotes the dual pairing on H(Ωe)
∗ ×H(Ωe). Note that

γ
(N)
Ωe

u is well-defined since the right hand side of (2.7) does not depend on the choice

of v(F ), and that γ
(N)
Ωe

is a bounded linear operator.

For the sake of readability, we also use the formal notation (−∆)su|Ωe
:= γ

(N)
Ωe

u for the
Neumann trace, which can be motivated by the following lemma, see also [39, Remark
2.4] and [32] for further justifications of this notation under additional smoothness
conditions on u or Ω.

Lemma 2.3. Let u ∈ Hs
∆(Rn). If γ

(N)
Ωe

u ∈ L2(Ω) in the sense that there exists

g ∈ L2(Ωe) with〈
γ

(N)
Ωe

u, F
〉

=

ˆ
Ωe

gv(F ) dx for all v(F ) ∈ Hs(Rn) with v(F )|Ωe
= F,

then g = (−∆)su in Ωe (in the sense of distributions).

Proof. For all ϕ ∈ C∞c (Ωe) ⊆ H(Ωe) (cf. subsection 2.2), we have thatˆ
Ω

gϕdx =
〈
γ

(N)
Ωe

u,G
〉

=

ˆ
Rn

(−∆)s/2u · (−∆)s/2ϕdx−
ˆ

Ω

(−∆)su · ϕdx

=

ˆ
Rn

(−∆)s/2u · (−∆)s/2ϕdx = 〈(−∆)su, ϕ〉D′(Ωe)×D(Ωe).
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Note also that if u ∈ Hs(Rn) solves (−∆)su+ qu = 0 in Ω, then

〈(−∆)su|Ωe
, G〉 = Bq(u, v

(G))

holds for all G ∈ H(Ωe) and all v(G) ∈ Hs(Rn) with v(G)|Ωe = G. Using Corollary 2.2,
we can thus define the linear bounded DtN operator

Λ(q) : Hq(Ωe)→ H(Ωe)
∗, F 7→ (−∆)su|Ωe

where u ∈ Hs
q (Rn) solves

(−∆)su+ qu = 0 in Ω, u|Ωe = F.

In view of the following sections, note that for q1, q2 ∈ L∞(Ω),

Hq1,q2(Ωe) := Hq1(Ωe) ∩Hq2(Ωe)

is a subspace of H(Ωe) with codimension less than or equal to dimNq1 + dimNq2 , on
which both Λ(q1) and Λ(q2) are defined. Hence, throughout this work, Λ(q1)−Λ(q2)
will always denote the linear bounded operator

Λ(q1)− Λ(q2) : Hq1,q2(Ωe)→ H(Ωe)
∗.

The following relation between the DtN operator and the bilinear form will be useful.

Lemma 2.4. Let q1, q2 ∈ L∞(Ω), F ∈ Hq1(Ωe), G ∈ Hq2(Ωe), and let u ∈ Hs
q1(Rn),

v ∈ Hs
q2(Rn) solve

(−∆)su+ q1u = 0 in Ω, u|Ωe = F,

(−∆)sv + q2v = 0 in Ω, v|Ωe = G.

Then

〈Λ(q1)F, F 〉 = Bq1(u, u) and 〈Λ(q1)F,G〉 = Bq1(u, v),

and under the additional restriction that F,G ∈ Hq1,q2(Ωe) this also implies that

〈(Λ(q1)− Λ(q2))F,G〉 = Bq1(u, v)−Bq2(u, v) =

ˆ
Ω

(q1 − q2)uv dx.

Proof. This immediately follows from the variational formulation in Lemma 2.1 and
the definition of the Neumann trace.

2.4. Unique continuation from open sets and Cauchy data. We recall the
unique continuation result from Ghosh, Salo and Uhlmann [32]:

Theorem 2.5. [32, Theorem 1.2] Let n ∈ N, and 0 < s < 1. If u ∈ Hr(Rn) for some
r ∈ R, and both u and (−∆)su vanish in the same arbitrary non-empty open set in
Rn, then u ≡ 0 in Rn.

We will make use of the following simple corollary.

Corollary 2.6. Let u ∈ Hs(Rn) solve (−∆)su+ qu = f in Ω, with f ∈ L2(Ω)
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(a) If u and f vanish in the same nonempty open set O ⊂ Ω, then u ≡ 0 in Rn.
(b) If u|Ωe

= 0 and (−∆)su|Ωe
= 0, then u ≡ 0 in Rn.

Proof. (a) follows since u = 0 in O, and (−∆)su+qu = 0 in O, implies (−∆)su = 0 in
O. For (b) note that u|Ωe

and (−∆)su|Ωe
are only formal notations for the Dirichlet

and Neumann traces of u, but u|Ωe = 0, and (−∆)su|Ωe = 0 do imply that

u = 0 in Ωe, and (−∆)su = 0 in Ωe

in the sense of distributions by (2.2) and Lemma 2.3. Hence, both cases follow from
Theorem 2.5.

Remark 2.7. When 1
4 ≤ s < 1, then the unique continuation property in Corol-

lary 2.6(a) already holds under the weaker condition that u vanishes in a subset of
Ω with positive measure, cf. [31, Proposition 5.1]. Moreover, based on such prop-
erty, [31] shows global uniqueness for the fractional Schrödinger equation by a single
measurement.

3. Monotonicity relations and localized potentials. In this section we de-
rive monotonicity relations between L∞(Ω) potentials and their associated DtN op-
erators, and show how to control the energy terms in the monotonicity relations with
the technique of localized potentials.

3.1. Monotonicity relations. We characterize the monotonicity relations be-
tween DtN operators with an extended Loewner order that holds up to finite dimen-
sional subspaces.

Definition 3.1. Let H be a Hilbert space and H1, H2 ⊆ H be two subspaces of finite
codimension, and let L1 : H1 → H, L2 : H2 → H be two linear bounded operators.
For a number d ∈ N0 := N ∪ {0} we write

L1 ≤d L2

if there exists a subspace W ⊆ H12 := H1 ∩H2 with dim(W ) ≤ d, and

〈(L2 − L1)v, v〉 ≥ 0 for all v ∈W⊥ ⊆ H12.

Here and in the following, we use the notation W⊥ ⊆ H12 to indicate that the orthog-
onal complement is taken in H12.

We write L1 ≤ L2 if L1 ≤0 L2, and L1 ≤fin L2 if L1 ≤d L2 for some d ∈ N0. We
also write

L1
fin
= L2 if L1 ≤fin L2, and L2 ≤fin L1,

i.e. if there exists a finite dimensional subspace W ⊆ H12 so that

〈(L2 − L1)v, v〉 = 0 for all v ∈W⊥ ⊆ H12.

Note that if H1 = H2 = H and L1, L2 are self-adjoint and compact, this is the same
extended Loewner order as in [45].

Let us stress that the binary relation ≤d is reflexive, but generally neither transitive,
nor antisymmetric. Obviously, L1 ≤d1 L2 and L2 ≤d2 L3 imply that L1 ≤d L3,
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with d = d1 + d2 + codim(H2), so that ≤fin is a reflexive and transitive relation, i.e.,
a preorder. Moreover, Corollaries 4.2 and 4.9 will show that ≤fin is antisymmetric
on the set of NtD operators and on their linearizations around a fixed non-resonant
potential, so that on these sets, ≤fin is a partial order.

For two potentials q1, q2 ∈ L∞(Ω) we write q1 ≤ q2 if q1(x) ≤ q2(x) for almost every-
where (a.e.) x ∈ Ω. We will show that increasing the potential q in this sense increases
the DtN map Λ(q) in the sense of the generalized Loewner order in Definition 3.1.
Note that monotonicity relations in inverse coefficient problems go back to the works
of Ikehata, Kang, Seo, and Sheen [50, 55], and they have been at the core of many
reconstruction algorithms including the Factorization method and the Monotonicity
method, cf. the list of references in the introduction. Extensions of monotonicity re-
lations to subspaces of finite codimensions have first been studied in [45, 33], and we
follow the general approach from there. A sharper bound on the dimension of the
excluded subspaces has recently been obtained for the standard Helmholtz equation
in [44].

Definition 3.2. For q ∈ L∞(Ω) let d(q) ∈ N0 denote the number of eigenvalues
(counted with multiplicity) of the compact self-adjoint operator ι∗ι − ι∗Mqι that are
greater than 1.

Theorem 3.3 (Monotonicity relations). Let q1, q2 ∈ L∞(Ω). There exists a subspace
V ⊆ Hq1,q2(Ωe) with dim(V ) ≤ d(q2) so that

〈(Λ(q1)− Λ(q2))F, F 〉 ≥
ˆ

Ω

(q1 − q2)|u1|2 dx for all F ∈ V ⊥ ⊆ Hq1,q2(Ωe), (3.1)

where u1 ∈ Hs
q1(Rn) solves (−∆)su1 + q1u1 = 0 in Ω with u1|Ωe = F .

Hence

q1 ≥ q2 a.e. in Ω implies that Λ(q1) ≥d(q2) Λ(q2).

Before we prove Theorem 3.3, let us also formulate a variant that will be useful for
applying the idea of localized potentials in the next sections, remark on interchanging
q1 and q2, and discuss the dependence of dim(Nq) and d(q) on q.

Theorem 3.4. Let q1, q2 ∈ L∞(Ω). There exists a subspace

V+ ⊆ Hq1,q2(Ωe) with dim(V+) ≤ d(q2) + dim(Nq2),

and a constant λ > 0, so that for all F ∈ V ⊥+ ⊆ Hq1,q2(Ωe)

〈(Λ(q1)− Λ(q2))F, F 〉 ≥
ˆ

Ω

(q1 − q2)|u1|2 dx+ λ‖u1 − u2‖2
Hs(Rn) (3.2)

and, for all D ⊆ Ω containing supp(q1 − q2),

‖u2‖L2(D) ≤ c‖u1‖L2(D), (3.3)

where c := 1 + 1
λ ‖q1 − q2‖L∞(D), and, for j = 1, 2, uj ∈ Hs

qj (Rn) solve

(−∆)suj + qjuj = 0 in Ω, uj |Ωe = F.
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Remark 3.5. By interchanging q1 and q2 in Theorems 3.3 and 3.4, we also obtain
that there exist subspaces

V, V+ ⊆ Hq1,q2(Ωe) with dim(V ) ≤ d(q1), and dim(V+) ≤ d(q1) + dim(Nq1),

and a constant λ > 0, so that

〈(Λ(q1)− Λ(q2))F, F 〉 ≤
ˆ

Ω

(q1 − q2)|u2|2 dx for all F ∈ V ⊥ ⊆ Hq1,q2(Ωe),

and

〈(Λ(q1)− Λ(q2))F, F 〉 ≤
ˆ

Ω

(q1 − q2)|u2|2 dx− λ‖u1 − u2‖2
Hs(Rn),

‖u1‖L2(D) ≤ c‖u2‖L2(D),

for all D ⊇ supp(q1 − q2), and all F ∈ V ⊥+ ⊆ Hq1,q2(Ωe), where c := 1 + 1
λ ‖q1 −

q2‖L∞(D), u1 = Sq1(F ), and u2 = Sq2(F ).

Combining Theorem 3.3 with its interchanged version, we obtain a subspace

V ⊆ Hq1,q2(Ωe) with dim(V ) ≤ d(q1) + d(q2),

so that ˆ
Ω

(q1 − q2)|u1|2 dx ≤ 〈(Λ(q1)− Λ(q2))F, F 〉 ≤
ˆ

Ω

(q1 − q2)|u2|2 dx.

for all F ∈ V ⊥ ⊆ Hq1,q2(Ωe), u1 = Sq1(F ), and u2 = Sq2(F ).

Combining Theorem 3.4 with its interchanged version, we obtain a subspace

V+ ⊆ Hq1,q2(Ωe) with dim(V+) ≤ d(q1) + d(q2) + dim(Nq1) + dim(Nq2),

and constants λ, c1, c2 > 0, so that
ˆ

Ω

(q1 − q2)|u1|2 dx+ λ‖u1 − u2‖2
Hs(Rn) ≤ 〈(Λ(q1)− Λ(q2))F, F 〉

≤
ˆ

Ω

(q1 − q2)|u2|2 dx− λ‖u1 − u2‖2
Hs(Rn),

and

c1‖u1‖L2(D) ≤ ‖u2‖L2(D) ≤ c2‖u1‖L2(D)

for all D ⊇ supp(q1 − q2), and all F ∈ V ⊥+ ⊆ Hq1,q2(Ωe), u1 = Sq1(F ), and u2 =
Sq2(F ).

Theorem 3.6. Let d(q) be given by Definition 3.2 and Nq be defined by (2.5).

(a) For q1, q2 ∈ L∞(Ω)

q1 ≤ q2 implies d(q1) ≥ d(q2).

(b) For all q1 ∈ L∞(Ω) there exists ε > 0 so that

dim(Nq1) ≥ dim(Nq2) for all q2 ∈ L∞(Ω) with ‖q2 − q1‖L∞(Ω) ≤ ε.
11



To prove Theorems 3.3, 3.4, and 3.6, we first show the following lemmas.

Lemma 3.7. Let q1, q2 ∈ L∞(Ω). Then, for all F ∈ Hq1,q2(Ωe),

〈(Λ(q1)− Λ(q2))F, F 〉+

ˆ
Ω

(q2 − q1)|u1|2 dx = Bq2(u2 − u1, u2 − u1),

where u1 = Sq1(F ), and u2 = Sq2(F ).

Proof. Using lemma 2.4, the assertion follows from

Bq2(u2 − u1, u2 − u1) = Bq2(u2, u2)− 2Bq2(u2, u1) + Bq2(u1, u1)

= −Bq2(u2, u1) + Bq2(u1, u1) = −Bq2(u2, u1) + Bq1(u1, u1) +

ˆ
Ω

(q2 − q1)|u1|2 dx

= 〈(Λ(q1)− Λ(q2))F, F 〉+

ˆ
Ω

(q2 − q1)|u1|2 dx.

Lemma 3.8. Let q ∈ L∞(Ω). Then there exists a subspace W ⊆ Hs
0(Ω) with

dim(W ) = d(q), and a constant λ > 0, so that

Bq(w,w) ≥ 0 for all w ∈W⊥ ⊆ Hs
0(Ω), and

Bq(w,w) ≥ λ‖w‖2
Hs(Rn) for all w ∈ (W +Nq)

⊥ ⊆ Hs
0(Ω).

Proof. Let W be the sum of eigenspaces of the compact self-adjoint operator ι∗ι −
ι∗Mqι corresponding to eigenvalues larger than 1. Then

Bq(w,w) = ((I − ι∗ι+ ι∗Mqι)w,w)Hs(Rn) ≥ 0 for all w ∈W⊥ ⊆ Hs
0(Ω).

Since Nq = N (I − ι∗ι+ ι∗Mqι) is the eigenspace of ι∗ι− ι∗Mqι corresponding to the
eigenvalue 1, it also follows that

Bq(w,w) ≥ (1− µ)‖w‖2
Hs(Rn) for all w ∈ (W +Nq)

⊥ ⊆ Hs
0(Ω),

where µ is the largest eigenvalue of ι∗ι− ι∗Mqι smaller than 1. Hence, the assertion
follows with λ := 1− µ.

Lemma 3.9. Let q1, q2 ∈ L∞(Ω). There exists λ > 0 and subspaces

V ⊆ V+ ⊆ Hq1,q2(Ωe) with dim(V ) ≤ d(q2), dim(V+) ≤ d(q2) + dim(Nq2),

so that

Bq2(u2 − u1, u2 − u1) ≥ 0 for all F ∈ V ⊥ ⊆ Hq1,q2(Ωe), (3.4)

Bq2(u2 − u1, u2 − u1) ≥ λ‖u2 − u1‖2
Hs(Rn) for all F ∈ V ⊥+ ⊆ Hq1,q2(Ωe), (3.5)

where u1 = Sq1(F ), and u2 = Sq2(F ).

Proof. The difference of the solution operators

S : Hq1,q2(Ωe)→ Hs
0(Ω), F 7→ (Sq2 − Sq1)F = u2 − u1 ∈ Hs

0(Ω),

is linear and bounded by Corollary 2.2. Using Lemma 3.8 with q := q2 we obtain
a subspace W ⊆ Hs

0(Ω) with dim(W ) = d(q2), so that (3.4) holds for all F with
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SF ∈ W⊥ which is equivalent to F ∈ (S∗W )⊥. Also, by Lemma 3.8, (3.5) holds for
all F with SF ∈ (W +Nq)

⊥ which is equivalent to F ∈ (S∗(W +Nq))
⊥. Hence, the

assertion follows with V := S∗W , and V+ := S∗(W +Nq).

Proof of Theorem 3.3. This immediately follows using the Lemmas 3.7–3.9.

Proof of Theorem 3.4. The monotonicity relation (3.2) immediately follows using
Lemmas 3.7–3.9. To prove (3.3), we use that

0 = Bq1(u1, w) = Bq2(u2, w) for all w ∈ Hs
0(Ω),

to conclude that for all D ⊆ Ω containing supp(q1 − q2)

λ‖u2 − u1‖2
Hs(Rn) ≤ Bq2(u2 − u1, u2 − u1) = −Bq2(u1, u2 − u1)

= Bq1(u1, u2 − u1)−Bq2(u1, u2 − u1) =

ˆ
Ω

(q1 − q2)u1(u2 − u1) dx

≤ ‖q1 − q2‖L∞(D)‖u1‖L2(D)‖u2 − u1‖Hs(Rn).

Hence

‖u2‖L2(D) − ‖u1‖L2(D) ≤ ‖u2 − u1‖L2(D) ≤
1

λ
‖q1 − q2‖L∞(D)‖u1‖L2(D),

which yields (3.3) with c := 1 + 1
λ ‖q1 − q2‖L∞(D).

Proof of Theorem 3.6. For qj ∈ L∞(Ω), j = 1, 2, we denote the positive eigenvalues
(counted with multiplicities) of the compact self-adjoint operator

ι∗ι− ι∗Mqj ι : Hs
0(Ω)→ Hs

0(Ω), by λ
(j)
1 ≥ λ(j)

2 ≥ λ(j)
3 ≥ . . . .

(a) Let q1 ≤ q2. Then for all v ∈ Hs
0(Ω)

((ι∗ι− ι∗Mq1ι)v, v)Hs
0 (Ω) =

ˆ
Ω

(1− q1)|v|2 dx ≥
ˆ

Ω

(1− q2)|v|2 dx

= ((ι∗ι− ι∗Mq2ι)v, v)Hs
0 (Ω) .

Hence, it follows from the Courant-Fischer-Weyl min-max principle, (see, e.g.,
[63]) that

λ
(1)
k = max

X⊂Hs
0(Ω)

dim(X)=k

min
v∈X

‖v‖Hs
0(Ω)=1

((ι∗ι− ι∗Mq1ι)v, v)Hs
0 (Ω)

≥ max
X⊂Hs

0(Ω)

dim(X)=k

min
v∈X

‖v‖Hs
0(Ω)=1

((ι∗ι− ι∗Mq2ι)v, v)Hs
0 (Ω) = λ

(2)
k ,

for all k ∈ N, which shows d(q1) ≥ d(q2).
(b) Let q1 ∈ L∞(Ω). Since Nq1 = N (I − ι∗ι+ ι∗Mq1ι), exactly dim(Nq1) eigenvalues

of ι∗ι− ι∗Mq1ι are identically one, so that

. . . ≥ λ(1)
d(q1) > 1 = λ

(1)
d(q1)+1 = . . . = λ

(1)
d(q1)+dim(Nq1 ) > λ

(1)
d(q1)+dim(Nq1 )+1 ≥ . . . .

Since λ
(1)
d(q1) − 1 > 0 and 1− λ(1)

d(q1)+dim(Nq1
)+1 > 0, we can set

ε :=
1

2
min

{
λ

(1)
d(q1) − 1, 1− λ(1)

d(q1)+dim(Nq1 )+1

}
> 0. (3.6)
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Then for all q2 ∈ L∞(Ω) with ‖q2 − q1‖L∞(Ω) ≤ ε, and all v ∈ Hs
0(Ω) with

‖v‖Hs
0 (Ω) = 1, we have that∣∣∣((ι∗ι− ι∗Mq1ι)v, v)Hs

0 (Ω) − ((ι∗ι− ι∗Mq2ι)v, v)Hs
0 (Ω)

∣∣∣ ≤ ˆ
Ω

|q1 − q2||v|2 dx ≤ ε.

Hence, using the Courant-Fischer-Weyl min-max principle as in (a) again, we

obtain that
∣∣∣λ(1)
k − λ

(2)
k

∣∣∣ ≤ ε for all k ∈ N. In particular, using the definition of ε

in (3.6),
∣∣∣λ(1)
d(q1) − λ

(2)
d(q1)

∣∣∣ ≤ ε yields that

λ
(2)
1 ≥ . . . ≥ λ(2)

d(q1) ≥ λ
(1)
d(q1) − ε > 1,

and
∣∣∣λ(1)
d(q1)+dim(Nq1

)+1 − λ
(2)
d(q1)+dim(Nq1

)+1

∣∣∣ ≤ ε yields that

1 > λ
(1)
d(q1)+dim(Nq1

)+1 + ε ≥ λ(2)
d(q1)+dim(Nq1

)+1 ≥ λ
(2)
d(q1)+dim(Nq1

)+2 ≥ . . . .

It follows that only the eigenvalues λ
(2)
d(q1)+1, . . . , λ

(2)
d(q1)+dim(Nq1 ) of ι∗ι − ι∗Mq2ι

could possibly be identically one, so that dim(Nq2) ≤ dim(Nq1) is proven.

3.2. Localized potentials for the fractional Schrödinger equation. In
this subsection, we extend the localized potentials result that was derived in [39]
for positive potentials to general L∞(Ω)-potentials and spaces of finite codimension.
Moreover, we will show a new result on controlling two localized potentials simulta-
neously. We will prove the following two theorems.

Theorem 3.10 (Localized potentials). Let q ∈ L∞(Ω). For every measurable set
M ⊆ Ω with positive measure, and every finite-dimensional subspace V ⊆ Hq(Ωe)
there exists a sequence {F k}k∈N ⊆ V ⊥ ⊆ Hq(Ωe) so that the corresponding solutions
uk ∈ Hs

q (Rn) of

(−∆)su+ qu = 0 in Ω, with u|Ωe
= F k, (3.7)

fulfill ˆ
M

|uk|2 dx→∞, and

ˆ
Ω\M

|uk|2 dx→ 0.

Theorem 3.11 (Simultaneously localized potentials). Let q1, q2 ∈ L∞(Ω), and let
supp(q1−q2) ⊆M where M ⊆ Ω is a measurable set with positive measure. For every
finite-dimensional subspace V ⊆ Hq1,q2(Ωe), there exists a sequence {F k}k∈N ⊆ V ⊥ ⊆
Hq1,q2(Ωe) so that the corresponding solutions uk1 ∈ Hs

q1(Rn), uk2 ∈ Hs
q2(Rn), of

(−∆)suk1 + q1u
k
1 = 0 in Ω, with uk1 |Ωe = F k,

(−∆)suk2 + q2u
k
2 = 0 in Ω, with uk2 |Ωe = F k,

fulfill ˆ
M

|uk1 |2 dx→∞,
ˆ

Ω\M
|uk1 |2 dx→ 0,

ˆ
M

|uk2 |2 dx→∞,
ˆ

Ω\M
|uk2 |2 dx→ 0.
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To prove Theorem 3.10 and 3.11, we follow the general line of reasoning developed
by one of the authors in [29]. We formulate the energy terms as norms of operator
evaluations and characterize their adjoints and the ranges of their adjoints using the
unique continuation property in Section 2.4. We then prove the two theorems using
a functional analytic relation between norms of operator evaluations and ranges of
their adjoints.

We start by defining the so-called virtual measurement operators.

Lemma 3.12. For q ∈ L∞(Ω), a measurable set M ⊆ Ω with positive measure, and a
subspace H ⊆ Hq(Ωe) with finite codimension, we define the operator

LM,q : H → L2(M), F 7→ u|M ,

where u ∈ Hs
q (Rn) solves

(−∆)su+ qu = 0 in Ω, with u|Ωe
= F. (3.8)

Furthermore, let VM := {u|M : u ∈ Nq}.
Then LM,q is a linear bounded operator, dim(VM ) <∞, and for all g ∈ V ⊥M ⊆ L2(M)
and F ∈ H (

L∗M,qg, F
)
H(Ωe)

= −〈(−∆)sv|Ωe
, F 〉, (3.9)

where v ∈ Hs
q (Rn) solves (−∆)sv + qv = gχM in Ω, and v|Ωe

= 0.

Proof. By Lemma 2.1 and Corollary 2.2, we have that LM,q is a linear bounded
operator, dim(VM ) < ∞, and for all g ∈ V ⊥M ⊆ L2(M) there exists a solution v ∈
Hs
q (Ω) of (−∆)sv + qv = gχM in Ω, and v|Ωe

= 0. Then v ∈ Hs
0(Ω) fulfills

Bq(v, w) =

ˆ
M

gw dx for all w ∈ Hs
0(Ω).

For F ∈ H let u = u(0) + u(F ) solve (3.8) as in Lemma 2.1. Then(
L∗M,qg, F

)
H(Ωe)

=

ˆ
M

g(LM,qF ) dx =

ˆ
M

gudx =

ˆ
M

g(u(0) + u(F )) dx

= Bq(v, u
(0)) +

ˆ
M

gu(F ) dx = −Bq(v, u
(F )) +

ˆ
M

gu(F ) dx

= −
ˆ
Rn

(−∆)s/2v · (−∆)s/2u(F ) dx+

ˆ
Ω

(−∆)sv · v(F ) dx

= −〈(−∆)sv|Ωe , F 〉.

We now proceed similarly to [45] to extend the functional analytic relation between
the norms of two operators and the ranges of their adjoints from [29, Lemma 2.5],
[23, Corollary 3.5] to spaces of finite codimension.

Lemma 3.13. Let X, Y and Z be Hilbert spaces, A1 : X → Y and A2 : X → Z be
linear bounded operators, and let N ⊆ X be a finite dimensional subspace. Then

R(A∗1) ⊆ R(A∗2) +N if and only if ∃c > 0 : ‖A1x‖ ≤ c‖A2x‖ ∀x ∈ N⊥,
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where R(A) denotes the range of the linear bounded operator A.

Proof. For both implications, we use that there exists an orthogonal projection oper-
ator PN : X → X with

R(PN ) = N, N (PN ) = R(I − PN ) = N⊥, and P 2
N = PN = P ∗N .

To show the first implication, let R(A∗1) ⊆ R(A∗2) +N . Using block operator matrix
notation we then have that

R(A∗1) ⊆ R(A∗2) +R(PN ) = R
((
A∗2 PN

))
.

Hence, by [29, Lemma 2.5] there exists c > 0 so that

‖A1x‖2 ≤ c2
∥∥∥∥(A2

PN

)
x

∥∥∥∥2

= c2‖A2x‖2 + c2‖PNx‖2 for all x ∈ X,

and thus

‖A1x‖ ≤ c‖A2x‖ for all x ∈ N (PN ) = N⊥.

To show the converse implication, let c > 0 and ‖A1x‖ ≤ c‖A2x‖ for all x ∈ N⊥.
Then

‖A1(I − PN )x‖ ≤ c‖A2(I − PN )x‖ for all x ∈ X,

so that [29, Lemma 2.5] yields that

R((I − PN )A∗1) ⊆ R((I − PN )A∗2).

Hence,

R(A∗1) ⊆ R((I − PN )A∗1) +N ⊆ R((I − PN )A∗2) +N ⊆ R(A∗2) +N.

For the application of Lemma 3.13, the following elementary (and purely algebraic)
observation will also be useful.

Lemma 3.14. Let X and Y be vector spaces, let A : X → Y be linear, and let Y ′ be
a subspace of Y . The following two statements are equivalent:

(a) There exists a finite dimensional subspace N ⊆ Y with A(X) ⊆ Y ′ +N .
(b) There exists a subspace X ′ ⊆ X with finite codimension so that A(X ′) ⊆ Y ′.
Moreover, for all subspaces X ′ ⊆ X with finite codimension, there exists a finite
dimensional subspace N ⊆ Y with A(X) ⊆ A(X ′) + N , and dim(A(X ′)) = ∞ holds
if dimA(X) =∞.

Proof. Let A(X) ⊆ Y ′ + N , where Y ′ and N are subspaces of Y , and dim(N) < ∞.
Since any basis of N can be extended to a Hamel basis of Y ′+N , there exists a linear
projection

P : Y ′ +N → N with R(P ) = N, and N (P ) ⊆ Y ′.

Define X ′ := {x ∈ X : PAx = 0} = N (PA). Then

codim(X ′) = dim(R(PA)) ≤ dim(R(P )) = dim(N),
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and by definition A(X ′) ⊆ N (P ) ⊆ Y ′. This shows that (a) implies (b).

Clearly, (b) implies (a) by setting N := A(X ′′) where X ′′ is a linear complement of
X ′ in X.

Moreover, if X ′ is a subspace of finite codimension then (b) holds with Y ′ = A(X ′),
so that (a) implies the existence of a finite dimensional subspace N ⊆ Y with A(X) ⊆
A(X ′) +N . Clearly, this also implies that dim(A(X ′)) =∞ if dim(A(X)) =∞.

Now, we are ready to prove Theorem 3.10 and Theorem 3.11.

Proof of Theorem 3.10. Let q ∈ L∞(Ω), M ⊆ Ω be a measurable set with positive
measure, and V ⊆ Hq(Ωe) be a finite-dimensional subspace. As in Lemma 3.12, we
define the virtual measurement operators

LM,q : Hq(Ωe)→ L2(M), F 7→ u|M , and

LΩ\M,q : Hq(Ωe)→ L2(Ω \M), F 7→ u|Ω\M ,

where u ∈ Hs
q (Rn) solves

(−∆)su+ qu = 0 in Ω with u|Ωe
= F.

Then the assertion follows if we can show that there exists a sequence {F k}k∈N ⊆
V ⊥ ⊆ Hq(Ωe) so that

‖LM,qF
k‖L2(M) →∞, and ‖LΩ\M,qF

k‖L2(Ω\M) → 0.

By a simple normalization argument (cf., e.g., the proof of [39, Corollary 3.5]), it
suffices to show that

6 ∃c > 0 : ‖LM,qF‖L2(M) ≤ c‖LΩ\M,qF‖L2(Ω\M) for all F ∈ V ⊥ ⊆ Hq(Ωe).

This follows from Lemma 3.13 if we can show that

R(L∗M,q) 6⊆ R(L∗Ω\M,q) + V. (3.10)

We prove this by contradiction and assume that R(L∗M,q) ⊆ R(∗Ω\M,q) + V .

As in Lemma 3.12, define

VM := {u|M : u ∈ Nq}, and VΩ\M := {u|Ω\M : u ∈ Nq}.

Then V ⊥M and V ⊥Ω\M have finite codimension in L2(M) and L2(Ω \M), respectively.
Moreover, we define their subspaces

WM :=
{
g ∈ V ⊥M : 〈(−∆)svM |Ωe

, F 〉 = 0 for all F ∈ Hq(Ωe)
⊥} ,

WΩ\M :=
{
g ∈ V ⊥Ω\M : 〈(−∆)svΩ\M |Ωe

, F 〉 = 0 for all F ∈ Hq(Ωe)
⊥
}
,

where vM , vΩ\M ∈ Hs
q (Rn) are the solutions of

(−∆)svM + qvM = gMχM in Ω, vM |Ωe = 0, (3.11)

(−∆)svΩ\M + qvΩ\M = gΩ\MχΩ\M in Ω, vΩ\M |Ωe = 0. (3.12)

Then also WM and WΩ\M are subspaces of L2(M), resp., L2(Ω \ M), with finite
codimension, since the conditions in their definitions are equivalent to a system of
finitely many homogeneous linear equations.

17



From Lemma 3.14 we then obtain that

L∗M,q(WM ) ⊆ R(L∗M,q) ⊆ R(L∗Ω\M,q) + V ⊆ L∗Ω\M,q(WΩ\M ) + V ′,

with a finite-dimensional space V ′. Moreover, using Lemma 3.14 again, there exists
a subspace W ′M ⊆WM with finite codimension in WM and thus in L2(M), so that

L∗M,q(W
′
M ) ⊆ L∗Ω\M,q(WΩ\M ). (3.13)

Let gM ∈W ′M . Then, by (3.13), there exists gΩ\M ∈WΩ\M , so that the corresponding
solutions vM , vΩ\M ∈ Hs

q (Rn) of (3.11) and (3.12) fulfill

−〈(−∆)svM |Ωe
, F 〉 =

(
L∗M,qgM , F

)
H(Ωe)

= −〈(−∆)svΩ\M |Ωe
, F 〉 for all F ∈ Hq(Ωe),

where we have utilized (3.9). By definition of WM and WΩ\M , it also holds that

〈(−∆)svM |Ωe
, F 〉 = 0 = 〈(−∆)svΩ\M |Ωe

, F 〉 for all F ∈ Hq(Ωe)
⊥.

Hence v := vM − vΩ\M fulfills

(−∆)sv + qv = gMχM − gΩ\MχΩ\M in Ω

with vanishing Cauchy data v|Ωe
= 0 and (−∆)sv|Ωe

= 0. From the unique continua-
tion result in Corollary 2.6(b) it follows that v ≡ 0 in Rn. But this yields gM = 0, and
since this arguments holds for all gM ∈W ′M , it follows that W ′M = {0} which contra-
dicts the fact that W ′M is a subspace of finite codimension in the infinite dimensional
space L2(M). Hence, (3.10) and thus the assertion is proven.

Proof of Theorem 3.11. Let q1, q2 ∈ L∞(Ω), and let supp(q1 − q2) ⊆ M where
M ⊆ Ω is a measurable set with positive measure. We first note that it suffices to
show that for all finite-dimensional subspaces V ⊆ Hq1,q2(Ωe), there exists a sequence
{F k}k∈N ⊆ V ⊥ ⊆ Hq1,q2(Ωe) with

ˆ
M

|uk1 |2 dx→∞, and

ˆ
Ω\M

(
|uk1 |2 + |uk2 |2

)
dx→ 0, (3.14)

since
´
M
|uk1 |2 dx→∞ implies

´
M
|uk2 |2 dx→∞ on a subspace of finite codimension

in Hq1,q2(Ωe) by Remark 3.5.

We define as in Lemma 3.12,

LM,q1 : Hq1,q2(Ωe)→ L2(M), F 7→ u1|M ,
LΩ\M,q1 : Hq1,q2(Ωe)→ L2(Ω \M), F 7→ u1|Ω\M , and

LΩ\M,q2 : Hq1,q2(Ωe)→ L2(Ω \M), F 7→ u2|Ω\M ,

where uj ∈ Hs
qj (Rn) solves (for j = 1, 2)

(−∆)suj + qjuj = 0 in Ω with uj |Ωe
= F.

Thus (3.14) can be reformulated as

‖LM,q1F
k‖L2(M) →∞ and

∥∥∥∥(LΩ\M,q1

LΩ\M,q2

)
F k
∥∥∥∥
L2(Ω\M)×L2(Ω\M)

→ 0.
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Hence, using Lemma 3.13 as in the proof of Theorem 3.10, the assertion follows if we
can show that

R(L∗M,q1) 6⊆ R
((
L∗Ω\M,q1

L∗Ω\M,q2

))
+V = R(L∗Ω\M,q1

) +R(L∗Ω\M,q2
) +V. (3.15)

We argue by contradiction and assume that

R(L∗M,q1) ⊆ R(L∗Ω\M,q1
) +R(L∗Ω\M,q2

) + V.

As in the proof of Theorem 3.10, we define (for j = 1, 2)

VM,q1 := {u|M : u ∈ Nq1}, VΩ\M,qj := {u|Ω\M : u ∈ Nqj}.
and

WM,q1 :=
{
g ∈ V ⊥M,q1 : 〈(−∆)svM,q1 |Ωe , F 〉 = 0 for all F ∈ Hq1,q2(Ωe)

⊥} ,
WΩ\M,qj :=

{
g ∈ V ⊥Ω\M,qj

: 〈(−∆)svΩ\M,qj |Ωe
, F 〉 = 0 for all F ∈ Hq1,q2(Ωe)

⊥
}
,

where vM,q1 , vΩ\M,qj ∈ Hs
q (Rn) are the solutions of

(−∆)svM,q1 + q1vM,q1 = gM,q1χM in Ω, vM,q1 |Ωe
= 0, (3.16)

(−∆)svΩ\M,qj + qjvΩ\M,qj = gΩ\M,qjχΩ\M in Ω, vΩ\M,qj |Ωe
= 0, (3.17)

for j = 1, 2. Then, as in the proof of Theorem 3.10, we obtain using lemma 3.14 that

L∗M,q1(W ′M,q1) ⊆ L∗Ω\M,q1
(WΩ\M,q1) + L∗Ω\M,q2

(WΩ\M,q2) (3.18)

with a subspace W ′M,q1
⊆WM,q1 that has finite codimension in L2(M).

Let gM,q1 ∈W ′M,q1
. As in the proof of Theorem 3.10, it then follows from (3.18) and

the definition of WM,q1 , WΩ\M,qj , and WΩ\M,q2 , that there exist gqj ,Ω\M ∈ WΩ\M,qj

(j = 1, 2), so that the solutions vM,q1 , vΩ\M,q1 , and vΩ\M,q2 of (3.16) and (3.17) fulfill

(−∆)svq1,M |Ωe = (−∆)svq1,Ω\M |Ωe + (−∆)svq2,Ω\M |Ωe .

It follows that v := vq1,Ω\M + vq2,Ω\M − vq1,M solves

(−∆)sv + q1v = gq1,Ω\MχΩ\M + (q1 − q2)vq2,Ω\M + gq2,Ω\MχΩ\M − gq1,MχM
with zero Cauchy data. Hence, by Corollary 2.6(b), v = 0, and with supp(q1−q2) ⊆M
this also implies

(q1 − q2)vq2,Ω\M − gq1,M = 0.

Since vq2,Ω\M ∈ Hs
0(Ω), and the above arguments hold for all gM,q1 ∈ W ′M,q1

, it
follows that

W ′M,q1 ⊆ (Mq1 −Mq2)ι(Hs
0(Ω)) ⊆ L2(Ω).

Hence, the range of the compact operator (Mq1 −Mq2)ι would be a subspace of finite
codimension in L2(Ω) and thus closed. But the range of a compact operator can
only be closed if it is finite dimensional (cf., e.g., [68, Theorem. 4.18]), so that this
contradicts the infinite dimensionality of L2(Ω). Thus, (3.15) is proven.

Remark 3.15. Our proof of the existence of simultaneously localized potentials fol-
lowed the approach from [29] that is based on a functional analytic relation between
norms of operator evaluations and ranges of their adjoints. For some applications,
cf., [45, 40], and also in the first part of this work [39], the existence of localized po-
tentials also followed from Runge approximations arguments. It is an interesting open
question whether this alternative route of directly using Runge approximation could
also yield an alternative proof of the existence of simultaneously localized potentials.
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4. Converse monotonicity, uniqueness and inclusion detection. Using
the localized potentials and monotonicity relations from the last section, we can now
extend the results from [39] to the case of a general potential q ∈ L∞(Ω).

4.1. Converse monotonicity and the Calderón problem. We first derive
an if-and-only-if monotonicity relation between the potential and the DtN operators.

Theorem 4.1. Let n ∈ N, Ω ⊂ Rn be a Lipschitz bounded open set and s ∈ (0, 1).
For any two potential q1, q2 ∈ L∞(Ω), we have

q1 ≥ q2 if and only if Λ(q1) ≥d(q2) Λ(q2) if and only if Λ(q1) ≥fin Λ(q2),
(4.1)

where d(q2) is the integer given in Section 3.

Proof. Via Theorem 3.3, q1 ≥ q2 implies Λ(q1) ≥d(q2) Λ(q2), and clearly Λ(q1) ≥d(q2)

Λ(q2) implies Λ(q1) ≥fin Λ(q2). The assertion is proven if we can show that Λ(q1) ≥fin

Λ(q2) implies q1 ≥ q2 a.e. in Ω.

Let Λ(q1) ≥fin Λ(q2). Using this together with Remark 3.5 and that the intersection
of subspaces with finite codimension still has finite codimension, we obtain a subspace
V ⊆ Hq1,q2(Ωe) so that

0 ≤ 〈(Λ(q1)− Λ(q2))F, F 〉 ≤
ˆ

Ω

(q1 − q2)|u2|2 dx for all F ∈ V ⊥ ⊆ Hq1,q2(Ωe),

(4.2)

where u2 ∈ Hs
q2(Rn) solves

(−∆)su2 + q2u2 = 0 in Ω, and u2|Ωe
= F. (4.3)

To show that this implies q1 ≥ q2 a.e. in Ω, we argue by contradiction and assume
that there exists δ > 0 and a positive measurable set M ⊂ Ω such that q2− q1 ≥ δ on
M . Then utilizing the localized potentials from Theorem 3.10 we obtain a sequence
(F k)k∈N ⊂ V ⊥ ⊆ Hq1,q2(Ωe) where the corresponding solutions of (4.3) with F = F k

solve ˆ
M

|uk2 |2 dx→∞, and

ˆ
Ω\M

|uk2 |2 dx→ 0.

But together with (4.2) this yields to the contradiction

0 ≤
ˆ

Ω

(q1 − q2)|uk2 |2 dx ≤ −δ
ˆ
M

|uk2 |2 dx+ ‖q1 − q2‖L∞(Ω)

ˆ
Ω\M

|uk2 |2 dx→ −∞,

which proves q1 ≥ q2 a.e. in Ω.

Corollary 4.2. Let n ∈ N, Ω ⊂ Rn be a bounded Lipschitz domain and s ∈ (0, 1).
For any two potentials q0, q1 ∈ L∞+ (Ω),

q0 = q1 if and only if Λ(q0)
fin
= Λ(q1).

Proof. This follows immediately from Theorem 4.1.
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4.2. A monotonicity-based reconstruction formula. In [39], we considered
positive potentials q ∈ L∞+ (Ω), where L∞+ (Ω) denotes the set of all L∞(Ω)-functions
with positive essential infima. We showed that q ∈ L∞+ (Ω) can be reconstructed from
Λ(q) by taking the supremum of all positive density one simple functions ψ with
Λ(ψ) ≤ Λ(q). The space of density one simple functions is defined by

Σ :=
{
ψ =

∑m
j=1 ajχMj : aj ∈ R, Mj ⊆ Ω is a density one set

}
,

where we call a subset M ⊆ Ω a density one set if it is non-empty, measurable and
has Lebesgue density 1 in all x ∈ M . Note that density one simple functions can be
regarded as simple functions where function values that are only attained on a null set
are replaced by zero, and that, by the Lebesgue’s density theorem, every measurable
set agrees almost everywhere with a density one set, so that every simple function
agrees with a density one simple function almost everywhere. For our results, it is
important to control the values on null sets since these values might still affect the
supremum when the supremum is taken over uncountably many functions.

For general potentials we obtain the following reconstruction formula.

Theorem 4.3. Let n ∈ N, Ω ⊂ Rn be a bounded Lipschitz domain and s ∈ (0, 1). A
potential q ∈ L∞(Ω) is uniquely determined by Λ(q) via the following formula

q(x) = sup{ψ(x) : ψ ∈ Σ, Λ(ψ) ≤fin Λ(q)}+ inf{ψ(x) : ψ ∈ Σ, Λ(ψ) ≥fin Λ(q)}
= sup{ψ(x) : ψ ∈ Σ, Λ(ψ) ≤d(ψ) Λ(q)}+ inf{ψ(x) : ψ ∈ Σ, Λ(ψ) ≥d(q) Λ(q)}

for a.e. x ∈ Ω.

To prove Theorem 4.3, we first show the following lemma.

Lemma 4.4. For each function q ∈ L∞(Ω), and x ∈ Ω a.e., we have that

max{q(x), 0} = sup{ψ(x) : ψ ∈ Σ with ψ ≤ q}.

Proof. Let q ∈ L∞(Ω). By the standard simple function approximation lemma, cf.,
e.g., [67], there exists a sequence (ψk), k ∈ N of simple functions with

q(x)− 1

k
≤ ψk(x) ≤ q(x) (4.4)

for all k ∈ N and x ∈ Ω. Since every simple function agrees with a density one
simple function almost everywhere, we can change the values of the countably many
functions ψk on a null set, to obtain ψk ∈ Σ for which (4.4) holds almost everywhere.
Hence, for a.e. x ∈ Ω,

q(x) = lim
k→∞

ψk(x) ≤ sup{ψ(x) : ψ ∈ Σ, ψ ≤ q}.

Moreover, if x ∈ Ω then ψx = −‖q‖L∞(Ω)χΩ\{x} is a density one simple function
fulfilling ψx(x) = 0 and ψx(ξ) ≤ q(ξ) for a.e. ξ ∈ Ω, so that ψx ≤ q. Hence,

0 ≤ sup{ψ(x) : ψ ∈ Σ, ψ ≤ q} for a.e. x ∈ Ω.

It remains to show that

max{q(x), 0} ≥ sup{ψ(x) : ψ ∈ Σ, ψ ≤ q} for a.e. x ∈ Ω. (4.5)
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We argue as in the proof of [39, Lemma 4.4]. It suffices to show that for each δ > 0
the set

M := {x ∈ Ω : max{q(x), 0}+ δ < sup{ψ(x) : ψ ∈ Σ, ψ ≤ q}} (4.6)

is a null set. To prove this, assume that M is not a null set for some δ > 0. By
removing a null set from M , we can assume that M is a density one set. By using
Lusin’s theorem (see [67] for instance), all measurable function are approximately
continuous at almost every point. Hence, M must contain a point x̂ in which the
function x 7→ max{q(x), 0} is approximately continuous, and thus the set

M ′ := {x ∈ Ω : max{q(x), 0} ≤ max{q(x̂), 0}+ δ/3}

has density one in x̂. Removing a null set, we can assume that M ′ is a density one
set still containing x̂.

Moreover, by the definition of M , there must exist a ψ ∈ Σ with ψ ≤ q and

max{q(x̂), 0}+
2

3
δ ≤ ψ(x̂).

This shows ψ(x̂) > 0, so that, by [39, Lemma 4.3], there exists a density one set M ′′

containing x̂, where ψ(x) = ψ(x̂) for all x ∈M ′′.
We thus have that for all x ∈M ′ ∩M ′′

q(x) + δ/3 ≤ max{q(x), 0}+ δ/3 ≤ max{q(x̂), 0}+
2

3
δ ≤ ψ(x̂) = ψ(x),

and M ′ ∩M ′′ possesses positive measure since M ′ and M ′′ are density one sets that
both contain x̂, cf., again, [39, Lemma 4.3]. But this contradicts that ψ(x) ≤ q(x)
almost everywhere, and thus shows that M defined in (4.6) is a null set for all δ > 0.
It follows that (4.5) holds, so that the assertion is proven.

Proof of Theorem 4.3. Using lemma 4.4 and the if-and-only-if monotonicity relation
in Theorem 4.1, we have that for all q ∈ L∞(Ω), and all x ∈ Ω a.e.,

q(x) = max{q(x), 0} −max{−q(x), 0}
= sup{ψ(x) : ψ ∈ Σ, ψ ≤ q} − sup{ψ(x) : ψ ∈ Σ, ψ ≤ −q}
= sup{ψ(x) : ψ ∈ Σ, ψ ≤ q}+ inf{ψ(x) : ψ ∈ Σ, ψ ≥ q}
= sup{ψ(x) : ψ ∈ Σ, Λ(ψ) ≤fin Λ(q)}+ inf{ψ(x) : ψ ∈ Σ, Λ(ψ) ≥fin Λ(q)}
= sup{ψ(x) : ψ ∈ Σ, Λ(ψ) ≤d(ψ) Λ(q)}+ inf{ψ(x) : ψ ∈ Σ, Λ(ψ) ≥d(q) Λ(q)}.

This completes the proof.

4.3. The linearized Calderón problem. In this subsection, we will only con-
sider q ∈ L∞(Ω) that fulfill the following assumption.

Definition 4.5. Let Nq be the set defined by (2.5), then we say that q ∈ L∞(Ω) is
non-resonant, if Nq = {0}.
This assumption is also called an eigenvalue condition in the literature, since it is
equivalent to {0} being not an Dirichlet eigenvalue of the fractional operator (−∆)s+q
in Ω. Note that it implies that Hq(Ωe) = H(Ωe), and Hs

q (Rn) = Hs(Rn), i.e., that
the Dirichlet problem is uniquely solvable for all Dirichlet data in H(Ωe), cf. Corollary
2.2.
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We start by showing that the non-resonant potentials are an open subset of L∞(Ω),
on which the DtN operator is Fréchet differentiable.

Lemma 4.6. The set O = {q ∈ L∞(Ω) : Nq = {0}} is an open subset of L∞(Ω). On
this set, the DtN operator

Λ : O ⊆ L∞(Ω)→ L(H(Ωe), H(Ωe)
∗), q 7→ Λ(q),

is Fréchet differentiable. For each q ∈ O its derivative is given by

Λ′(q) : L∞(Ω)→ L(H(Ωe), H(Ωe)
∗), r 7→ Λ′(q)r,

〈(Λ′(q)r)F,G〉 : =

ˆ
Ω

rSq(F )Sq(G) dx for all r ∈ L∞(Ω), F,G ∈ H(Ωe),

where Sq : H(Ωe)→ Hs(Rn), F 7→ u, is the solution operator of the Dirichlet problem

(−∆)su+ qu = 0 in Ω and u|Ωe
= F.

Proof. The fact that O is open immediately follows from Theorem 3.6(b).

Let q ∈ O ⊆ L∞+ (Ω). Λ′(q) is a linear bounded operator since Sq is linear and
bounded, cf. Corollary 2.2. For sufficiently small r ∈ L∞(Ω), we have that q+ r ∈ O,
and it follows from Lemma 2.4 that

〈(Λ(q + r)− Λ(q))F, F 〉 =

ˆ
Ω

rSq+r(F )Sq(F ) dx.

With the operator formulation from the proof of Lemma 2.1, it is then easy to show
that, for sufficiently small r ∈ L∞(Ω), there exists a constant C > 0 with

‖Sq+r(F )− Sq(F )‖Hs(Rn) ≤ C ‖r‖L∞(Ω)‖F‖H(Ωe).

Using that Λ(q), Λ(q + r), and Λ′(q)r are symmetric operators, it now follows that

‖Λ(q + r)− Λ(q)− Λ′(q)r‖L(H(Ωe),H(Ωe)∗)

= sup
‖F‖H(Ωe)=1

|〈(Λ(q + r)− Λ(q)− Λ′(q)r)F, F 〉|

= sup
‖F‖H(Ωe)=1

∣∣∣∣ˆ
Ω

r(Sq+r(F )− Sq(F ))Sq(F ) dx

∣∣∣∣ ≤ C ‖r‖2
L∞(Ω)‖Sq‖L(H(Ωe),Hs(Rn)).

which proves the assertion.

Using the Fréchet derivative from Lemma 4.6, the monotonicity relations in Theorem
3.3 and 3.4 can now be written as follows.

Corollary 4.7. For all non-resonant q1, q2 ∈ L∞(Ω),

Λ′(q2)(q1 − q2) ≥d(q1) Λ(q1)− Λ(q2) ≥d(q2) Λ′(q1)(q1 − q2),

and there exists c > 0 so that for all measurable D ⊆ Ω containing supp(q1 − q2)

cΛ′(q2)χD ≥d(q1) Λ′(q1)χD ≥d(q2)
1

c
Λ′(q2)χD.
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Proof. Since q1, q2 ∈ L∞(Ω) are non-resonant, we have that Hq1(Ωe) = Hq2(Ωe) =
Hq1,q2(Ωe) = H(Ωe). It then follows from Theorem 3.3 and Lemma 4.6 that there
exists a subspace V ⊆ H(Ωe) with dim(V ) ≤ d(q2) so that for all F ∈ V ⊥

〈(Λ(q1)− Λ(q2))F, F 〉 ≥
ˆ

Ω

(q1 − q2)Sq1(F )2 dx = 〈(Λ′(q1)(q1 − q2))F, F 〉 ,

which shows that Λ(q1)− Λ(q2) ≥d(q2) Λ′(q1)(q1 − q2).

Also, it follows from Theorem 3.4 and Lemma 4.6 that there exists a subspace V+ ⊆
H(Ωe) with dim(V+) ≤ d(q2) + N(q2) = d(q2) and a constant c̃ > 0, so that for all
measurable D ⊆ Ω containing supp(q1 − q2), and all F ∈ V ⊥+ ,

〈(Λ′(q2)χD)F, F 〉 = ‖Sq2(F )‖2
L2(D) ≤ c̃

2‖Sq1(F )‖2
L2(D) = c̃2 〈(Λ′(q1)χD)F, F 〉 ,

which shows Λ′(q2)χD ≤d(q2) cΛ
′(q1)χD with c := c̃2.

The other assertions follow by interchanging q1 and q2.

We also have an if-and-only if monotonicity result for the linearized DtN-operators.

Theorem 4.8. Let n ∈ N, Ω ⊂ Rn be a Lipschitz bounded open set and s ∈ (0, 1).
Then for all non-resonant q ∈ L∞(Ω) and r1, r2 ∈ L∞(Ω),

r1 ≤ r2 if and only if Λ′(q)r1 ≤ Λ′(q)r2 if and only if Λ′(q)r1 ≤fin Λ′(q)r2.

Proof. If r1 ≤ r2 then Λ′(q)r1 ≤ Λ′(q)r2 follows immediately from the characterization
of Λ′(q) in Lemma 4.6. (Note that this holds on the whole space H(Ωe), and not just
on a subspace of finite codimension).

Clearly, Λ′(q)r1 ≤ Λ′(q)r2 implies Λ′(q)r1 ≤fin Λ′(q)r2, and the implication from
Λ′(q)r1 ≤fin Λ′(q)r2 to r1 ≤ r2 follows from the same localized potentials argument
as in the proof of Theorem 4.1.

This implies uniqueness of the linearized fractional Calderón problem:

Corollary 4.9. Let n ∈ N, Ω ⊂ Rn be a Lipschitz bounded open set and s ∈ (0, 1).
For all non-resonant q ∈ L∞(Ω), the Fréchet derivative Λ′(q) is injective, i.e.

Λ′(q)r
fin
= 0 if and only if Λ′(q)r = 0 if and only if r = 0.

Proof. This follows immediately from Theorem 4.8.

4.4. Inclusion detection by linearized monotonicity tests. In this section
we will study the inclusion detection (or shape reconstruction) problem of determining
regions where a non-resonant potential q ∈ L∞(Ω) changes from a known non-resonant
reference potentials q0 ∈ L∞(Ω), i.e., we aim to reconstruct the support q − q0 by
comparing Λ(q) with Λ(q0). q0 may describe a background coefficient, and q denotes
the coefficient function in the presence of anomalies or scatterers.

We will generalize the results in [39] and show that the support of q − q0 can be
reconstructed with linearized monotonicity tests [47, 25]. These linearized tests only
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utilize the solution of the fractional Schrödinger equation with the reference coefficient
function q0 ∈ L∞(Ω). They do not require any other special solutions of the equation.

In all of the following let n ∈ N, Ω ⊂ Rn be a Lipschitz bounded open set, s ∈ (0, 1),
and let q0, q ∈ L∞(Ω) be non-resonant.

For a measurable subset M ⊆ Ω, we introduce the testing operator TM : H(Ωe) →
H(Ωe)

∗ by setting TM := Λ′(q0)χM . i.e.,

〈TMF,G〉 :=

ˆ
M

Sq0(F )Sq0(G)dx for all F,G ∈ H(Ωe), (4.7)

where Sq0 : H(Ωe)→ Hs(Rn) denotes the solution operator as in as in Lemma 4.6.

The following theorem shows that we can find the support of q − q0 by shrinking
closed sets, cf. [47, 28].

Theorem 4.10. For each closed subset C ⊆ Ω,

supp(q − q0) ⊆ C,
if and only if ∃α > 0 : −αTC ≤d(q0)+d(q) Λ(q)− Λ(q0) ≤d(q) αTC ,
if and only if ∃α > 0 : −αTC ≤fin Λ(q)− Λ(q0) ≤fin αTC .

Hence,

supp(q − q0)

=
⋂
{C ⊆ Ω closed : ∃α > 0 : −αTC ≤d(q0)+d(q) Λ(q)− Λ(q0) ≤d(q) αTC}

=
⋂
{C ⊆ Ω closed : ∃α > 0 : −αTC ≤fin Λ(q)− Λ(q0) ≤fin αTC}.

Proof.

(a) Let supp(q − q0) ⊆ C. Then, by Corollary 4.7, there exists a constant c > 0
with

TC = Λ′(q0)χC ≥d(q) cΛ
′(q)χC .

Moreover, supp(q − q0) ⊆ C implies that for sufficiently large α > 0

−αcχC ≤ q − q0 ≤ αχC .

Using Corollary 4.7 and Theorem 4.8, we thus obtain

Λ(q) ≤d(q) Λ(q0) + Λ′(q0)(q − q0) ≤ Λ(q0) + Λ′(q0)αχC = Λ(q0) + αTC ,
Λ(q) ≥d(q0) Λ(q0) + Λ′(q)(q − q0) ≥ Λ(q0)− αcΛ′(q)χC ≥d(q) Λ(q0)− αTC .

(b) We will now show that

∃α > 0 : −αTC ≤fin Λ(q)− Λ(q0) ≤fin αTC (4.8)

implies supp(q − q0) ⊆ C.
Let α > 0 fulfill (4.8). Then we obtain from the first inequality in (4.8) with
Corollary 4.7

Λ′(q0)(−αχC) = −αTC ≤fin Λ(q)− Λ(q0) ≤fin Λ′(q0)(q − q0),
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so that Theorem 4.8 yields that

−αχC ≤ q − q0. (4.9)

It remains to show that the second inequality in (4.8) implies that

q − q0 ≤ 0 on Ω \ C. (4.10)

We argue by contradiction and assume that (4.10) is not true. Then there
exists δ > 0, and a measurable subset M ⊆ Ω \ C with positive measure so
that q − q0 ≥ δ on M .
We now use an idea from [41] to rewrite energy terms by repeated application
of the monotonicity relation, and define

q̃ := q + δχM − αχC + (q0 − q)χΩ\(M∪C) =

 q + δ in M ,
q − α in C,
q0 in Ω \ (M ∪ C),

and note that

q − q0 ≥ δχM − αχC ≥ δχM − αχC + (q0 − q)χΩ\(C∪M) = q̃ − q.

Using Theorem 3.3 and Remark 3.5, there exists a finite dimensional subspace
V ⊆ Hq̃(Ωe) so that for all F ∈ V ⊥ ⊆ Hq̃(Ωe)

〈(Λ(q)− Λ(q0))F, F 〉 ≥
ˆ

Ω

(q − q0)|uq|2 dx ≥
ˆ

Ω

(q̃ − q)|uq|2 dx

≥ 〈(Λ(q̃)− Λ(q))F, F 〉 ≥
ˆ

Ω

(q̃ − q)|uq̃|2 dx (4.11)

≥ δ
ˆ
M

|uq̃|2 dx− α
ˆ

Ω\M
|uq̃|2 dx,

where uq = Sq(F ), uq̃ = Sq̃(F ), and, for the last inequality, we assumed
without loss of generality that α > 0 is larger than ‖q − q0‖L∞(Ω). For
the last argument, note that the inequalities in (4.11) each hold on possibly
different subspaces of finite codimension in Hq̃(Ωe), so that V is obtained by
taking the orthogonal complement of the intersection of all these spaces.
We also define

q̃0 :=

{
q − α in C,
q0 in Ω \ C.

Since supp(q̃0− q0) ⊆ C, we can apply Theorem 3.4 to obtain a finite dimen-
sional subspace V ′ ⊆ Hq̃0,q0(Ωe) = Hq̃0(Ωe) (note that q0 is non-resonant),
and a constant c > 0, so that for all F ∈ V ′⊥ ⊆ Hq̃0(Ωe)

〈TCF, F 〉 =

ˆ
C

|uq0 |2 dx ≤ c
ˆ
C

|uq̃0 |2 dx,

where uq0 = Sq0(F ), uq̃0 = Sq̃0(F ). Hence, the second inequality in (4.8)
implies that

c

ˆ
C

|uq̃0 |2 dx ≥ δ
ˆ
M

|uq̃|2 dx− α
ˆ

Ω\M
|uq̃|2 dx (4.12)
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for all F ∈ W⊥ ⊆ Hq̃0,q̃(Ωe), where W ⊆ Hq̃0,q̃(Ωe) is a finite dimensional
subspace. But supp(q̃ − q̃0) ⊆ M , so that the result on simultaneously lo-
calized potentials in Theorem 3.11 (with Theorem 3.11 applied to the herein
constructed subspace W ) yields the existence of a sequence {F k}k∈N ⊆W⊥ ⊆
Hq̃0,q̃(Ωe), so that the corresponding solutions ukq̃0 = Sq̃0(F k), ukq̃ = Sq̃(F

k),
fulfillˆ

M

|ukq̃ |2 dx→∞,
ˆ

Ω\M
|ukq̃0 |

2 dx→ 0, and

ˆ
Ω\M

|ukq̃ |2 dx→ 0,

which contradicts (4.12) since C ⊆ Ω\M . Hence, (4.10) and thus the assertion
is proven.

We also extend the simpler results for the definite case, where either q ≥ q0 or q ≤
q0 holds almost everywhere in Ω, from [39] to general (but non-resonant) L∞(Ω)-
potentials. We will show that it suffices to test open balls to reconstruct the inner
support (for q ≥ q0), resp., a set between the support of q−q0 and its inner support (for
q ≤ q0), where, as in [47, Section 2.2], the inner support inn supp(r) of a measurable
function r : Ω → R is defined as the union of all open sets U on which the essential
infimum of |κ| is positive.

Theorem 4.11.

(a) Let q ≤ q0. For every open set B ⊆ Ω and every α > 0

q ≤ q0 − αχB implies Λ(q) ≤d(q) Λ(q0)− αTB , (4.13)

Λ(q) ≤fin Λ(q0)− αTB implies B ⊆ supp(q − q0). (4.14)

Hence,

inn supp(q − q0)

⊆
⋃
{B ⊆ Ω open ball : ∃α > 0 : Λ(q) ≤d(q) Λ(q0)− αTB}

⊆
⋃
{B ⊆ Ω open ball : ∃α > 0 : Λ(q) ≤fin Λ(q0)− αTB}

⊆ supp(q − q0).

(b) Let q ≥ q0. For every open set B ⊆ Ω and every α > 0

q ≥ q0 + αχB implies ∃α̃ > 0 : Λ(q) ≥fin Λ(q0) + α̃TB , (4.15)

Λ(q) ≥fin Λ(q0) + αTB implies q ≥ q0 + αχB . (4.16)

Hence,

inn supp(q − q0) =
⋃
{B ⊆ Ω open ball : ∃α > 0 : Λ(q) ≥fin Λ(q0) + αTB}.

Proof.

(a) If q1 ≤ q0 − αχB , then we obtain using Theorem 4.8, and Corollary 4.7 that

Λ(q)− Λ(q0) ≤d(q) Λ′(q0)(q − q0) ≤ −αΛ′(q0)χB = −αTB ,
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so that (4.13) is proven. On the other hand, if Λ(q) ≤fin Λ(q0) − αTB then
we obtain from Theorem 4.8, and Corollary 4.7, that there exists c > 0 with

αΛ′(q0)χB = αTB ≤fin Λ(q0)− Λ(q) ≤fin Λ′(q)(q0 − q)
≤ ‖q0 − q‖L∞(Ω)Λ

′(q)χsupp(q−q0)

≤fin c‖q0 − q‖L∞(Ω)Λ
′(q0)χsupp(q−q0),

and that this implies

αχB ≤ c‖q0 − q‖L∞(Ω)χsupp(q−q0),

so that (4.14) is proven.
(b) Let q ≥ q0+αχB . By Theorem 3.3, there exists a subspace V ⊆ Hq0+αχB

(Ωe)
with dim(V ) ≤ d(q0 + αχB) so that

〈Λ(q)F, F 〉 ≥ 〈Λ(q0 + αχB)F, F 〉 for all F ∈ V ⊥ ⊆ Hq0+αχB
(Ωe).

Moreover, by Theorem 3.4 there also exists a subspace V ′ ⊆ Hq0+αχB
(Ωe)

with dim(V ′) ≤ d(q0) and a constant c > 0 so that

〈(Λ(q0 + αχB)− Λ(q0))F, F 〉 ≥ α
ˆ
B

|uq0+αχB
|2 dx

≥ αc
ˆ
B

|uq0 |2 dx = cα〈TBF, F 〉

for all F ∈ V ′⊥ ⊆ Hq0+αχB
, where uq0+αχB

= Sq0+αχB
(F ), and uq0 = Sq0(F ).

Hence

〈(Λ(q)− Λ(q0))F, F 〉 ≥ cαTB ,

holds for all F ∈ (V +V ′)⊥ ⊆ Hq0+αχB
(Ωe), which is a subspace of codimen-

sion dim(Nq0+αχB
) in H(Ωe). Hence,

Λ(q) ≥d Λ(q0) + cαTB with d = d(q) + d(q0 + αχB) + dim(Nq0+αχB
),

which shows (4.15). On the other hand, Λ(q) ≥fin Λ(q0) + αTB implies by
Corollary 4.7

αΛ′(q0)χB = αTB ≤fin Λ(q)− Λ(q0) ≤fin Λ′(q0)(q − q0),

so that it follows from Theorem 4.8 that

αχB ≤ q − q0,

which proves (4.15).

5. Uniqueness and Lipschitz stability for the fractional Calderón prob-
lem with finitely many measurements. In this section let Q ⊆ L∞(Ω) be a finite
dimensional subspace and, with a fixed constant a > 0, let

Q[−a,a] := {q ∈ Q : ‖q‖L∞(Ω) ≤ a}.
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We will show that a sufficiently high number of measurements of the DtN operator
uniquely determines a potential in Q[−a,a] and prove a Lipschitz stability result.

To formulate our result, we denote the orthogonal projection operators from H(Ωe)
to a subspace H by PH , i.e. PH is the linear operator with

PH : H(Ωe)→ H, PHF :=

{
F if F ∈ H,
0 if F ∈ H⊥ ⊆ H(Ωe).

P ′H : H∗ → H(Ωe)
∗ denotes the dual operator of PH . For possibly resonant potentials

q1, q2 ∈ L∞(Ω), the subspace H might contain non-admissible Dirichlet boundary
values, so we also require the orthogonal projection Pq1q2 := PHq1,q2

(Ωe).

Theorem 5.1. For each sequence of subspaces

H1 ⊆ H2 ⊆ H3 ⊆ ... ⊆ H(Ωe), with
⋃
l∈N

Hl = H(Ωe),

there exists k ∈ N, and c > 0, so that∥∥P ′Hl
P ′q1q2 (Λ(q2)− Λ(q1))Pq1q2PHl

∥∥
L(H(Ωe),H(Ωe)∗)

≥ 1

c
‖q2 − q1‖L∞(Ω) (5.1)

for all q1, q2 ∈ Q[−a,a] and all l ≥ k.

Before we prove Theorem 5.1, let us briefly remark on its implications for some special
cases.

Remark 5.2. Theorem 5.1 implies that there exists c > 0 so that

‖Λ(q2)− Λ(q1)‖L(Hq1,q2
(Ωe),H(Ωe)∗) ≥ c‖q2 − q1‖L∞(Ω) for all q1, q2 ∈ Q[−a,a].

If {F1, F2, . . .} ⊆ H(Ωe) is a set of Dirichlet values whose linear span is dense in
H(Ωe), then Theorem 5.1 implies that there exists k ∈ N, so that every non-resonant
q ∈ Q[−a,a] is uniquely determined by the finitely many entries of the matrix

A(q) = (〈Λ(q)Fi, Fj〉)i,j=1,...,k ∈ Rk×k.

Moreover, if {F1, F2, . . .} is an orthonormal (Schauder) basis of H(Ωe), then there
exists k ∈ N, and c > 0, so that

‖A(q2)−A(q1)‖2 ≥ c‖q2 − q1‖L∞(Ω) for all non-resonant q ∈ Q[−a,a],

where ‖A‖2 is the spectral norm of the matrix A ∈ Rk×k.

The general outline of the proof of Theorem 5.1 is as follows. In Lemma 5.3, we
will derive a number of subsets M1, . . . ,Mm ⊆ Ω, on which normalized potential
differences can be estimated from above or below. Then we define for each of these sets
a special potential q̂j ∈ L∞(Ω), which is large on Mj and small on Ω\Mj , and show (in
Lemma 5.4) that certain energy terms for the solutions for an arbitrary q ∈ L∞(Ω)
can always be estimated by solutions corresponding to these special potentials q̂j .
Lemma 5.5 gives a bound on the maximal codimension of the subspaces arising from
resonances, and Lemma 5.6 shows the existence of sufficiently many (depending on

the maximal codimension) Dirichlet boundary values F̂ij to control the energy terms
arising from the special potentials q̂j . The constant c > 0 of the Lipschitz stability
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estimate (5.1) and the subspace index k ∈ N for Theorem 5.1, will be defined in

Lemma 5.6 via the maximal norm of the finitely many Dirichlet values F̂ij , and

the possibility of sufficiently well approximating F̂ij in Hk. Finally, we prove that
Theorem 5.1 holds with these constants c > 0 and k ∈ N.

Let us stress that this construction (the sets M1, . . . ,Mm, the finitely many special

potentials q̂j , the dimension bounds, the finitely many special Dirichlet data F̂ij , and
thus the constant c > 0 of (5.1), and the subspace index k ∈ N) do only depend on
the a-priori data Q[a,b] and Ω ⊆ Rn.

To motivate the first lemma, let us note that a piecewise constant function on some
partition of Ω with L∞(Ω)-norm equal to 1, must be either 1 or −1 on at least one
of the subsets of the partition, which is a useful property for applying monotonicity
estimates, cf., e.g., [41]. The following lemma generalizes this property to our arbitrary
finite-dimensional subspace Q ⊂ L∞(Ω).

Lemma 5.3. Let Q1 := {r ∈ Q : ‖r‖L∞(Ω) = 1}. There exists a family of measurable
subsets M1, . . . ,Mm, m ∈ N, with positive measure, so that for all r ∈ Q1, there exists
j ∈ {1, . . . ,m} with either r|Mj ≥ 1

2 , or r|Mj ≤ − 1
2 . Hence, either

r ≥ 1

2
χMj

− χΩ\Mj
, or − r ≥ 1

2
χMj

− χΩ\Mj
.

Proof. We argue by compactness. For r ∈ Q1, ‖r‖L∞(Ω) = 1 implies that at least one

of the sets r−1(] 1
2 ,

3
2 [) or r−1(]− 3

2 ,−
1
2 [) must be of positive measure. In the first case

we define

Mr := r−1
(]

1
2 ,

3
2

[)
, Or :=

{
r̃ ∈ L∞(Ω) : ‖r̃|Mr

− χMr
‖L∞(Mr) <

1
2

}
,

and otherwise we define

Mr := r−1
(]
− 3

2 ,−
1
2

[)
, Or :=

{
r̃ ∈ L∞(Ω) : ‖r̃|Mr

+ χMr
‖L∞(Mr) <

1
2

}
.

Then Mr has positive measure, Or is an open subset of L∞(Ω), and r ∈ Or implies
that

Q1 ⊆
⋃
r∈Q1

Or.

By compactness, there exist r1, . . . , rm ∈ Q1 with Q1 ⊆
⋃
j=1,...,mOrj , so that the

assertion follows with Mj := Mrj , j = 1, . . . ,m.

We now use the idea from the constructive Lipschitz stability proof in [41, Section 5]
to replace general potentials from Q[−a,a] by a finite number of special potentials.

Lemma 5.4. With the constant a > 0 and the sets M1, . . . ,Mm from Lemma 5.3, we
define

q̂j ∈ L∞(Ω) by q̂j := 2aχMj − 7aχΩ\Mj
, j = 1, . . . ,m.

If q ∈ Q[−a,a] and r ∈ Q1 fulfills r ≥ 1
2χMj

− χΩ\Mj
with j ∈ {1, . . . ,m}, then there

exists a subspace V ⊆ Hq,q̂j (Ωe) with dimV ≤ d(q) + d(q̂j), so that

ˆ
Ω

r|Sq(F )|2 dx ≥
ˆ

Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
|Sq̂j (F )|2 dx for all F ∈ V ⊥ ⊆ Hq,q̂j (Ωe).
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Proof. Let q ∈ Q[−a,a] and r ∈ Q1 fulfill r ≥ 1
2χMj

−χΩ\Mj
with j ∈ {1, . . . ,m}. Then

we obtain from Remark 3.5 a subspace V ⊆ Hq,q̂j (Ωe) with dimV ≤ d(q) + d(q̂j), so

that for all F ∈ V ⊥ ⊆ Hq,q̂j (Ωe)ˆ
Ω

(q̂j − q)|Sq̂j (F )|2 dx ≤ 〈(Λ(q̂j)− Λ(q))F, F 〉 ≤
ˆ

Ω

(q̂j − q)|Sq(F )|2 dx.

Observe that

aχMj
− 8aχΩ\Mj

≤ q̂j − q ≤ 3aχMj
− 6aχΩ\Mj

,

then it follows for all F ∈ V ⊥ ⊆ Hq,q̂j (Ωe)ˆ
Ω

r|Sq(F )|2 dx ≥
ˆ

Ω

(
1

2
χMj

− χΩ\Mj

)
|Sq(F )|2 dx

=
1

6a

ˆ
Ω

(
3aχMj

− 6aχΩ\Mj

)
|Sq(F )|2 dx ≥ 1

6a

ˆ
Ω

(q̂j − q) |Sq(F )|2 dx

≥ 1

6a

ˆ
Ω

(q̂j − q)|Sq̂j (F )|2 dx ≥ 1

6a

ˆ
Ω

(
aχMj

− 8aχΩ\Mj

)
|Sq̂j (F )|2 dx

=

ˆ
Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
|Sq̂j (F )|2 dx.

The next lemma shows that the codimension of the subspaces where the DtN operators
are defined, and the subspaces where the monotonicity relations hold, can be uniformly
bounded in Q[−a,a].

Lemma 5.5. There exists numbers d,N ∈ N, so that

dim(Nq) ≤ N and d(q) ≤ d for all q ∈ Q[−a,a],

where Nq is defined by (2.5) and d(q) is given by Definition 3.2.

Proof. The first assertion follows from Theorem 3.6(b) with a standard compactness
argument. The second assertion follows from Theorem 3.6(a) with d := d(−a), where
d(−a) is the number defined in Definition 3.2 for q ≡ −a.

Our last lemma demonstrates how to control the energy terms in Lemma 5.4, and
defines the Lipschitz stability constant c > 0 and the subspace index k ∈ N, with
which the assertion of Theorem 5.1 holds.

Lemma 5.6. Let d,N ∈ N be the numbers given in Lemma 5.5, then we have

(a) For all j ∈ {1, . . . ,m}, there exist Dirichlet data F̂i,j ∈ Hq̂j (Ωe) with
ˆ

Ω

(
1

6
χMj −

4

3
χΩ\Mj

)
|Sq̂j (F̂i,j)|2 dx ≥ 2, (5.2)

ˆ
Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
Sq̂j (F̂i,j)Sq̂j (F̂i′,j) dx = 0, (5.3)(

F̂i,j , F̂i′,j

)
H(Ωe)

= 0, (5.4)

for all i, i′ = 1, . . . , 3d+ 2N + 1 with i′ 6= i. We set

c := 2 max
{
‖F̂i,j‖2

H(Ωe) : j = 1, . . . ,m, i = 1, . . . , 3d+ 2N + 1
}
.
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(b) For δ := 1
3d+2n+2 , and for each sequence of subspaces

H1 ⊆ H2 ⊆ H3 ⊆ ... ⊆ H(Ωe), with
⋃
l∈N

Hl = H(Ωe),

there exists k ∈ N, and Fi,j ∈ Hk ∩Hq̂j (Ωe), so that

ˆ
Ω

(
1

6
χMj −

4

3
χΩ\Mj

)
|Sq̂j (Fi,j)|2 dx ≥ 2− δ, (5.5)∣∣∣∣ˆ

Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
Sq̂j (Fi,j)Sq̂j (Fi′,j) dx

∣∣∣∣ ≤ δ, (5.6)∣∣∣(Fi,j , Fi′,j)H(Ωe)

∣∣∣ ≤ c

2
δ, (5.7)

and ‖Fi,j‖2
H(Ωe) ≤ (1 + δ) c2 for all j = 1, . . . ,m, and all i, i′ = 1, . . . , 3d+ 2N + 1

with i′ 6= i.
(c) For all j = 1, . . . ,m, all subspaces V ⊆ Hq̂j (Ωe), with dimV ≤ 3d+ 2N , contain

an element Fj ∈ V ⊥ ∩Hk with

ˆ
Ω

(
1

6
χMj −

4

3
χΩ\Mj

)
|Sq̂j (Fj)|2 dx ≥ 1, and ‖Fj‖2

H(Ωe) ≤ c.

Proof. Let j ∈ {1, . . . ,m}.
(a) Theorem 3.10 yields that every subspace V ⊥ of finite codimension in Hq̂j (Ωe)

contains F that fulfill the property (5.2). Hence, for i = 1, we can apply The-

orem 3.10 on Hq̂j (Ωe) to obtain F̂1,j , and for i > 1, we obtain F̂i,j by applying
Theorem 3.10 on the subspace{

F̂ ∈ Hq̂j (Ωe) :

ˆ
Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
Sq̂j (F̂ )Sq̂j (F̂i′,j) dx = 0,

and
(
F̂ , F̂i′,j

)
H(Ωe)

= 0 for all i′ ∈ {1, . . . , i− 1}
}
,

which is obviously of finite codimension in Hq̂j (Ωe), and this shows (5.3) and
(5.4).

(b) From the finite codimension of Hq̂j (Ωe) in H(Ωe), we obtain that
⋃
l∈NHl ∩

Hq̂j (Ωe) is dense in Hq̂j (Ωe). Hence, the assertion (b) follows from the continuity
of the solution operator Sq̂j .

(c) Since V ⊆ Hq̂j (Ωe) has dimV ≤ 3d+ 2N , there exists a non-trivial linear combi-
nation

0 6= Fj :=

3d+2N+1∑
i=1

λiFi,j ∈ V ⊥ ∩Hk, with coefficient λi ∈ R,

where we normalize the coefficients so that
∑3d+2N+1
i=1 |λi|2 = 1 and k ∈ N is the

same number given as in (b). Then,

3d+2N+1∑
i,i′=1

|λi| |λi′ | ≤ 3d+ 2N + 1.
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By using (5.5), (5.6) and (5.7), a simple calculation shows that
ˆ

Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
|Sq̂j (Fj)|2 dx ≥ 2− (3d+ 2N + 2)δ = 1,

‖Fj‖2
H(Ωe) ≤ (1 + (3d+ 2N + 2)δ)

c

2
= c.

This completes the proof.

Now, we can prove Theorem 5.1.

Proof of Theorem 5.1. Let q1, q2 ∈ Q[−a,a] with q1 6= q2, and set r := q2−q1
‖q2−q1‖L∞(Ω)

.

Then, by Lemma 5.3, there exist j ∈ {1, . . . ,m} with either

(a) r ≥ 1

2
χMj

− χΩ\Mj
, or (b) − r ≥ 1

2
χMj

− χΩ\Mj
.

In case (a), Theorem 3.3 yields that there exists a subspace V ′ ⊆ Hq1,q2(Ωe) of
dimension d(q1), so that

〈(Λ(q2)− Λ(q1))F, F 〉
‖q2 − q1‖L∞(Ω)

≥
ˆ

Ω

r|Sq2(F )|2 dx for all F ∈ (V ′)⊥ ⊆ Hq1,q2(Ωe).

Also, Lemma 5.4 yields a subspace V ′′ ⊆ Hq2,q̂j (Ωe) with dimV ′′ ≤ d(q2) + d(q̂j), so
thatˆ

Ω

r|Sq2(F )|2 dx ≥
ˆ

Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
|Sq̂j (F )|2 dx ∀F ∈ (V ′′)⊥ ⊆ Hq2,q̂j (Ωe).

Then V := V ′ + V ′′ + Hq1(Ωe)
⊥ + Hq2(Ωe)

⊥ is a subspace with dimV ≤ 3d + 2N ,
and, by Lemma 5.6(c), there exists Fj ∈ V ⊥ ∩Hk with ‖Fj‖2

H(Ωe) ≤ c, and

ˆ
Ω

r|Sq2(Fj)|2 dx ≥
ˆ

Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
|Sq̂j (Fj)|2 dx ≥ 1.

Since Fj ∈ V ⊥∩Hk, and the definition of V implies that V ⊥ ⊆ Hq̂j (Ωe) is a subspace
of Hq1,q2(Ωe), we have that Pq1q2PHl

Fj = Pq1q2Fj = Fj for all l ≥ k. Hence, it follows
from the self-adjointness of P ′Hl

P ′q1q2 (Λ(q2)− Λ(q1))Pq1q2PHl
that for all l ≥ k,

‖P ′Hl
P ′q1q2 (Λ(q2)− Λ(q1))Pq1q2PHl

‖L(H(Ωe),H(Ωe)∗)

‖q2 − q1‖L∞(Ω)

= sup
0 6=F∈H(Ωe)

|〈(Λ(q2)− Λ(q1))Pq1q2PHl
F, Pq1q2PHl

F 〉|
‖q2 − q1‖L∞(Ω) ‖F‖2

H(Ωe)

≥ |〈(Λ(q2)− Λ(q1))Fj , Fj〉|
‖q2 − q1‖L∞(Ω) ‖Fj‖2

H(Ωe)

≥ 1

‖Fj‖2
H(Ωe)

ˆ
Ω

r|Sq2(Fj)|2 dx

≥ 1

‖Fj‖2
H(Ωe)

ˆ
Ω

(
1

6
χMj

− 4

3
χΩ\Mj

)
|Sq̂j (Fj)|2 dx ≥ 1

‖Fj‖2
H(Ωe)

≥ 1

c
.

In case (b), Theorem 3.3 yields that there exists a subspace V ′ ⊆ Hq1,q2(Ωe) with
dimension d(q2), so that

|〈(Λ(q2)− Λ(q1))F, F 〉|
‖q2 − q1‖L∞(Ω)

≥ −
ˆ

Ω

r|Sq1(F )|2 dx for all F ∈ (V ′)⊥ ⊆ Hq1,q2(Ωe),

so that the assertion follows analogously by using Lemma 5.4 with −r instead of r.
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Bulletin des Sciences Mathématiques, 136(5):521–573, 2012.

[21] S. Eberle, B. Harrach, H. Meftahi, and T. Rezgui. Lipschitz stability estimate and reconstruc-
tion of Lamé parameters in linear elasticity. arXiv preprint arXiv:1906.02194, 2019.

34



[22] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, second edition, 2010.

[23] F. Frühauf, B. Gebauer, and O. Scherzer. Detecting interfaces in a parabolic-elliptic problem
from surface measurements. SIAM Journal on Numerical Analysis, 45(2):810–836, 2007.

[24] T. Furuya. The monotonicity based method for the inverse crack scattering problem. arXiv
preprint arXiv:1904.03655, 2019.

[25] H. Garde. Comparison of linear and non-linear monotonicity-based shape reconstruction using
exact matrix characterizations. Inverse Problems in Science and Engineering, pages 1–18,
2017.

[26] H. Garde. Reconstruction of piecewise constant layered conductivities in electrical impedance
tomography. arXiv preprint arXiv:1904.07775, 2019.

[27] H. Garde and S. Staboulis. Convergence and regularization for monotonicity-based shape
reconstruction in electrical impedance tomography. Numerische Mathematik, 135(4):1221–
1251, 2017.

[28] H. Garde and S. Staboulis. The regularized monotonicity method: Detecting irregular indefinite
inclusions. Inverse Probl. Imaging, 13(1):93–116, 2019.

[29] B. Gebauer. Localized potentials in electrical impedance tomography. Inverse Probl. Imaging,
2(2):251–269, 2008.

[30] T. Ghosh, Y.-H. Lin, and J. Xiao. The Calderón problem for variable coefficients nonlocal
elliptic operators. Communications in Partial Differential Equations, 42(12):1923–1961,
2017.
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