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Abstract. Given a conformally transversally anisotropic manifold (M, g), we

consider the semilinear elliptic equation

(−∆g + V )u+ qu2 = 0 on M.

We show that an a priori unknown smooth function q can be uniquely de-
termined from the knowledge of the Dirichlet-to-Neumann map associated to

the equation. This extends the previously known results of the works [FO20FO20,
LLLS21aLLLS21a]. Our proof is based on over-differentiating the equation: We lin-
earize the equation to orders higher than the order two of the nonlinearity

qu2, and introduce non-vanishing boundary traces for the linearizations. We

study interactions of two or more products of the so-called Gaussian quasi-
mode solutions to the linearized equation. We develop an asymptotic calculus

to solve Laplace equations, which have these interactions as source terms.
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1. Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3 with
a smooth boundary. We assume that (M, g) is conformally transversally anisotropic
(CTA), that is to say,

M ⋐ I ×M0, (1.1)

and the metric g has a smooth extension to R×M0 so that

g = c(x1, x
′) (dx1 ⊗ dx1 + g0(x

′)) , (1.2)

where (M0, g0) is a compact (n − 1)-dimensional Riemannian manifold with a
smooth boundary ∂M0 [DSFKSU09DSFKSU09]. Let q, V be real-valued smooth functions
on M and consider the semi-linear elliptic equation:{

(−∆g + V )u+ qu2 = 0 in M,

u = f on ∂M.
(1.3)

We make the standing assumption that 0 is not a Dirichlet eigenvalue for the
operator −∆g +V . As shown in [LLLS21aLLLS21a, Proposition 2.1], the Dirichlet problem
(1.31.3) is well-posed for sufficiently small Dirichlet data f . Precisely, given any α ∈
(0, 1), there exists C, δ > 0 such that for all

f ∈ Uδ =
{
h ∈ C2,α(∂M) | ∥f∥C2,α(∂M) ≤ δ

}
,

the Dirichlet problem (1.31.3) has a unique solution u in the set{
w ∈ C2,α(M) | ∥w∥C2,α(M) ≤ Cδ

}
. (1.4)

Moreover,

∥u∥C2,α(M) ≤ C∥f∥C2,α(∂M).

We define the associated Dirichlet-to-Neumann map (DN map in short) for (1.31.3)
by

Λqf = ∂νu|∂M for f ∈ Uδ,

where u is the unique solution to (1.31.3) that lies in the set (1.41.4) and ν denotes the
unit outward normal vector field on ∂M .

In this paper, we consider the following inverse problem: Given an a priori fixed
CTA manifold (M, g) and a smooth zeroth order coefficient V , is it possible to
recover an a priori unknown function q given the knowledge of the map Λq? We
show that this is indeed possible under the following minor technical assumption
on the transversal manifold (M0, g0):

(H1) Given any p ∈M0, there exists a non-tangential geodesic passing through p
that has no self-intersections.

Precisely, we prove the following uniqueness result.

Theorem 1.1. Let (M, g) be a conformally transversally anisotropic manifold of
the form (1.11.1)–(1.21.2) and suppose that (H1) is satisfied. Let V ∈ C∞(M) and
assume that zero is not a Dirichlet eigenvalue for −∆g + V on M . Let q1, q2 ∈
C∞(M) and assume that for some δ > 0 sufficiently small and for any f ∈ Uδ

Λq1f = Λq2f.

Then

q1 = q2 in M.

We will provide a discussion of the geometric assumption (H1) (and the possibil-
ity to remove it entirely) as well as the main novelties of Theorem 1.11.1 in Section 1.21.2.
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1.1. Previous literature. Inverse problems for non-linear partial differential equa-
tions is a topic with a vast literature. When the manifold is assumed to be Eu-
clidean, the first result goes back to the work Isakov and Sylvester in [IS94IS94] where
the authors considered the equation

−∆u+ F (x, u) = 0,

on a Euclidean domain of dimension greater than or equal to three and studied
the problem of recovering a class of non-linear functions F (x, u) that satisfy a
homogeneity property as well as certain monotonicity and growth conditions on its
partial derivatives. The analogous problem in dimension two was first solved by
Isakov and Nachman in [IN95IN95]. For further results in Euclidean geometries, we refer
the reader to the works [Sun04Sun04, Sun10Sun10, LLLS21aLLLS21a, LLLS21bLLLS21b, KU20cKU20c, HL22HL22] in the
context semilinear elliptic equations, to [Sun96Sun96, SU97SU97, HS02HS02, MnU20MnU20, LLS20LLS20, CF20CF20,
CFK+21CFK+21, CF21CF21, CNV19CNV19, Sha21Sha21] in the context of quasilinear elliptic equations and
to [LL22aLL22a, Lin21Lin21] for fractional semilinear elliptic equations. We also mention the
early work [Isa93Isa93] and the work [KU20aKU20a] on similar results on Euclidean geometries
for parabolic equations.

Most of the results discussed above are based on the idea of higher order lin-
earization of nonlinear equations. The idea of a first or a second order linearization
was initiated by in [Isa93Isa93, IS94IS94] and the idea of higher order linearizations was intro-
duced and developed fully by Kurylev, Lassas and Uhlmann [KLU18KLU18] in the context
of nonlinear hyperbolic equations over Lorentzian geometries. There, the authors
showed that in geometric settings, it is possible to solve certain classes of inverse
problems for nonlinear hyperbolic equations in a much broader geometric general-
ity compared to analogous inverse problems stated for linear hyperbolic equations.
We refer the reader to the works [WZ19WZ19, LUW17LUW17, LUW18LUW18, UZ21bUZ21b, HUZ21HUZ21, UZ21aUZ21a,
FLO21FLO21, LLPMT21LLPMT21] for more examples of inverse problems for nonlinear hyperbolic
equations solved in broad Lorentzian geometries. We also point out the simultane-
ous recovery results [LLL21LLL21, LLLZ21LLLZ21] in inverse problems for semilinear parabolic
and hyperbolic equations in the Euclidean space.

Recently, the works [FO20FO20, LLLS21aLLLS21a] introduced a similar higher order lineariza-
tion approach in the context of semilinear elliptic equations on CTA manifolds. We
also refer the reader to the more recent works [KU20bKU20b, LLST22LLST22] on study of sim-
ilar inverse problems for nonlinear elliptic equations stated on CTA manifolds. In
[FO20FO20, LLLS21aLLLS21a], it was proved that for elliptic semilinear equations of the form

−∆gu+ F (x, u) = 0 on M, (1.5)

with non-linear functions F (x, z) that depend analytically on z, the problem of
recovering the differentials ∂kzF (x, 0) with k ≥ 3 is equivalent to the question of
injectivity of products of four solutions to the linearized equation

(−∆g + V )u = 0 on M.

This density property was subsequently proved in [FO20FO20, LLLS21aLLLS21a] without im-
posing any geometric assumptions on the transversal manifold (M0, g0), through
studying products of four Gaussian quasimode solutions to the linear equation.
The underlying theme discovered in the latter works is that one can solve inverse
problems for nonlinear elliptic equations in CTA manifolds without imposing ad-
ditional strong assumptions on the transversal manifold (M0, g0). This is in sharp
contrast to the study of inverse problems for linear elliptic equations on CTA mani-
folds [DSFKSU09DSFKSU09, FKLS16FKLS16] where additional strong assumptions must be imposed
on the transversal manifold such as simplicity or existence of a strictly convex
function on (M0, g0).
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In this paper, we have considered an extension of [FO20FO20, LLLS21aLLLS21a] that allows
non-linearities F (x, u) in (1.51.5) that have a quadratic term with respect to the u-
variable. As far as we know, the only previous result that is concerned with recovery
of quadratic non-linear functions on CTA manifolds is [FO20FO20, Theorem 2] in the
context of three and four dimensional CTA manifolds under additional geometric
assumptions on the transversal manifold.

1.2. Outline of the main novelties. One of the key themes in the recent works
that study inverse problems for nonlinear equations of the form

−∆gu+ qum = 0, on M,

on CTA manifolds (M, g) with any integer m ≥ 2 is the reduction from the problem
of recovering the unknown coefficient q to the density problem of showing that the
products of m+1 harmonic functions on (M, g) forms a dense set in L∞(M). This
reduction is based on an m-fold linearization argument for the nonlinear equation.

When m ≥ 3, the latter density problem involves the product of four harmonic
functions. Following the arguments of [LLLS21aLLLS21a] and choosing harmonic functions
based on Gaussian quasimode constructions near four intersecting geodesics on the
transversal factor (M0, g0), the density property can be proved. The harmonic
functions are called complex geometric optics solutions (CGOs). However, when
m = 2, one only obtains products of three CGOs corresponding to the Gaussian
quasimodes and this is not a sufficiently reach set to conclude our desired density
claim.

In this paper, we introduce a method to solve the coefficient determination prob-
lem concerning the casem = 2, by considering further linearizations of the equation
up to fourth order, rather than just considering second order linearizations of the
equation. In this sense we over-differentiate the nonlinearity, allowing us to implic-
itly obtain products of more harmonic functions. Over-differentiation of nonlinear
equations appears in many of the works on inverse problems associated to nonlinear
hyperbolic equations, see for example [KLU18KLU18, LUW17LUW17, LUW18LUW18, WZ19WZ19, HUZ21HUZ21].
For example, the seminal work [KLU18KLU18] considers a wave equation in the presence
of a quadratic nonlinear term and the interaction of linearized solutions is studied
through Fourier integral operators, microlocal analysis and conormal singularities.
The paper considers fourth order linearization which can be viewed as twice over-
differentiating the equation. Heuristically, this is due to the fact that the fourth
order of linearization is roughly the first instance where information propagating
from a point source type singularity in the interior can be observed at the boundary.

To the best of our knowledge, over-differentiation of elliptic nonlinear equations
has not been treated before in the literature since there is no a calculus for studying
the interaction of Gaussian quasimodes. By this we mean studying equations of
the form

−∆gw = fu1u2 on M, (1.6)

where u1 and u2 are two CGOs corresponding to Gaussian quasimodes. In our
paper, we show that the equation (1.61.6) can be solved asymptotically with respect
to the semi-classical parameter of the Gaussian quasimodes and in doing so we
obtain precise closed form expressions for w modulo a small correction term, see
Section 44 for details. This will be partly based on a Wentzel–Kramers–Brillouin
(WKB in short) type approximation for w as well as a new Carleman estimate on
CTA manifolds with boundary terms, see Lemma 4.64.6. Up to correction terms and
normalizations, this means that if the CGOs u1 and u2 are of the form eτψ(a0 +
a−1/τ + · · · ), there is a solution w to (1.61.6) of the form

eτΨ
(
b−2/τ

2 + b−3/τ
3 + · · ·

)
,
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where Ψ is the sum of the phase functions of u1 and u2 and the coefficients b−j can
be determined from the amplitudes of u1 and u2.

We mention that our Carleman estimate can have future applications in other
problems that require a propagation of smallness argument from the boundary
on CTA manifolds. Our calculus for solutions of equations of the type (1.61.6) can
be naturally modified to apply for other equations. For example, it provides an
alternative to using singular solutions and the theory of Fourier integral operators
for inverse problems for hyperbolic equations. We refer to [HUZ21HUZ21] for a discussion
about the matter. We also mention that while we work in a geometric setting, our
over-differentiation method and calculus can have applications in studies of models
in Rn, where one is interested in highly localized solutions to nonlinear equations
in and outside inverse problems.

Let us also mention that as the correction term in our WKB analysis of w in
(1.61.6) has a non-vanishing trace on ∂M , we need to introduce a variant of the
higher order linearization method with a family of Dirichlet data that also depend
on additional powers of the involved small parameters (see Section 2.22.2 and also
Section 55). Instead of using boundary values of the form

∑
i ϵifi, which is standard

in the literature, we use for example boundary values of the form∑
i

ϵifi +
∑
i,j

ϵiϵjfij .

Here fi and fij are functions given on the boundary ∂M .
Finally, we remark that the assumption (H1) is only imposed in this paper in

order to simplify the presentation of the Gaussian quasimode solutions to the lin-
earized equation (2.42.4). This allows us to better convey the key ideas discussed
above without the additional need to discuss the additional technicality of ana-
lyzing self-intersections of geodesics. It is well known that Gaussian quasimodes
for equation (2.42.4) can also be constructed in the presence of self-intersections of
geodesics, see for example [FKLS16FKLS16].

1.3. Organization of the paper. The paper is organized as follows. In Section 22,
we reduce the setup of our study to a case where the conformal factor c in (1.21.2) of
the CTA manifold is constant 1. There we also review the higher order linearization
method, and derive the linearized equations and associated integral identities we
use. We review suitable Gaussian quasimodes for the first linearized equations
in Section 33. In Section 44, we find solution formulas for the special solutions of
the second and third linearized equations. In Section 55 we prove Theorem 1.11.1 by
utilizing these solutions. Finally, we prove a boundary determination result, derive
Carleman estimates and compute coefficients related to products of solutions in
Appendix.

2. Preliminaries

2.1. Reduction to the case c = 1. We show that for our purposes we can assume
without any loss in generality that c ≡ 1. This is standard, see e.g. [DSFKSU09DSFKSU09]
or [FO20FO20, Section 2.3]. To see this, let us define ĝ = (dx1)

2 + g so that g = cĝ.
Using the transformation law for changes of the Laplace-Beltrami operator under
conformal rescalings of the metric, we write

c
n+2
4 (−∆gu+ V u+ qu2) = −∆ĝv + V̂ v + q̂v2, (2.1)

where v = c
n−2
4 u, V̂ = cV − (c

n−2
4 ∆g c

−n−2
4 ) and q̂ = c−

n−2
2 q. This shows that

there exists a one to one correspondence between solutions to (1.31.3) with f ∈ Uδ
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and solutions to the following equation{
(−∆ĝ + V̂ )v + q̂v2 = 0, x ∈M

v = h, x ∈ ∂M
(2.2)

provided that ∥c−n−2
4 h∥C2,α(∂M) ≤ δ. Hence, the DN map for (1.31.3) determines the

DN map for (2.22.2). Thus the problem of unique recovery of q from the DN map for
(1.31.3) is equivalent to that of determining q̂ from the DN map for (2.22.2). With this
observation in mind, for the remainder of this paper and without loss of generality,
we assume that c ≡ 1 so that

g = dx1 ⊗ dx1 + g0.

2.2. Higher order linearization method with boundary values. In this sec-
tion, we discuss the higher order linearization method of equation (1.31.3). Our
method is slightly different from the, by now standard, one [LLLS21aLLLS21a, FO20FO20]. The
difference is that we include boundary terms, which are not linear in the used small
parameters.

Let ϵi ∈ R and fi, fij , fijk ∈ C2,α(∂M), for some 0 < α < 1 and for i, j, k =
1, . . . , 4, and ϵ = (ϵ1, ϵ2, ϵ3, ϵ4). In the most general case of this paper, we take
boundary values f to be of the form

fϵ :=

4∑
i=1

ϵifi +

4∑
i,j=1

ϵiϵjfij +

4∑
i,j,k=1

ϵiϵjϵkfijk on ∂M. (2.3)

Observe that the Dirichlet data fϵ ∈ Uδ for sufficiently parameters ϵi, where Uδ is
defined by

Uδ :=
{
f ∈ C2,α(∂M)| ∥f∥C2,α(∂M) < δ

}
,

for some sufficiently small number δ > 0. By using the implicit function theorem
and the Schauder estimate for linear second order elliptic equations, one can show
that the solution uf to the nonlinear equation (1.31.3) depends smoothly (in the
Frechét sense) on the parameters ϵ1, . . . , ϵ4 (see [FO20FO20, LLLS21aLLLS21a, Section 2] for
detailed arguments).

The first linearization of the equation (1.31.3) at the zero boundary value is{
(−∆g + V )v(i) = 0 in M,

v(i) = fi on ∂M,
(2.4)

for i = 1, 2, 3, 4. Here

v(i) := ∂ϵi |ϵ=0 uf ,

where we have denoted ϵ = 0 for the case ϵ1 = ϵ2 = ϵ3 = ϵ4 = 0. The second
linearization

w(ij) := ∂2ϵiϵj

∣∣∣
ϵ=0

uf

of uf satisfies the second linearized equation (2.42.4){
(−∆g + V )w(ij) = −2qv(i)v(j) in M,

w(ij) = fij on ∂M,
(2.5)

for different i, j = 1, 2, 3, 4, where the functions v(i) := ∂∂ϵi |ϵ=0 uf are the unique
solutions to the first linearized equation

Furthermore, by denoting

w(ijk) := ∂3ϵiϵjϵk

∣∣∣
ϵ=0

uf and w(1234) := ∂4ϵ1ϵ2ϵ3ϵ4
∣∣
ϵ=0

uf ,
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one can see that they satisfy{
(−∆g + V )w(ijk) = −2q

(
v(i)w(jk) + v(j)w(ik) + v(k)w(ij)

)
in M,

w(ijk) = fijk on ∂M,
(2.6)

for different i, j, k = 1, 2, 3, 4, and
(−∆g + V )w(1234) = −2q

(
v(1)w(234) + v(2)w(134)

+v(3)w(124) + v(4)w(123)

+w(12)w(34) + w(13)w(24) + w(14)w(23)
)

in M,

w(1234) = 0 on ∂M.

(2.7)

We will construct special solutions for the above linearized equations in Section 33.

2.3. Integral identities for the inverse problem. Let us consider two poten-

tials q1, q2 ∈ C∞(M). Let v(i), w
(ij)
β , w

(ijk)
β and w

(1234)
β be the respective solutions

of (2.42.4), (2.52.5), (2.62.6) and (2.72.7), where the index β = 1, 2 refers to the potentials
q = qβ , and i, j, k = 1, 2, 3, 4. We denote by v(5) ∈ C2,α(M) an additional solution
to the linear equation: {

(−∆g + V )v(5) = 0 in M,

v(5) = f5 on ∂M.

We record the integral identities for the second, third and fourth order linearized
equations.

Lemma 2.1 (Integral identities). Let {fi}5i=1, {fij}4i,j=1, {fi,j,k}4i,j,k=1 ⊂ C2,α(∂M),

and for ϵ ∈ R4 in a neighborhood of zero, define fϵ via (2.32.3). The following integral
identities hold, for each i, j, k = 1, . . . , 4 and m = 1, . . . , 5.
(1) The second order integral identity∫

∂M

∂2ϵiϵj

∣∣∣
ϵ=0

(Λq1fϵ − Λq2fϵ) fm dS = 2

∫
M

(q1 − q2)v
(i)v(j)v(m) dVg. (2.8)

(2) The third order integral identity∫
∂M

∂3ϵiϵjϵk

∣∣∣
ϵ=0

(Λq1fϵ − Λq2fϵ) fm dS

=2

∫
M

{
q1

(
v(i)w

(jk)
1 + v(j)w

(ik)
1 + v(k)w

(ij)
1

)
−q2

(
v(i)w

(jk)
2 + v(j)w

(ik)
2 + v(k)w

(ij)
2

)}
v(m) dVg.

(2.9)

(3) The fourth order integral identity∫
∂M

∂4ϵ1ϵ2ϵ3ϵ4
∣∣
ϵ=0

(Λq1fϵ − Λq2fϵ) f5 dS

=2

∫
M

{
q1

(
v(1)w

(234)
1 + v(2)w

(134)
1 + v(3)w

(124)
1 + v(4)w

(123)
1

+w
(12)
1 w

(34)
1 + w

(13)
1 w

(24)
1 + w

(14)
1 w

(23)
1

)
− q2

(
v(1)w

(234)
2 + v(2)w

(134)
2 + v(3)w

(124)
2 + v(4)w

(123)
2

+w
(12)
2 w

(34)
2 + w

(13)
2 w

(24)
2 + w

(14)
2 w

(23)
2

)}
v(5) dVg,

(2.10)
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Here, the functions v(i), w
(ik)
ℓ and w

(ijk)
ℓ are the unique C2,α(M) solutions to (2.42.4),

(2.52.5) and (2.62.6) with q = qℓ, respectively, for ℓ = 1, 2, i, j, k = 1, 2, 3, 4. Finally,
v(5) ∈ C2,α(M) is the unique solution to (2.42.4) with Dirichlet boundary data f = f5.

Proof. The proof is based on integration by parts. We only prove (2.82.8) explicitly.
The other two integral identities follow similarly.

(1) Let us consider the second linearized equation (2.52.5) with q = qβ for β = 1, 2.
Integrating by parts yields∫

∂M

∂2ϵiϵj

∣∣∣
ϵ=0

(Λq1fϵ − Λq2fϵ) fm dS

=

∫
∂M

(
∂νw

(ij)
1 − ∂νw

(ij)
2

)
fm dS

=

∫
M

(
∆gw

(ij)
1 −∆gw

(ij)
2

)
v(m) dVg +

∫
M

∇g
(
w

(ij)
1 − w

(ij)
2

)
· ∇gv(m) dVg

=

∫
M

V
(
w

(ij)
1 − w

(ij)
2

)
v(m) dVg + 2

∫
M

(q1 − q2)v
(i)v(j)v(m) dVg

−
∫
M

(
w

(ij)
1 − w

(ij)
2

)
∆gv

(m) dVg

=2

∫
M

(q1 − q2)v
(i)v(j)v(m) dVg,

where we have utilized w
(ij)
1 = fij = w

(ij)
2 on ∂M and (−∆g + V )v(m) = 0 in M .

(2) We have∫
∂M

∂3ϵiϵjϵk

∣∣∣
ϵ=0

(Λq1fϵ − Λq2fϵ) fm dS =

∫
∂M

(
∂νw

(ijk)
1 − ∂νw

(ijk)
2

)
fm dS.

The above integration by parts combined with the equations (2.42.4) and (2.62.6) results
in the claimed identity. Proof of (3) is obtained similarly. □

3. Complex geometrical optics and Gaussian beam quasimodes

Let us introduce the complex geometrical optics type solutions for the first order
linearized equation. These are solutions to the linearized equation (2.42.4) that con-
centrate on planes of the form I×γ, where I is an interval and γ is an inextendible
non-tangential geodesic on M0. We call them CGOs in short. We also assume in
this paper for simplicity that γ does not have self-intersections.

We recall the Gaussian quasimode construction for the equation (2.42.4) that orig-
inated from [FKLS16FKLS16, Section 3] in the setting of CTA manifolds. We follow the
constructions [FO20FO20, Section 4.1, Proposition 5.1] and [LLLS21aLLLS21a, Section 5 and
Appendix] that allow a zeroth order term V in (2.42.4) as well as providing decay
estimates in higher order Sobolev spaces. We refer to these works for details of the
constructions in this section.

We first consider a unit speed non-tangential geodesic γ : [l1, l2] → M0 that
connects two points on the boundary ∂M0. We assume that γ does not have self-
intersections for simplicity. We write (M̂0, g0) for an artificial smooth extension of
(M0, g0) into a slightly larger smooth Riemannian manifold and denote by (t, y) the
Fermi coordinates in a tubular neighborhood of the geodesic γ, where t ∈ [l1, l2] and
y ∈ Bδ′(Rn−2) for some δ′ > 0 sufficiently small. We refer the reader to [FKLS16FKLS16,
Section 3] for the details of the construction of Fermi coordinates.

We define the complex parameter

s = τ + iλ, τ > 0, λ ∈ R,
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where i =
√
−1, λ is to be viewed as a fixed parameter, and τ > 0 is an asymptotic

parameter that tends to infinity. Given any K > 0 and N > 0, there exists
a positive integer N ′ depending on K,N (see (3.73.7) for the precise choice) and
solutions vs ∈ Hk(M) ⊂ C2,α(M) for k ∈ N sufficiently large (especially so that
Hk(M) ⊂ C2,α(M)) to the linear equation

(−∆g + V )vs = 0 in M,

of the form

vs(x1, t, y) = e±sx1

(
τ

n−2
8 eisψ(t,y)as(x1, t, y) + rs(x1, t, y)

)
, (3.1)

where χ is a cutoff function supported in a δ′-neighborhood of the origin and each
term in the right hand side has certain properties that we will describe next. In
what follows next, we describe the construction and properties of the phase term
ψ ∈ C∞(M), the amplitude as ∈ C∞(M) and the remainder term rs ∈ C2,α(M).

The phase function ψ(t, y) satisfies

ψ(γ(t)) = t, ∇gψ(γ(t)) = γ̇(t), Im(D2ψ(γ(t))) ≥ 0, Im(D2ψ|γ̇(t)⊥) > 0.
(3.2)

More explicitly, in terms of the Fermi coordinates we can write

ψ(t, y) = t+
1

2

n−2∑
j,k=1

Hjk(t)yjyt +O(|y|3), (3.3)

where the complex-valued symmetric matrix H(t) = (Hjk(t))
n−2
j,k=1 is given by the

expression

H(t) = Ẏ (t)Y −1(t), for any t ∈ [l1, l2],

and Y is a non-degenerate matrix that solves the second order linear differential
equation

Ÿ +DY = 0 for any t ∈ [l1, l2].

Here, the symmetric matrixD is given byDjk = 1
2∂

2
jkg

11 for each j, k = 1, . . . , n−2.
The matrix H additionally satisfies

Im(H)(t) > 0 for any t ∈ [l1, l2], (3.4)

and

det(Im(H(t))) · | detY (t)|2 = 1.

Next we describe the amplitude function in the expansion (3.13.1). The amplitude
as(x1, t, y) is of the form

as(x1, t, y) =

(
a0(t, y) +

a±1 (x1, t, y)

s
+ · · ·+

a±N ′−1(x1, t, y)

sN ′−1

)
χ

(
|y|
δ′

)
, (3.5)

where the principal amplitude a0(t, y) itself is given by the expression

a0(t, y) = a0,0(t) + a0,1(t, y) + · · ·+ a0,N ′−1(t, y).

Here, a0,0(t) is an explicit positive function on γ given by the expression

a0,0(t) = (detY (t))−
1
2 , (3.6)

and the subsequent terms a0,j(t, y) with j = 1, 2, . . . , N ′ − 1 are homogeneous
polynomials of degree j in the y-coordinates. These terms arise as solutions to
certain transport equations along the geodesic γ on M0.

The remaining amplitude terms a±k , for k = 1, 2, . . . , N ′ − 1, have analogous
expressions of the form

a±k (x1, t, y) = a±k,0(x1, t, y) + a±k,1(x1, t, y) + · · ·+ a±k,N ′−1(t, y),
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where a±k,j are homogeneous polynomials of degree j in the y-coordinates, for j =

0, 1, . . . , N ′ − 1. These amplitudes arise as solutions to certain complex transport
equations on the plane y = 0 on M (see [FO20FO20, Section 4] for more details).

Finally, using [FO20FO20, Proposition 2, Lemma 4] and fixing the order

N ′ = 2 + 2N + 2K, (3.7)

for the Gaussian quasimode construction, it follows that given any fixed K ∈ N,
there exists a remainder term rs in (3.13.1) in the Sobolev space HK(M) satisfying
the decay estimate

∥rs∥HK(M) ≲ τ−N . (3.8)

Remark 3.1. Let us emphasize that the above estimate has two nice features.
Firstly, we obtain precise decay estimates for the remainder term rs with respect to
the large parameter τ . Secondly, note that the regularity of the CGO ansatz vs is
the same as that of rs and therefore by choosing for example any fixed K ≥ n

2 + 4

and using the Sobolev embedding H
n
2 +4 ⊂ C3(M), we may construct remainder

terms rs that are in C3(M). This would be suitable for us, as we will later use the
boundary traces of the CGO solutions above in order to apply Lemma 2.12.1.

4. Solutions for the linearized equations

We discussed CGO solutions for the first order linearization of the equation
(−∆g + V )u + qu2 = 0 at the zero solution as in the previous section. In this
section, we construct solutions for the second and third order linearizations of the
equation.

4.1. Solutions for the second order linearization. In what follows, we assume
that geodesics do not have self-intersections. Let p0 ∈ M0 and let γ1 be a non-
tangential geodesic passing through p0 in some direction v ∈ Sp0M0. Here Sp0M0

stands for unit length vectors of Tp0M0. We will use the following definition.

Definition 4.1. We say that two geodesics intersect properly if they intersect and
are not reparametrizations of each other.

Assume that γ2 is another nontangential geodesic, and that it intersects γ1 prop-
erly at p0. If v′ ∈ SpM0 is the velocity vector of γ2 at p0, then v

′ is linearly inde-
pendent of v due to the uniqueness of geodesics. Due to a compactness argument
(see e.g. [LLLS21aLLLS21a]), the geodesics γ1 and γ2 can only intersect at a finite number
of points.

We consider CGO solutions v(1) = v
(1)
τ and v(2) = v

(2)
τ to the equation (2.42.4)

corresponding to geodesics γ1 and γ2, respectively. That is, the CGOs v(k) for
k = 1, 2 are of the form (3.13.1):

v(k) = e±skx1

(
τ

n−2
8 eiskψka(k)τ + r(k)τ

)
, (4.1)

where ψk, a
(k)
τ and r

(k)
τ have the properties described in the previous section. We

have also denoted

sk = ckτ + iλk, (4.2)

where ck, λk ∈ R, and τ > 0 is a (large) parameter.
In the next lemma, we construct solutions for the second linearized equation.

After proving the lemma, in Proposition 4.44.4, we show that if the DN map is known,
the boundary value of the solutions can be fixed.
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Lemma 4.2. Let K,N ∈ N ∪ {0}. Assume that v(1) and v(2) are CGOs, which
correspond to properly intersecting geodesics on M0 and are of the form (4.14.1). If
the restrictions of the amplitudes a(k) to M0 are supported in small enough neigh-
borhoods of the geodesics γk for k = 1, 2, and N ′ = N ′(K,N) is large enough, then
the equation

(−∆g + V )w = −2qv(1)v(2) in M (4.3)

has a smooth solution w up to the boundary ∂M with the following properties: The
solution w is of the form

w = w0 + eτΨR,

where
w0 = τ

n−2
4 e(±s1±s2)x1+i(s1ψ1+s1ψ1)bτ ,

with

bτ =
1

τ2
b−2 +

1

τ3
b−3 + · · ·+ 1

τ2N ′ b−2N ′ ,

b−2 =
2q

(±c1 ± c2)2 − |c1∇g0ψ1 + c2∇g0ψ2|2
a
(1)
0 a

(2)
0 .

(4.4)

The function Ψ is given by

Ψ = (±c1 ± c2)x1 + ic1ψ1 + ic2ψ2. (4.5)

and R = Rτ is a remainder term that satisfies

∥Rτ∥HK(M) ≲ τ−N .

Proof. We first find an approximate solution for the equation

(−∆g + V )ŵ0 = −2qV (1)
τ V (2)

τ in M, (4.6)

where

V (k)
τ =e±skx1eiskψka(k)τ .

After that, we scale ŵ0 and correct it by using either Carleman or elliptic estimates
to a solution of (4.34.3). Here ψk and a(k) are constructed with respect to geodesics
γk that intersect properly on the transversal manifold M0.

We shorthand our notation and write

e±s1x1eis1ψ1e±s2x1eis2ψ2 := eτΨeΛ,

where Ψ is as in (4.54.5) and

Λ = i(±λ1 ± λ2)x1 − λ1ψ1 − λ2ψ2.

Using the expressions for the amplitude functions (3.53.5), the equation (4.64.6) can be
written as

(∆g − V )ŵ0 = eτΨeΛ
2(N ′−1)∑
k=0

E−k

τk
,

where the functions E−k ∈ C∞(M), k = 0, 1, . . . , 2(N ′−1), are supported near the
intersection points of the geodesics γ1 and γ2. We have

E0 = 2qa
(1)
0 a

(2)
0 .

Let us consider a WKB ansatz for ŵ0 of the form

eτΨb̂.

A direct calculation shows that

(∆g − V )
(
eτΨb̂

)
= eτΨ

(
τ2⟨∇gΨ,∇gΨ⟩b̂+ τ [2⟨∇g b̂,∇gΨ⟩+ b̂(∆gΨ)] + (∆g − V )b̂

)
,
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where ⟨η, ζ⟩ denotes the complexified Riemannian inner product. At the center of

normal coordinates ⟨η, ζ⟩ = η · ζ =

n∑
i=1

ηiζi, for any η, ζ ∈ Cn. Note that ⟨ · , · ⟩ is

not a Hermitian inner product of complex vectors. Especially ⟨η, η⟩ = 0 does not

imply the complex vector η = 0. We assume that b̂τ is an amplitude function of
the form

b̂τ =
1

τ2
b̂−2 +

1

τ3
b̂−3 + · · ·+ 1

τN
b̂−2N ′ . (4.7)

At an intersection point of the geodesics, we have by the properties of Gaussian
beams (see (3.23.2)) that

∇gΨ = (±c1 ± c2)e1 + ic1∇g0ψ1 + ic2∇g0ψ2 = (±c1 ± c2)e1 + i(c1γ̇1 + c2γ̇2),

where γ̇1 and γ̇2 are the velocity vectors of γ1 and γ2 at the intersection point. Here
e1 = ∂x1

x, for x = (x1, . . . , xn). Since the geodesics γ1 and γ2 intersect properly

⟨∇gΨ,∇gΨ⟩ = (±c1 ± c2)
2 − |c1∇g0ψ1 + c2∇g0ψ2|2

= c21 ± 2c1c2 + c22 − c21 − 2c1c2⟨γ̇1, γ̇2⟩ − c22

= −2c1c2 (⟨γ̇1, γ̇2⟩ ∓ 1) ̸= 0

at the intersection points of the geodesics. By the above and assuming that a(1)

and a(2) are supported in small enough neighborhoods of γ1 and γ2 we have

|⟨∇gΨ,∇gΨ⟩| ≥ constant > 0 (4.8)

on the support of each E−k for all k = 0, 1, . . . , 2(N ′ − 1).

Let us set b̂0 = b̂−1 = 0 and define the coefficients b̂−k for k = 2, . . . , 2N ′

recursively by the formula

b̂−k =
eΛE−k+2 − [2⟨∇g b̂−k+1,∇gΨ⟩+ b̂−k+1∆gΨ]− (∆g − V )b̂−k+2

⟨∇gΨ,∇gΨ⟩
. (4.9)

specially,

b̂−2 = eΛ
2q

⟨∇gΨ,∇gΨ⟩
a
(1)
0 a

(2)
0 .

We also see by a recursive inspection that b̂k is supported on the set where (4.84.8)

holds. Thus b̂k are well-defined. It follows by re-indexing sums and using b̂−1 =

b̂0 = 0, such that

(∆g − V )
(
eτΨb̂τ

)
− 2qV (1)

τ V (2)
τ

=eτΨ
2N ′∑
k=2

[
τ2−k⟨∇gΨ,∇gΨ⟩b̂−k + τ1−k[2⟨∇g b̂−k,∇gΨ⟩+ b̂−k(∆gΨ)]

+τ−k(∆g − V )b̂−k − eΛE−k+2

]
= eτΨ

(
τ−2N ′+1

(
[2⟨∇g b̂−2N ′ ,∇gΨ⟩+ b̂−2N ′(∆gΨ)] + (∆g − V )b̂−2N ′+1

)
+ τ−2N ′

(∆g − V )b̂−2N ′

)
, (4.10)

where we have used (4.94.9) to get to the last equality.

Next, we scale and correct eτΨb̂τ so that it solves (4.34.3). We write

w = τ
n−2
4 eτΨb̂τ + R̂τ .

Note that

qv(1)v(2) = qτ
n−2
4 V (1)

τ V (2)
τ + qe±s1x1±s2x1r,
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where r corresponds to the correction terms r(1) and r(2) and is given by

r = r(1)τ τ
n−2
8 eis2ψ2a(2)τ + r(2)τ τ

n−2
8 eis1ψ1a(1)τ + r(1)τ r(2)τ .

Hence, R̂τ solves

(∆g − V )R̂τ = −
[
(∆g − V )τ

n−2
4 eτΨb̂τ − 2τ

n−2
4 qV (1)

τ V (2)
τ

]
+ 2qe±s1x1±s2x1r,

(4.11)
whenever w solves (4.34.3). Now, if N ′ is chosen large enough, i.e.

N ′ ≥ 2 + 2N + 4K,

then we have r = OHK(M)(τ
−N ) by combining the bounds (3.83.8) for the correction

terms r
(β)
τ , β = 1, 2 together with the bounds

τ
n−2
4 ∥eis2ψ2∥HK(M) + τ

n−2
4 ∥eis2ψ2∥HK(M) ≲ τK . (4.12)

For example, see [FO20FO20, Lemma 4] for the estimate (4.124.12).

Redefining N ′ to be larger, if necessary, the equation (4.114.11) for R̂τ together with
(4.104.10) implies

(∆g − V )R̂τ = eτ(±c1±c2)x1OHK(M)(τ
−N ).

By writing

Rτ = e−τ(±c1±c2)x1R̂τ and bτ = e−Λb̂τ ,

and in the case that
±c1 ± c2 ̸= 0,

the claim in the lemma follows from [FO20FO20, Proposition 2] (also from the Carleman
estimates [DSFKSU09DSFKSU09, Lemma 4.1, Proposition 4.3]). The claim that Rτ and
consequently w are actually smooth functions follows from the previous reference
together with the fact that the right hand side of the above equation for R̂τ is a
smooth function on M . Alternatively, in the case that

±c1 ± c2 = 0,

we may impose zero boundary conditions for Rτ and use standard elliptic estimates
to complete the proof of the lemma. □

Remark 4.3. Let us emphasize that the function w constructed above is globally
well-defined on M . Indeed, recalling that M ⊂ I ×M0 we observe that for each
fixed x1 ∈ I, the principal function w0 is smoothly defined in x1 and it is com-
pactly supported and smooth in a small neighborhood of the intersection of the two
geodesics in M0. With regards to the remainder term Rτ , we remark that in the
case ±c1 ± c2 ̸= 0, Rτ is a smooth function defined on an open manifold U such
that M ⋐ U , which satisfies

∥Rτ∥HK(U) ≲ τ−N ,

see e.g. [DSFKSU09DSFKSU09]. In the case ±c1 ± c2 = 0, Rτ is also smooth due to elliptic
regularity and has zero boundary values on ∂M .

Let us next consider the second linearized equation (2.52.5) for two possibly different
potentials q1 and q2. We show that if Λq1 = Λq2 , then the solutions of Lemma 4.24.2
corresponding to potentials q1 and q2 can be taken to have same boundary values.

Proposition 4.4. Assume as in Lemma 4.24.2 and adopt its notation, and assume
that Λq1 = Λq2 . Then the second linearized equations

(−∆g + V )w(β) = −2qβv
(1)v(2), β = 1, 2, (4.13)

have solutions of the form

w(β) = w
(β)
0 + eτΨR(β).
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Here

w
(β)
0 = τ

n−2
4 e(±s1±s2)x1+i(s1ψ1+s2ψ2)b(β),

b(β) = τ−2b
(a)
−2 + · · ·+ τ−2N ′

b
(β)
−2N ′ ,

b
(β)
−2 =

2qβ
(±c1 ± c2)2 − |c1∇g0ψ1 + c2∇g0ψ2|2

a
(1)
0 a

(2)
0 .

Moreover R(β) = OL2(M)(τ
−N ) (β = 1, 2) and

w(1)
∣∣
∂M

= w(2)
∣∣
∂M

.

In order to prove Proposition 4.44.4, we need a boundary determination result:

Proposition 4.5 (Boundary determination). For m ≥ 2, m ∈ N, let (M, g) be a
compact Riemannian manifold with C∞ boundary ∂M and consider the boundary
value problem {

(−∆g + V )u+ qum = 0 in M,

u = f on ∂M.
(4.14)

Assume that the DN map Λq of the equation (4.144.14) is known for small boundary
values. Then Λq determines the formal Taylor series of q on the boundary ∂M .

In addition, if f ∈ C2,α(∂M) is so small that (4.144.14) has a unique small solution,
the DN map determines the formal Taylor series of the solution u = uf at any
point on the boundary.

We also need the following Carleman estimate with boundary terms.

Lemma 4.6 (Carleman estimate with boundary terms). Let (M, g) be a compact,
smooth, transversally anisotropic Riemannian manifold with a smooth boundary.
Let V ∈ L∞(M). There exists constants τ0 > 0 and C > 0 depending only on
(M, g) and ∥V ∥L∞(M) such that given any |τ | > τ0, and any v ∈ C2(M), there
holds

C|τ | ∥v∥L2(M) ≤∥e−τx1(−∆g + V )(eτx1v)∥L2(M) + |τ | 32 ∥v∥W 2,∞(∂M)

+ |τ | 32 ∥∂νv∥W 2,∞(∂M) + |τ | 32 ∥∂2νv∥W 2,∞(∂M),
(4.15)

We have placed the proofs of the above two results in the the Appendix AA and BB,
respectively. The proof of Proposition 4.54.5 uses a standard boundary determination
result for linearized second order elliptic equations. The proof of Lemma 4.64.6 is
by integration by parts and using standard elliptic estimates. In this paper, the
preceding Carleman estimate with the L2(M) bound is sufficient in deriving the
upper bound for the correction term R(β) in Proposition 4.44.4 for β = 1, 2; however
let us also mention that analogous Carleman estimates with boundary terms can
be obtained in higher Sobolev spaces Hk(M), for k ∈ N.

Proof of Proposition 4.44.4. Let us first consider the case ±c1 ± c2 ̸= 0. By Lemma
4.24.2 we have a smooth solution of the form

w(2) = w
(2)
0 + eτΨR(2)

for the equation

(−∆g + V )w(2) = −2q2v
(1)v(2).

In general, controlling the boundary value of R(2) is hard. As already mentioned in
Remark 4.34.3, we have that R(2) is a smooth function defined on an open manifold
U such that M ⋐ U , which satisfies

∥R(2)∥HK(U) ≤
C

τN
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if N ′ = N ′(K,N) was chosen large enough.
By redefining K as K + 5/2 (and thus also redefining also N ′ larger) and using

trace theorem
R(2)|∂M = OHK(∂M)(τ

−N ) (4.16)

and

∂νR
(2)
∣∣∣
∂M

= OHK(∂M)(τ
−N ), ∂2νR

(2)
∣∣∣
∂M

= OHK(∂M)(τ
−N ). (4.17)

Let us then consider the equation (4.134.13) for q1 with boundary value w(2)
∣∣
∂M

. As

0 is not a Dirichlet eigenvalue of −∆g + V and noting that w2|∂M is also smooth,
it follows from elliptic regularity (see e.g. [Tay11Tay11]), that there is a unique smooth
solution w(1) to the equation{

(−∆g + V )w(1) = −2q1v
(1)v(2) in M,

w(1) = w(2)
∣∣
∂M

on ∂M.
(4.18)

We write
w(1) = w

(1)
0 + eτΨR(1),

where w
(1)
0 = τ

n−2
4 e(±s1±s2)x1+i(s1ψ1+s1ψ1)b

(1)
τ is the WKB ansatz given as in

Lemma 4.24.2 such that

(∆g − V )w
(1)
0 − 2q1v

(1)v(2) = eτΨF.

Here
F = OHK(M)(τ

−N ), (4.19)

which can be derived by making the WKB ansatz w
(1)
0 precise enough (i.e. N ′ large

enough). Since w(1) solves (−∆g+V )w(1) = −2q1v
(1)v(2), we have that R(1) solves

the conjugated equation

e−τΨ(∆g − V )eτΨR(1) = OHK(M)(τ
−N ).

Unfortunately, we can not directly deduce from standard Carleman estimates that
the correction term ∥R(1)∥L2(M) is small.

As matter of fact, in order to obtain that ∥R(1)∥L2(M) is small, we use the
assumption Λq1 = Λq2 , which implies that the DN maps of the second linearized
equations (see equation (2.52.5)) for q1 and q2 are the same, that is to say,

∂2ϵiϵjΛq1(fϵ)
∣∣
ϵ=0

= ∂2ϵiϵjΛq1(fϵ)
∣∣
ϵ=0

.

By additionally using the boundary determination result (Proposition 4.54.5), we have
that

q1 = q2 on ∂M

up to infinite order. The ansatzes w
(1)
0 and w

(2)
0 depend on (M, g) and the potentials

q1 and q2 respectively. The dependence on the potentials is local. That is, the
dependence is on pointwise values of the potentials and their derivatives, see (4.44.4).
It follows that

w
(1)
0

∣∣∣
∂M

= w
(2)
0

∣∣∣
∂M

(4.20)

and also

∂νw
(1)
0

∣∣∣
∂M

= ∂νw
(2)
0

∣∣∣
∂M

and ∂2νw
(1)
0

∣∣∣
∂M

= ∂2νw
(2)
0

∣∣∣
∂M

. (4.21)

Consequently, by using w1|∂M = w2|∂M , we have that

R(1)
∣∣∣
∂M

= e−τΨ
∣∣
∂M

(w(1) − w
(1)
0 )
∣∣∣
∂M

= e−τΨ
∣∣
∂M

(w(2) − w
(2)
0 )
∣∣∣
∂M

= R(2)
∣∣∣
∂M

.

By (4.164.16) we thus have that

R(1)
∣∣
∂M

= OHK(∂M)(τ
−N ).
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Furthermore, we have ∂νw1|∂M = ∂νw2|∂M since Λq1 = Λq2 . Consequently, by
(4.214.21) we have

∂νR
(1)
∣∣
∂M

= ∂ν

(
e−τΨ(w(1) − w

(1)
0 )
) ∣∣∣

∂M
= ∂ν

(
e−τΨ(w(2) − w

(2)
0 )
) ∣∣∣

∂M

= ∂νR
(2)
∣∣
∂M

= OHK(∂M)(τ
−N ).

By the boundary determination result of solutions on the boundary in Proposition
4.54.5, we have ∂2νw1

∣∣
∂M

= ∂2νw2

∣∣
∂M

. Thus, combining (4.174.17) and (4.214.21) shows

∂2νR
(1)
∣∣
∂M

= OHK(∂M)(τ
−N ). In conclusion, we have that R(1) solves{

e−τΨ(∆g − V )eτΨR(1) = OHK(M)(τ
−N ) in M,

∂ ℓνR
(1) = OHK(∂M)(τ

−N ) on ∂M, ℓ = 0, 1, 2.
(4.22)

Now, it follows from Lemma 4.64.6 by taking K = n+1
2 and using the Sobolev embed-

ding HK(∂M) ⊂ L∞(∂M), and finally redefining N as N − 2 that

∥R(1)∥L2(M) = O(τ−N ).

In the remaining case ±c1± c2 = 0, the correction terms R(1) and R(2) have zero

boundary values by Remark 4.34.3. Since we also have w
(1)
0 |∂M = w

(2)
0 |∂M by (4.204.20),

the claim follows also in this case. □

4.2. Solutions for the third linearization. In this section, we consider solutions
for the third linearizations of (−∆g+V )u+ qu2 = 0 at the zero solution. Recalling
that the third linearized equation is of the form

(−∆g + V )ω(ijk) = −2q
(
v(i)w(jk) + v(j)w(ik) + v(k)w(ij)

)
in M, (4.23)

where v(i) and w(jk), are solutions to (2.52.5) and (2.62.6), respectively, for different
i, j, k = 1, 2, 3. Again, we assume that the solutions v(k) are CGOs of the form
(4.14.1):

v(k) = e±skx1

(
τ

n−2
8 eiskψka(k)τ + r(k)τ

)
,

where ψk corresponds to a nontangential geodesics γk of (M0, g0). Here sk =
ckτ + iλk also as before. We assume that γ1, γ2 and γ3 intersect at the point p0.
We also assume that the supports of v(k) restricted toM0 are so small that that the
mutual support of v(1), v(2) and v(3) does not intersect the points on the geodesics
γk where only two of the geodesics intersect. Lastly, we assume that all the pairs
of geodesics γi and γk, i ̸= k, intersect properly.

In order to analyze the solution ansatz for the third linearized equation (4.234.23),
we can simply consider the case i = 1, j = 2 and k = 3. By Lemma 4.24.2, the
equation (−∆g + V )w(23) = −2qv(2)v(3) has a solution of the form

w(23) = w
(23)
0 + eτΨ

(23)

R(23).

Here w
(23)
0 is given by the WKB ansatz

w
(23)
0 = τ

n−2
4 e(±s2±s3)x1+i(s2ψ2+s3ψ3)b(23),

b(23) = τ−2b
(23)
−2 + · · ·+ τ−2Nb

(23)
−2N ′ ,

b
(23)
−2 =

2q

(±c2 ± c3)2 − |c2∇g0ψ2 + c3∇g0ψ3|2
a
(2)
0 a

(3)
0 .

We take the solutions w(13) and w(12) to be ones given by similar formulas as w(23).
Using these formulas for w(ik) and v(j) we see that (4.234.23) can be written as

(∆g − V )ω = τ
3(n−2)

8 eτΨ̃(eΛ̃H + ρ),



17

where ω ≡ ω(123), and

Ψ̃ = (±c1 ± c2 ± c3)x1 + ic1ψ1 + ic2ψ2 + ic3ψ3

Λ̃ = i(±λ1 ± λ2 ± λ3)x1 − λ1ψ1 − λ2ψ2 − λ3ψ3

H =

3N ′−1∑
k=2

H−k

τk
,

ρ = OHK(M)(τ
−N ).

(4.24)

The amplitude H ∈ C∞(M) is supported on neighborhoods of the points where
all the geodesics γ1, γ2 and γ3 intersect and which do not contain points where
only two of the geodesics γk intersect. The order 3N ′ − 1 of the amplitude H is
a consequence of the respective orders 2N ′ and N ′ − 1 of the expansions of w(ij)

and a(k). We have also assumed N ′ to be large enough so that the condition for

ρ in (4.244.24) holds. Meanwhile, the factor τ
3(n−2)

8 is a result of the product of the

respective normalization factors τ
n−2
4 and τ

n−2
8 of w(ij) and v(k). The functions

H−k depend on q only in terms of the pointwise values q and its derivatives.
By (4.44.4), the leading order coefficient of H satisfies

H−2 =4q2a
(1)
0 a

(2)
0 a

(3)
0

×

(
1

(±c1 ± c2)2 − |c1∇g0ψ1 + c2∇g0ψ2|2

+
1

(±c1 ± c3)2 − |c1∇g0ψ1 + c3∇g0ψ3|2

+
1

(±c2 ± c3)2 − |c2∇g0ψ2 + c3∇g0ψ3|2

)
.

(4.25)

If we additionally assume that

|⟨∇gΨ̃,∇gΨ̃⟩| ≥ constant > 0

on the support of H, it makes sense to try an ansatz

τ
3(n−2)

8 eτΨ̃eΛ̃B

for a solution ω of (4.234.23), where

B =

3N ′+1∑
k=4

B−k

τk
. (4.26)

Here B−k, k = 4, 3, . . . , 2(N ′ + 2) are given by the recursive formula

B−k =
eΛ̃H−k+2 − [2⟨∇gB−k+1,∇gΨ⟩+B−k+1∆gΨ]− (∆g − V )B−k+2

⟨∇gΨ̃,∇gΨ̃⟩
(4.27)

and setting B−2 = B−3 = 0. Especially

B−4 =
H−2

⟨∇gΨ̃,∇gΨ̃⟩
, (4.28)

where H−2 is given in (4.254.25). The support of B is the mutual support of v(k).
We obtain the following result. We omit the proof as it is a direct adaptation of

the proof of Lemma 4.24.2.

Lemma 4.7. Let K,N ∈ N ∪ {0}. Assume that v(1), v(2), v(3) are CGOs of the
form (4.14.1) corresponding to geodesics γ1, γ2, γ3 on M0, respectively, such that the
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pairs of geodesics γk and γi intersect properly for i, k = 1, 2, 3 and i ̸= k. Assume

additionally that Ψ̃ given by (4.244.24) satisfies

⟨∇gΨ̃,∇gΨ̃⟩ ≠ 0

at the points where all the geodesics γ1, γ2 and γ3 intersect. If the restrictions of
the amplitudes a(k) of v(k) to M0 are supported in small enough neighborhoods of
the geodesics γk, and N

′ = N ′(K,N) is large enough, then the equation

(−∆g + V )ω = −2q
(
v(1)w(23) + v(2)w(13) + v(3)w(12)

)
in M, (4.29)

where w(ik) is given as in Lemma 4.24.2 has a smooth solution ω up to the boundary
∂M with the following properties: The solution w is of the form

ω = ω0 + eτΨ̃R̃,

where the function ω0 is of the form

ω0 = τ
3(n−2)

8 eτΨ̃eΛ̃B,

where Λ̃ and B = Bτ are given by (4.244.24) and (4.264.26) respectively. Especially B−4

is given by (4.284.28). The amplitude B depends on q only in terms of the pointwise

values q and its derivatives. The remainder term R̃ = R̃τ satisfies

∥R̃τ∥HK(M) ≲ τ−N .

As stated, the amplitude B depends on q only in terms of the pointwise val-
ues q and its derivatives. Thus, by assuming that we know the DN map of
(−∆g + V )u + qu2 = 0, we may determine the value of ω0 on the boundary by
boundary determination result (Proposition 4.54.5). Consequently, by using the Car-
leman estimate with boundary terms (Lemma 4.64.6), we have the following analogous
result of Proposition 4.44.4. Note that

⟨∇gΨ̃,∇gΨ̃⟩ = (±c1 ± c2 ± c3)
2 − |c1∇g0ψ1 + c2∇g0ψ2 + c3∇g0ψ3|2.

Proposition 4.8. Assume as in Lemma 4.74.7 and adopt its notation. Assume addi-
tionally that Λq1 = Λq2 . If the restrictions of the amplitudes a(k) of v(k) to M0 are
supported in small enough neighborhoods of the geodesics γk, and N

′ = N ′(K,N)
is large enough, then the third linearized equations

(−∆g + V )ω(β) = −2qβ

(
v(1)w

(23)
β + v(2)w

(13)
β + v(3)w

(12)
β

)
in M, (4.30)

where w
(ik)
β , for β = 1, 2 and different i, k = 1, 2, 3, are given as in Proposition 4.44.4.

Moreover, the solution ω(β) is of the form

ω(β) = ω
(β)
0 + eτΨ̃R̃(β),

where

ω
(β)
0 = τ

3(n−2)
8 eτΨ̃eΛ̃B(β),

B(β) = τ−4B
(β)
−4 + · · ·+ τ−3N ′+1B

(β)
−3N ′+1.
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Here Λ̃ and Ψ̃ are given by (4.244.24). Especially, the quantity B−4 in (4.284.28) can be
written as

B
(β)
−4 =4q3βa

(1)
0 a

(2)
0 a

(3)
0

1

(±c1 ± c2 ± c3)2 − |c1∇g0ψ1 + c2∇g0ψ2 + c3∇g0ψ3|2

×

(
1

(±c1 ± c2)2 − |c1∇g0ψ1 + c2∇g0ψ2|2

+
1

(±c1 ± c3)2 − |c1∇g0ψ1 + c3∇g0ψ3|2

+
1

(±c2 ± c3)2 − |c2∇g0ψ2 + c3∇g0ψ3|2

)
.

(4.31)

and R̃(β) = OL2(M)(τ
−N ), for β = 1, 2. Moreover

ω(1)
∣∣
∂M

= ω(2)
∣∣
∂M

.

We skip the proof of Proposition 4.84.8 as it can be obtained from the proof of

Proposition 4.44.4 by replacing w by ω and Ψ by Ψ̃ etc. The function F in (4.194.19) in
the proof also needs to be replaced by a function of the class OL2(M)(τ

−N ) since

R(2) in Proposition 4.44.4 is OL2(M)(τ
−N ). We remark that by deriving Carleman

estimates similar to those in Lemma 4.64.6 for higher Sobolev spaces, we could in fact

have that R̃ is of the size τ−N also in higher Sobolev spaces HK(M) by taking N ′

large enough.

5. Proof of Theorem 1.11.1

In this section we prove our main result, Theorem 1.11.1. We will see that it is
possible to deduce

q21 = q22
in M from third order linearizations and the DN map of the equation (−∆g +
V )u + qu2 = 0. Our method for the third linearized equation however does not
imply q1 = q2 in general. In order to show that

q1 = q2 in M,

we in fact need to consider fourth order linearized equations. To give a proof of
Theorem 1.11.1, we could consider the fourth order linearization from the beginning.
However, we first consider third order linearizations and prove q21 = q22 to better
explain the main ideas of the proof.

5.1. Proof of q21 = q22. Let p0 ∈ M0, and let γ1 be a non-tangential geodesic that
has no self-intersections. We consider the equation{

(−∆g + V )uβ + qβu
2
β = 0 in M,

uβ = f on ∂M,
(5.1)

for β = 1, 2, where f = fϵ ∈ C2,α(∂M) is of the form

fϵ :=

4∑
i=1

ϵifi +

4∑
i,j=1

ϵiϵjfij on ∂M. (5.2)

Let us recall the linearizations (5.15.1) from Section 2.22.2. The first linearization
reads {

(−∆g + V )v
(i)
β = 0 in M,

v
(i)
β = fi on ∂M,

(5.3)



20 A. FEIZMOHAMMADI, T. LIIMATAINEN, AND Y.-H. LIN

where v
(i)
β = ∂ϵi |ϵ=0 uβ for β = 1, 2, and i = 1, 2, 3, 4. By the uniqueness of solutions

to (5.35.3), we obtain

v(i) := v
(i)
1 = v

(i)
2 in M,

for i = 1, 2, 3, 4. The second linearization of (5.15.1) satisfies{
(−∆g + V )w

(ij)
β = −2qβv

(i)v(j) in M,

w
(ij)
β = fij on ∂M,

(5.4)

where

w
(ij)
β = ∂2ϵiϵj

∣∣∣
ϵ=0

uβ ,

for β = 1, 2 and different i, j ∈ {1, 2, 3}. Lastly, the third linearization of (5.15.1)
satisfies{

(−∆g + V )w
(ijk)
β = −2qβ

(
v(i)w

(jk)
β + v(j)w

(ik)
β + v(k)w

(ij)
β

)
in M,

w
(ikl)
β = 0 on ∂M,

(5.5)

where

w
(ijk)
β = ∂3ϵiϵjϵk

∣∣∣
ϵ=0

uβ .

Since Λq1 = Λq2

0 = ∂3ϵiϵjϵk

∣∣∣
ϵ=0

(Λq1 − Λq2) (fϵ) (5.6)

Thus, by Lemma 2.12.1 we have

0 =

∫
M

{
q1

(
v(i)w

(jk)
1 + v(j)w

(ik)
1 + v(k)w

(ij)
1

)
−q2

(
v(i)w

(jk)
2 + v(j)w

(ik)
2 + v(k)w

(ij)
2

)}
v(l) dVg,

(5.7)

where v(i) and w
(jk)
β are the solutions of (5.35.3) and (5.45.4), respectively, for different

i, j, k = 1, 2, 3, 4 and β = 1, 2.
We choose v(i) to be CGOs corresponding geodesics on (M0, g0), which intersect

properly pairwise at p0. We show that the integrand on the right hand side of (5.75.7)
restricted to a neighborhood of p0 in M0 is close to a multiple of the delta function.
We let v(1) correspond to the geodesic γ1 and choose the other 3 geodesics next.

5.2. Choices of initial vectors for the third linearization. Let δ ∈ (0, 1), and
we denote the initial data of γ1 by ξ1 ∈ Sp0M0. We recall that by definition γ1
is nontangential and has no self-intersections thanks to (H1). By perturbing ξ1,
we find ξ2 ∈ Sp0M0 such that the associated geodesic γ2 is also non-tangential,
has no self-intersections (the latter fact follows from the argument in the proof of
[DSFKL+18DSFKL+18, Lemma 3.1]), and that

|ξ1| = |ξ2| = 1

and
⟨ξ1, ξ2⟩ = 1− δ.

Let us define

ξ3 = − 1

1 + δ
(ξ1 + δξ2) ∈ Sp0M0 and ξ4 = − 1

1 + δ
(δξ1 + ξ2) ∈ Sp0M0.

A direct computation shows

4∑
l=1

ξl = ξ1 + ξ2 −
1

1 + δ
ξ1 −

δ

1 + δ
ξ2 −

δ

1 + δ
ξ1 −

1

1 + δ
ξ2 = 0. (5.8)

We redefine δ smaller, if necessary, so that the geodesics γ3 and γ4 corresponding
to ξ3 and ξ4 are also nontangential and have no self-intersections.
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Note that ξ1 is not proportional to ξ2 as ξ1 and ξ2 are linearly independent.
Similarly, for k = 3, 4, the vector ξk is neither proportional to ξ1 nor to ξ2. Lastly,
ξ3 is not proportional to ξ4. Indeed, if A ∈ R is such that ξ3 = Aξ4, we have that
1 = δA and δ = A, implying that δ = ±1. However, δ ∈ (0, 1). This means that all
the pairs of the geodesics corresponding to initial data ξk/|ξk| intersect properly.

Note also that since |ξ1| = |ξ2| = 1, we have

|ξ3|2 =
1

(1 + δ)2
(
|ξ1|2 + δ2|ξ2|2 + 2δ⟨ξ1, ξ2⟩

)
=

1

(1 + δ)2
(
|ξ2|2 + δ2|ξ1|2 + 2δ⟨ξ2, ξ1⟩

)
= |ξ4|2.

That is

|ξ3|2 = |ξ4|2 =
1

(1 + δ)2
(
1 + δ2 + 2δ(1− δ)

)
=

1

(1 + δ)2
(
1 + 2δ − δ2

)
(5.9)

Let us then define vectors ξk ∈ TM , k = 1, 2, 3, 4, by

ξ1 = |ξ1|e1 + iξ1, ξ2 = −|ξ2|e1 + iξ2

ξ3 = |ξ3|e1 + iξ3, ξ4 = −|ξ4|e1 + iξ4.
(5.10)

Then
4∑
k=1

ξk = 0. (5.11)

Note also that

⟨ξk, ξk⟩ = 0, k = 1, . . . , 4. (5.12)

Related to these vectors ξk, we will consider in the proof of Theorem 1.11.1 CGOs,
which can be written of the form

v(k)s = eRe(ξk)x1

(
τ

n−2
8 ei|ξk|ψkas + rs

)
.

Here the phase functions ψk are constructed with respect to the geodesics γk with
initial data γk(0) = p0 and γ̇k(0) =

ξk
|ξk| . We note that

∇g
(
Re(ξk)x1 + i|ξk|ψk)

)∣∣∣
γk(0)

= ξk. (5.13)

Consequently, the ansatzes w
(ik)
0 in Lemma 4.24.2 for the solutions of (−∆g+V )w(ik) =

−2qv(i)v(k) have amplitudes with a factor that divides by〈
∇g
(
Re(ξi + ξk)x1 + i(|ξi|ψi + |ξk|ψk)

)
,∇g

(
Re(ξi + ξk)x1 + i(|ξi|ψi + |ξk|ψk)

)〉
,

for different i, k = 1, 2, 3. At an intersection point of the geodesics γi and γk the
above equals

⟨ξi + ξk, ξi + ξk⟩ = 2
〈
∇g
(
Re(ξi)x1 + i|ξi|ψi

)
,∇g

(
Re(ξk)x1 + i|ξk|ψk

)〉
= 2

〈
ξi, ξk

〉
.

Here we used (5.135.13) and (5.125.12). Motivated by this, we define

Cik := 2
〈
ξi, ξk

〉
.

The coefficient Cik can be collectively written as

Cik = 2|ξi||ξk|
(
(−1)i+k − ⟨ξi, ξk⟩

|ξi||ξk|

)
.

We calculate expansions forCik for small δ > 0 parameter. A direct computation
shows that

⟨ξ1, ξ3⟩ =
〈
ξ1,−

1

1 + δ
(ξ1 + δξ2)

〉
= − 1

1 + δ
(|ξ1|2 + δ⟨ξ1, ξ2⟩) = − 1

1 + δ
(1+ δ− δ2)
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and

⟨ξ2, ξ3⟩ = − 1

1 + δ

(
⟨ξ1, ξ2⟩+ δ|ξ2|2

)
= − 1

1 + δ
,

where we used ⟨ξ1, ξ2⟩ = 1− δ. We also have

⟨ξ1, ξ3⟩
|ξ1||ξ3|

=
− 1

1+δ (1 + δ − δ2)(
1

(1+δ)2 (1 + 2δ − δ2)
)1/2 = −1 +O(δ)

and
⟨ξ2, ξ3⟩
|ξ2||ξ3|

=
− 1

1+δ(
1

(1+δ)2 (1 + 2δ − δ2)
)1/2 = −1 +O(δ).

Here we have utilized the Taylor expansions

(1 + r)1/2 = 1 +
r

2
+O(r2) and (1 + r)−1 = 1− r +O(r2),

which hold for sufficiently small |r|. Combining the above formulas yields

C12 = 2|ξ1||ξ2|
(
−1− ⟨ξ1, ξ2⟩

|ξ1||ξ2|

)
= −4 +O(δ),

C13 = 2|ξ1||ξ3|
(
1− ⟨ξ1, ξ3⟩

|ξ1||ξ3|

)
= 2

(
1 + 2δ − δ2

)1/2
1 + δ

(
1−

(
− 1 +O(δ)

))
= 4 +O(δ),

C23 = 2|ξ2||ξ3|
(
−1− ⟨ξ2, ξ3⟩

|ξ2||ξ3|

)
= 2

(
1 + 2δ − δ2

)1/2
1 + δ

(
− 1−

(
− 1 +O(δ)

))
= O(δ).

(5.14)

We also remark here that Cik ̸= 0, i ̸= k, for δ > 0 since

|Cik| = 2|ξi||ξk|
∣∣∣∣(−1)i+k − ⟨ξi, ξi⟩

|ξi||ξk|

∣∣∣∣ (5.15)

and
⟨ξi, ξk⟩
|ξ2||ξ3|

∈ (−1, 1),

because the pairs of vectors ξi and ξk are linearly independent. Finally, we note
that ∣∣∣∣ 1

C12
+

1

C13
+

1

C13

∣∣∣∣ = ∣∣∣∣ 1

−4 +O(δ)
+

1

4 +O(δ)
+

1

O(δ)

∣∣∣∣→ ∞,

when δ → 0. Thus
1

C12
+

1

C13
+

1

C13
̸= 0, (5.16)

for all small enough δ > 0.

Remark 5.1. Let us define a Lorentz metric η for M by the formula

η(c1e1 + V1, c2e1 + V2) := ⟨c1e1 + iV1, c2e1 + iV2⟩g,
where c1, c2 ∈ R and V1, V2 ∈ TM0. Note that η is real since V1 and V2 are
orthogonal to e1 with respect to the metric g. We required that the vectors ξ1, . . . , ξ4
in (5.105.10) are lightlike vectors with respect to η and sum up to 0. The former
requirement is because the corresponding phase functions need to satisfy the complex
eikonal equation. The latter requirement is discussed in the next section.

A fact is that three η-lightlike vectors can only sum up to 0, if the parts in TM0 of
two of them are linearly dependent. This would correspond to geodesics that do not
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intersect properly. Due to this geometric fact, we overdifferentiate in this paper the
nonlinearity qu2 to obtain integral identities that consider more than three CGOs.

5.3. Proof of q21 = q22 (continued). Let us then return to proving q21 = q22 . Let
ξk, k = 1, 2, 3, 4, be as in (5.105.10). We set

ck = |ξk| and

and

s1 = c1τ + iλ and sℓ = cℓτ, for ℓ = 2, 3, 4.

Then the corresponding CGOs are of the form

v(1) = e(|ξ1|τ+iλ)x1

(
τ

n−2
8 ei(|ξ1|τ+iλ)ψ1a1 + r1

)
,

v(2) = e−|ξ2|τx1

(
τ

n−2
8 ei|ξ2|τψ2a2 + r2

)
,

v(3) = e|ξ3|τx1

(
τ

n−2
8 ei|ξ3|τψ3a3 + r3

)
,

v(4) = e−ξ4τx1

(
τ

n−2
8 ei|ξ4|τψ4a4 + r4

)
.

We may assume that v(k), k = 1, . . . , 4 are supported in small enough neighbor-
hoods of the corresponding geodesics γk so that the mutual support of v(k) belongs
to neighborhoods of the points where all the geodesics γk intersect and where any
pair of the geodesics intersect only once. Let us denote the points where all the
geodesics γk intersect by p0, p1, . . . , pQ.

Let i ̸= j ∈ {1, 2, 3, 4}, i ̸= j and β = 1, 2. By assumption, the DN maps of the
equation (1.31.3) for the potentials q1 and q2 satisfy Λq1 = Λq2 . By Proposition 4.44.4
there are boundary values fij , which are the same for both q1 and q2, such that the
solutions of the second linearized equations (5.45.4) are of the form

w
(ij)
β = w

(ij)
0,β + eτΨ

(ij)

R
(ij)
β ,

where the ingredients are as follows:

Ψ(ij) = ((−1)1+ici + (−1)1+jcj)x1 + i(ciψi + cjψj),

w
(ij)
0,β = τ

n−2
4 e((−1)1+isi+(−1)1+jsj)x1+i(siψi+sjψj)b

(ij)
β ,

b
(ij)
β = τ−2b

(ij)
−2,β + · · ·+ τ−2N ′

b
(ij)
−2N ′,β

b
(ij)
−2,β =

2qβ
((−1)1+ici + (−1)1+jcj)2 − |ci∇g0ψi + cj∇g0ψj |2

a
(i)
0 a

(j)
0 .

(5.17)

By (5.135.13), at points of the form (x1, p0) ∈M we have

b
(ij)
−2,β =

2qβ
Cij

a
(i)
0 a

(j)
0 .

Here a
(i)
0 and a

(j)
0 are independent of the variable x1 ∈ R.

To simplify the following calculations, let us define

Ψ1234 =

4∑
k=1

(
(−1)1+kckx1 + ickψk

)
= i

4∑
k=1

ckψk (5.18)

and

Λ1234 = λ(ix1 − ψ1).

Let us observe that

Ψ(12) +Ψ(34) = Ψ(13) +Ψ(24) = Ψ(14) +Ψ(23) = i

4∑
k=1

ckψk = Ψ1234. (5.19)
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Since Ψ1234 is purely imaginary at the intersection points pb, b = 0, . . . , Q, the

exponentially large linear factors will cancel in terms of the form v(i)w
(jk)
β v(l) ap-

pearing the integral identity for the third linearization (5.55.5). We also have at the
intersection point p0 of the geodesics that

∇g(Ψ(12) +Ψ(34))
∣∣∣
p0

= ∇g(Ψ(13) +Ψ(24))
∣∣∣
p0

= ∇g(Ψ(14) +Ψ(23))
∣∣∣
p0

= i

4∑
k=1

ck∇gψk

∣∣∣∣∣
p0

= i∇gΨ1234|p0 = i

4∑
k=1

ξk = 0.
(5.20)

This implies that p0 is a critical point of the phase functions of functions of the

form v(i)w
(jk)
β v(l). The critical point is also nondegenerate by (3.23.2) in Section 33

and thus we will be able to apply stationary phase in the asymptotic parameter τ .
Let us first consider the case p0 is the only point where all the geodesics γ1, . . . , γ4

intersect. With the above preparations and using Λq1 = Λq2 the integral identity
(5.75.7) of the third order linearization reads

0 =

∫
M

[
q1

(
v(1)w

(23)
1 + v(2)w

(13)
1 + v(3)w

(12)
1

)
(5.21)

− q2

(
v(1)w

(23)
2 + v(2)w

(13)
2 + v(3)w

(12)
2

)]
v(4) dVg

=τ
n−6
2

∫
M

eτΨ1234

[
eΛ1234a

(1)
0 a

(2)
0 a

(3)
0 a

(4)
0 (q21 − q22)

(
C−1

12 +C−1
13 +C−1

23

)
+R

]
dVg,

where R = OL1(M)(τ
−1). The factor τ−2 arises from the amplitude functions of the

solutions w
(ik)
β , see (5.175.17) and the power n−2

2 of τ is the sum of 3(n−2)
8 and n−2

8 .

By (5.195.19) the exponentially large factors of the integrand cancel. Recall that the
dimension of M0 is n− 1.

We multiply the integral identity (5.215.21) by τ1/2 and τ2. This achieves the correct
normalization τdim(M0)/2 for stationary phase. By (5.205.20), at the intersection point
p0 of the geodesics γk for x1 ∈ I ⊂ R holds

∇gΨ1234(x1, p0) = 0.

In normal coordinates (y1, . . . , yn−1) centered at the point p0 in M0

ReΨ1234(y) =

n−1∑
j,k=1

Ajky
jyk +O(|y|3), (5.22)

for some negative definite matrix A by the properties (3.23.2) of the phase functions.
Note also that

τ
n−1
2

∫
Rn−1

e−τ |y|
2

dy = O(1) and τ
n−1
2

∫
Rn−1

|y|e−τ |y|
2

dy = O(τ−
1
2 ).

Thus, stationary phase shows that the limit τ → ∞ of (5.215.21) equals

cA

(
a
(1)
0 a

(2)
0 a

(3)
0 a

(4)
0

)∣∣∣
p0

(
C−1

12 +C−1
13 +C−1

23

)
×
∫
R
eΛ1234(x1,p0)(q21(x1, p0)− q22(x1, p0))dx1,

where

cA =

∫
Rn−1

ex·Axdx ̸= 0.

We refer to [LLLS21aLLLS21a, Proof of Theorem 5.1, Step 4] for more details on this

stationary phase argument. Here we have also used that a
(k)
0 , k = 1, . . . , 4, depend
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only on the transversal variables. We also continued q1 and q2 by zero from I to R
in the x1 variable.

The geodesics γk, k = 1, . . . , 5 were parametrized so that γk(0) = p0. Thus
ψk(p0) = 0 for each k = 1, . . . , 5 and we have

eΛ1234(x1,p0) = eiλx1 .

Since C−1
12 + C−1

13 + C−1
23 ̸= 0 and a

(k)
0 |γk ̸= 0 by (5.165.16) and (3.63.6) respectively,

combining the above shows that∫
R
eλx1

(
q21(x1, p0)− q22(x1, p0)

)
dx1 = 0.

Inverting the Fourier transformation in the x1 variable shows that q21(x1, p0) =
q22(x1, p0). Since p0 was arbitrary, this completes the proof in the case p0 was the
only point where all the geodesics intersect.

Consider then the remaining case where are several points pb, b = 0, . . . , Q,
where all the geodesics γ1, γ2, γ3, γ4 intersect. Note also that outside (disjoint)
neighborhoods Ub of pb the function e

τΨ1234 is exponentially small. We also remark
that in a neighborhood of pb we may write an analogous expression as in (5.225.22) for
some negative definite matrix A. The fact that A is negative definite at pb is due
to property (3.23.2) for each of the functions ψk, k = 1, 2, 3, 4 at the point pb and the
fact the geodesics γ1, . . . , γ4 intersect transversally at the point pb.

Thus, for different i, j, k, l = 1, 2, 3, 4, by normalizing and taking limit τ → ∞ of
(5.215.21) we obtain

0 = lim
τ→∞

Q∑
b=0

∫
Ub

[
q1

(
v(1)w

(23)
1 + v(2)w

(13)
1 + v(3)w

(12)
1

)
− q2

(
v(1)w

(23)
2 + v(2)w

(13)
2 + v(3)w

(12)
2

)]
v(4) dVg

= lim
τ→∞

τ
n−1
2

Q∑
b=0

∫
Ub

[
eΛ1234eτΨ1234a

(1)
0 a

(2)
0 a

(3)
0 a

(4)
0 (q21 − q22)

×
(
C−1

12 (pb) +C−1
13 (pb) +C−1

23 (pb)
) ]
dVg.

(5.23)

Here we have denoted

Cik(pb) =
〈
∇g
(
(−1)1+icix1 + iciψi

)
,∇g

(
(−1)1+kckx1 + ickψk

)〉∣∣
pb

̸= 0

Note that Cik(pb) ̸= 0, since γi and γk, i ̸= k, intersect properly, cf. (5.155.15).
Therefore, by applying stationary phase to (5.235.23) it follows that

Q∑
b=0

ĥb(λ)e
cbλ = 0, λ ∈ R.

Here cb are the distinct geodesic parameter times of γ1 where γ1(cb) = pb and

ĥb(λ) := Fx1→λ

(
a
(1)
0 · · · a(4)0

(
C−1

12 +C−1
13 +C−1

23

)∣∣∣
pb

(
q21(x1, pb)− q22(x1, pb)

))
,

where Fx1→λ is the Fourier transform in x1 variable. By [LLLS21aLLLS21a, Lemma 6.2]

h0 = · · · = hQ = 0.

Especially q21(x1, p0) = q22(x1, p0), which concludes the proof of q21 = q22 also in the
case where there are several points where the geodesics γk all intersect.
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5.4. Proof of q1 = q2 and fourth order linearization. We proved q21 = q22
using third order linearizations of the equation (−∆g + V )u + qu2 = 0. Here we
consider fourth order linearizations of the equation and use it to complete the proof
of Theorem 1.11.1. Most of the steps here will be similar to those we used to prove
q21 = q22 . However, the steps are somewhat more complicated.

Let p0 ∈ M0, and let γ1 be a non-tangential geodesic, which has no self-
intersections. We recall that the existence of γ1 is guaranteed, thanks to (H1).
Let ξ1 ∈ Sp0M0 by the initial data if γ1. Let us consider the equation{

(−∆g + V )uβ + qβu
2
β = 0 in M,

uβ = f on ∂M,
(5.24)

this time with boundary values f ∈ C∞(∂M) of the form (2.32.3), for β = 1, 2. The
first and second linearized equations are the same as before and read

(−∆g + V )v(i) = 0,

(−∆g + V )w
(ij)
β = −2qβv

(i)v(j).

Here v(i) and w
(ij)
β , i ̸= j ∈ {1, . . . , 4}, β = 1, 2, have boundary values fi and fij

respectively. The solutions v(i) are the same for both potentials q1 and q2. The

third order linearizations w
(ijk)
β now have (possibly) non-zero boundary values and

satisfy{
(−∆g + V )w

(ijk)
β = −2qβ

(
v(i)w

(jk)
β + v(j)w

(ik)
β + v(k)w

(ij)
β

)
in M,

w
(ijk)
β = fijk on ∂M,

where w
(ijk)
β = ∂3ϵiϵjϵk

∣∣∣
ϵ=0

uβ , for β = 1, 2 and different i, j, k ∈ {1, . . . , 4}. The

boundary values fijk are the same for both of the equations (5.55.5), which correspond
to the potentials q1 and q2.

The fourth order linearization

w
(1234)
β = ∂4ϵ1ϵ2ϵ3ϵ4

∣∣
ϵ=0

uβ

is the solution of
(−∆g + V )w

(1234)
β = −2q

(
v(1)w

(234)
β + v(2)w

(134)
β

+v(3)w
(124)
β + v(4)w

(123)
β

+w
(12)
β w

(34)
β + w

(13)
β w

(24)
β + w

(14)
β w

(23)
β

)
in M,

w
(1234)
β = 0 on ∂M.

(5.25)

Using Λq1 = Λq2 we have by Lemma 2.12.1 the integral identity

0 =

∫
M

{
q1

(
v(1)w

(234)
1 + v(2)w

(134)
1 + v(3)w

(124)
1 + v(4)w

(123)
1

+w
(12)
1 w

(34)
1 + w

(13)
1 w

(24)
1 + w

(14)
1 w

(23)
1

)
− q2

(
v(1)w

(234)
2 + v(2)w

(134)
2 + v(3)w

(124)
2 + v(4)w

(123)
2

+w
(12)
2 w

(34)
2 + w

(13)
2 w

(24)
2 + w

(14)
2 w

(23)
2

)}
v(5) dVg.

(5.26)
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We will use five CGOs as the solutions v(k), k = 1, . . . , 5. As before, these have
the form

v(k) = e±skx1

(
τ

n−2
8 eiskψka(k)τ + r(k)τ

)
,

where sk = ckτ + iλk. However, the geodesics of (M0, g0) corresponding to the
phase functions ψk will be different from what we used earlier. We choose the
geodesics so that each pair of different ones of them intersect properly. This is as
before. However, we additionally require the geodesics to be so that

(±ci ± cj ± ck)
2 − |ciγ̇i + cj γ̇j + ckγ̇k|2 ̸= 0,

when all the geodesics γk intersect. This is the condition ⟨∇gΨ̃,∇gΨ̃⟩ ≠ 0 of Lemma
4.74.7 and Proposition 4.84.8.

With suitable choices of other geodesics γ2, γ3, γ4, γ5, and coefficients ck, k =
1, . . . , 5, we show that the integrand on the right hand side of (5.265.26) restricted to
a neighborhood of p0 in M0 is close to a multiple of the delta function at p0.

5.5. Choices of vectors for the fourth order linearization. The fourth order
linearization w(1234) of (−∆g + V ) + qu2 = 0 satisfies

(−∆g + V )w(1234) = −2q
(
v(1)w(234) + v(2)w(134) + v(3)w(124) + v(4)w(123)

+w(12)w(34) + w(13)w(24) + w(14)w(23)
)

in M.

(5.27)

Our aim is to show that the solution w(1234) behaves like v(1)v(2)v(3)v(4) up to a
multiplication by an amplitude function for τ sufficiently large.

• Failed choices of vectors. Let us first discuss why the earlier vectors ξi, i =
1, 2, 3, 4, do not work here. If we use the earlier vectors (5.105.10) and the corresponding
CGOs we will find that for example w(123) in (5.275.27) solves

(−∆g + V )w(123) = −2q
(
v(1)w(23) + v(2)w(13) + v(3)w(12)

)
= eτ

∑
j∈{1,2,3}|ξj |((−1)j+1x1+iψj)ǎ,

(5.28)

where ǎ is some amplitude function whose precise form is not important for this
discussion. At the intersection points of the geodesics corresponding to ξa

∇g

 3∑
j=1

|ξj |((−1)j+1x1 + iψj)

 =

3∑
j=1

ξj = −ξ4

by (5.115.11). Now, if we try a WKB ansatz of the form eτ
∑

a∈{2,3,4}|ξa|((−1)a+1x1+iψa)b̌
to solve (5.285.28), where b̌ is an amplitude function, we end up dividing by ⟨ξ4, ξ4⟩,
which is 0. Consequently, the ansatz does not work and we need to use vectors that
are different than ξa.

• Successful choices of vectors. We choose new vectors to define the CGOs
v(k), such that we can apply these CGOs to achieve our target. Denote the vectors
by

ζk, k = 1, 2, 3, 4, 5.

Let δ > 0 and let ξj , j = 1, 2, 3, 4, be as in Section 5.25.2. Especially ⟨ξ1, ξ2⟩ = 1− δ
and |ξ1| = |ξ2| = 1. Note that the integral identity (5.265.26) implicitly concerns 5
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possibly different v(k). We choose the vectors ζk ∈ Tp0M0 as follows

ζ1 = ξ1, ζ2 = ξ2,

ζ3 =

(
1 +

√
2

2− δ

)
ξ3, ζ4 =

(
1 +

√
2

2− δ

)
ξ4,

and ζ5 =

√
2

2− δ
(ξ1 + ξ2).

Note that |ζ5| = 2. We define ζk by

ζ1 = |ζ1|e1 + iζ1, ζ2 = |ζ2|e1 + iζ2,

ζ3 = |ζ3|e1 + iζ3, ζ4 = −|ζ4|e1 + iζ4,

and ζ5 = −|ζ5|e1 + iζ5.

We also define

ck = |ζk|.

In particular, we have c1 = c2 = 1 and c5 = 2. Then

5∑
j=1

ζj =ξ1 + ξ2 −

(
1 +

√
2

2− δ

)(
1

1 + δ
ξ1 +

δ

1 + δ
ξ2 +

δ

1 + δ
ξ1 +

1

1 + δ
ξ2

)

+

√
2

2− δ
(ξ1 + ξ2) = 0. (5.29)

and

Re

 5∑
j=1

ζj

 = 0. (5.30)

Consequently, the sum of the vectors ζa vanishes:

5∑
j=1

ζj = 0. (5.31)

The condition (5.315.31) will imply that the non-stationary phase at p0 and exponen-
tially growing factors of in the integrand of the integral identity (5.265.26) will cancel
out. We showed in Section 5.25.2 that the vectors ξ1, . . . , ξ4 are pairwise linearly in-
dependent. Consequently ζ1, . . . , ζ4 are pairwise linearly independent. We also see
that ζ5 is not proportional to any of the other vectors ζ1, . . . , ζ4. It follows that
the geodesics of (M0, g0) corresponding to ζ1, . . . , ζ5 intersect properly. Since the
vectors ζ2, . . . , ζ5 can be taken to be up to a scaling arbitrary small perturbations
of ξ1, the corresponding geodesics are nontangential by continuity and they do not
have self-interactions. We recall that the latter fact from the end of the proof of
[DSFKL+18DSFKL+18, Lemma 3.1].

We then consider how solutions to (5.275.27), which correspond to the CGOs de-
termined by the vectors ζj , j = 1, 2, 3, 4, look like. Let us first note that at the
intersection points of the corresponding geodesics

(±ci ± cj ± ck)
2 − |ci∇g0ψi + cj∇g0ψj + ck∇g0ψk|2 ̸= 0 (5.32)

for all indices i, j, k ∈ {2, 3, 4} which are all different. Indeed, by (5.315.31) we note
that

(±ci ± cj ± ck)
2 − |ci∇g0ψi + cj∇g0ψj + ck∇g0ψk|2 = ⟨ζl + ζm, ζl + ζm⟩,
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where l,m ∈ {1, 2, 3, 4, 5} are the unique two different indices, which do not belong
to the set {j, k, l} ⊂ {1, 2, 3, 4, 5}. Then, we have

⟨ζl + ζm, ζl + ζm⟩ = 2⟨ζl, ζm⟩ = 2(±clcm − ⟨ζl, ζm⟩) ̸= 0,

since |⟨ζl, ζm⟩| < |ζl||ζm| = clcm. Here we have the strict inequality since ζl and ζm
are linearly independent.

By (5.325.32), we may apply Lemma 4.74.7. Thus, by having the restrictions of the sup-
ports of v(k) to M0 in small enough neighborhoods of the corresponding geodesics,
the solution w(123) to third linearization

(−∆g + V )w(123) = −2q
(
v(1)w

(23)
j + v(2)w(13) + v(3)w

(12)
j

)
up to a correction term is given by a WKB ansatz with amplitude of the form
(4.264.26). The leading order coefficient of the ansatz is

B
(123)
−4 =4q2a

(1)
0 a

(2)
0 a

(3)
0

1

(±c1 ± c2 ± c3)2 − |c1∇g0ψ1 + c2∇g0ψ2 + c3∇g0ψ3|2

×

(
1

(±c1 ± c2)2 − |c1∇g0ψ1 + c2∇g0ψ2|2

+
1

(±c1 ± c3)2 − |c1∇g0ψ1 + c3∇g0ψ3|2

+
1

(±c2 ± c3)2 − |c2∇g0ψ2 + c3∇g0ψ3|2

)
.

Note the power 2 of the potential q in B
(123)
−4 . Let us define for i, j, k ∈ {1, . . . , 4}

all different

Dij = ⟨ζi + ζj , ζi + ζj⟩,
and Dijk = ⟨ζi + ζj + ζk, ζi + ζj + ζk⟩.

(5.33)

At an intersection point p0 of the geodesics, we thus have is

B
(123)
−4 (p0) = 4q2a

(1)
0 a

(2)
0 a

(3)
0

1

D123

(
1

D12 +D13 +D23

)
.

We have similar formulas for the leading order coefficients of the ansatzes for w(234),
w(134) and w(124). Furthermore, by (5.315.31) we have

D123 = ⟨ζ1 + ζ2 + ζ3, ζ1 + ζ2 + ζ3⟩ = ⟨ζ4 + ζ5, ζ4 + ζ5⟩ = D45,

D234 = ⟨ζ1 + ζ5, ζ1 + ζ5⟩ = D15,

D134 = D25,

D124 = D35.

(5.34)

Therefore, by using (5.345.34), the solution w(1234) to the fourth order linearization will
be (up to a correction term) of the form[

1

D15

(
1

D23 +D24 +D34

)
+

1

D25

(
1

D13 +D14 +D34

)
+

1

D35

(
1

D12 +D14 +D24

)
+

1

D45

(
1

D12 +D13 +D23

)
+

1

D12

1

D34
+

1

D13

1

D24
+

1

D14

1

D23

)]
× eτ

∑
j∈{1,2,3,4}(Re(ζj)x1+i|ζj |ψj Ã.

(5.35)
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Here Ã is an amplitude function which has (up to a multiplication by a power of
τ) the leading order coefficient

8q3a
(1)
0 a

(2)
0 a

(3)
0 a

(4)
0 .

Note the power 3 of the potential q here.
Similar to Section 5.25.2, where we showed that the factor (5.165.16) of the third order

linearization is non-zero, we may show that the coefficient in the brackets of (5.355.35),
call it Eδ is not zero. We have:

Lemma 5.2. The quantity

Eδ =
1

D15

(
1

D23 +D24 +D34

)
+

1

D25

(
1

D13 +D14 +D34

)
+

1

D35

(
1

D12 +D14 +D24

)
+

1

D45

(
1

D12 +D13 +D23

)
+

1

D12

1

D34
+

1

D13

1

D24
+

1

D14

1

D23
= O(δ−3) ̸= 0,

(5.36)

for all sufficiently small δ > 0.

The proof of the lemma is elementary, but involves rather long calculations. We
have placed the proof in Appendix CC.

5.6. Proof of q1 = q2 (continued). Let us then return to proving q1 = q2. Let
ζk, k = 1, . . . , 5, be as in Section 5.55.5 above. We have

ck = |ζk|
and we set

s1 = c1τ + iλ, and sk = ck, k = 2, 3, 4, 5.

The CGOs corresponding to vectors ζ5 are of the form

v(1) = e(|ζ1|τ+iλ)x1

(
τ

n−2
8 ei(|ζ1|τ+iλ)ψ1a1 + r1

)
,

v(2) = e|ζ2|τx1

(
τ

n−2
8 ei|ζ2|τψ2a2 + r2

)
,

v(3) = e|ζ3|τx1

(
τ

n−2
8 ei|ζ3|τψ3a3 + r3

)
,

v(4) = e−|ζ4|τx1

(
τ

n−2
8 ei|ζ4|τψ4a4 + r4

)
,

v(5) = e−|ζ5|τx1

(
τ

n−2
8 ei|ζ5|τψ5a5 + r5

)
.

(5.37)

Since Λq1(fϵ) = Λq2(fϵ), by Propositions 4.44.4 and 4.84.8 there are boundary values
fij and fijk, i, j, k = 1, 2, 3, 4, such that the solutions of the second linearized
equations (5.45.4) and third linearized equations{

(−∆g + V )ω
(ijk)
β = −2qβ

(
v(i)w

(jk)
β + v(j)w

(ik)
β + v(k)w

(ij)
β

)
in M,

ω
(ijk)
β = fijk on ∂M,

(5.38)

for β = 1, 2, and i, j, k all different, which are of the form

w
(ij)
β =w

(ij)
0,β + eτΨ

(ij)

R
(ij)
β ,

and ω
(ijk)
β =ω

(ijk)
0,β + eτΨ̃

(ijk)

R̃
(ijk)
β .

For given K,N ∈ N∪{0}, the correction terms R
(ij)
β and R̃

(ijkl)
β can be assumed to

be OL2(M)(τ
−N ) by taking the amplitude expansions of the CGOs v(k), k = 1, 2, 3, 4

to be precise enough (i.e. N ′ large enough). We refer to Propositions 4.44.4 and 4.84.8

for the specifics of w
(ij)
β and w

(ijk)
β .
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The phase functions Ψ(ij) and Ψ̃(ijk) satisfy at the point p0 where all the geodesics
γ1, . . . , γ5 intersect

Ψ(ij)(p0) = ζi + ζj ,

Ψ̃(ijk)(p0) = ζi + ζj + ζk.
(5.39)

The leading order coefficients of the amplitudes of w
(ik)
β and ω

(ikl)
β are

b
(ik)
−2,β(p0) =

2qβ
Dik

a
(i)
0 a

(k)
0 ,

B
(ikl)
−4,β(p0) = 4q2βa

(i)
0 a

(k)
0 a

(l)
0

1

Dikl

(
1

Dik +Dil +Dkl

)
.

(5.40)

Let us denote Ψ12345 as the sum of all the phase functions of v(1), . . . , v(5) in
(5.375.37), where τ is a parameter. More precisely, Ψ12345 is given as

Ψ12345 =
(
|ζ1|+|ζ2|+|ζ3|−|ζ4|−|ζ5|

)
x1+i

(
|ζ1|ψ1+|ζ2|ψ2+|ζ3|ψ3+|ζ4|ψ4+|ζ5|ψ5

)
.

Let us also set
Λ1234 = λ(ix1 − ψ1).

At the point p0 where all the geodesics γ1, . . . , γ5 intersect

∇gΨ12345(x1, p0) = 0 (5.41)

for x ∈ I ⊂ R by (5.295.29), and

Re(Ψ12345)(x1, p0) = 0 (5.42)

by (5.305.30). The condition (5.425.42) implies that Ψ12345 is not exponentially growing
in τ . Moreover, by (5.415.41) we have that p0 is a critical point of Ψ12345. By the
properties of ψk, the point p0 is also nondegenerate, see (3.23.2).

We multiply the right hand side of the integral identity of the fourth order
linearization (5.265.26) by τ4τ1/2 and take the limit τ → ∞. In the case p0 is the
only point where all the geodesics γ1, . . . , γ5 intersect, by stationary phase the limit
tends to

0 = cÃEδ

(
a
(1)
0 a

(2)
0 a

(3)
0 a

(4)
0 a

(5)
0

)∣∣∣
p0

∫
R
eiλx1(q31(x1, p0)− q32(x1, p0)) dx1,

where Eδ is the coefficient of w(1234) in Lemma 5.25.2 and cÃ ̸= 0 is given by a similar

formula as cA in Section 5.35.3. Here we also used that a
(1)
0 , . . . , a

(5)
0 are independent

of x1. By Lemma 5.25.2, the coefficient Eδ ̸= 0 for all small enough δ > 0. Inverting,
the Fourier transformation in the variable x1 shows that q31(x1, p0) = q32(x1, p0).
Thus

q1(x1, p0) = q2(x1, p0)

for x1 ∈ R. If there were several points where γ1, . . . , γ5 intersect, we argue similarly
as in Section 5.35.3 by using [LLLS21aLLLS21a, Lemma 6.2]. Since p0 was arbitrary, this
completes the proof.

Appendix A. Boundary determination

We prove that the DN map of the semilinear elliptic equation

(−∆g + V )u+ qum = 0 in M, u = f on ∂M

on a compact smooth Riemannian manifold with boundary determines the formal
Taylor series (the jet) of the coefficient q (in the boundary normal coordinates) on
the boundary. Here, m ≥ 2 is an integer, and V and q are smooth functions on M .
We assume also that zero is not a Dirichlet eigenvalue for the operator −∆g + V
on M .
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We expect this result to be well-known to experts on the field, but could not
find a reference on it, so we offer detailed presentation and its proof.

Proposition A.1 (Boundary determination). For m ≥ 2, m ∈ N, let (M, g) be a
compact Riemannian manifold with C∞ boundary ∂M and consider the boundary
value problem {

(−∆g + V )u+ qum = 0 in M,

u = f on ∂M,
(A.1)

where V, q ∈ C∞(M). Assume that the DN map Λq of the equation (A.1A.1) is known
for small boundary values. Then Λq determines the formal Taylor series of q on
the boundary ∂M .

In addition, if f ∈ C∞(∂M) is so small that (A.1A.1) has a unique small solution,
the DN map determines the formal Taylor series of the solution u = uf at any
point on the boundary.

Proof. Determination of Taylor expansion of q:

We first investigate solutions of our semilinear elliptic equation could be C∞-smooth
due to the following observations. Let f ∈ C∞(∂M). We consider boundary values
f0, f ∈ C∞(∂M) and ft = f0 + tf and assume that ∥f0∥C2,α(∂M) and |t| are
sufficiently small so that the DN maps at f0 and ft are both well-defined. We
denote by u0 and ut, the unique solutions of (A.1A.1) with boundary data f0 and ft
on ∂M , respectively. In addition, since V ∈ C∞(M) and f, f0 ∈ C∞(∂M), by
elliptic regularity ut and u0 are C∞(M) functions.

By linearizing the equation (A.1A.1) at t = 0, we obtain{
−∆gv +

(
V +mqum−1

0

)
v = 0 in M,

v = f on ∂M,
(A.2)

where v = lim
t→0

ut − u0
t

and u0 solves{
(−∆g + V )u0 + qum0 = 0 in M,

u0 = f0 on ∂M.
(A.3)

Moreover, v is the solution of{
−∆gv + q̃v = 0 in M,

v = f on ∂M.

where

q̃ := V +mqum−1
0 in M. (A.4)

Note that q̃ ∈ C∞(M), since u0 ∈ C∞(M) by elliptic regularity.
Since we know the DN map of the boundary value problem (A.1A.1), we know the

DN map of the linearized problem (A.2A.2). This is proven in [LLLS21aLLLS21a, Proposition
2.1], where it is shown that the DN map is C∞ in the Frechét sense. (See also
the similar result [LL22bLL22b, Theorem 2.1], which deals with local well-posedness and
linearizations of (A.1A.1) at f0 not identically 0.) It follows by [DSFKSU09DSFKSU09, Theorem
8.4.] that we know the formal Taylor series of q̃ on ∂M . In particular, by choosing

u0 = f0 = ε0 > 0 on ∂M,

for some sufficiently small constant ε0 > 0, and noting that

q =
q̃ − V

mεm−1
0

on ∂M,

it follows that we know q on the boundary ∂M .
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Next we determine first order derivatives of q on the boundary. Given a point
x0 ∈ ∂M , let x = (x1, . . . , xn) ∈ ∂M be boundary normal coordinates near x = x0
in M . Differentiating (A.4A.4) yields

∂xn q̃ =m∂xn(u
m−1
0 )q +m(∂xnq)u

m−1
0 + ∂xnV

=m(m− 1)um−2
0 (∂xnu0)q +m(∂xnq)u

m−1
0 + ∂xnV.

(A.5)

Since we have already determined the Taylor series of q̃ on the boundary and

∂xnu0 = Λq(f0),

we may determine ∂xn
q by solving it from (A.5A.5). Since we also know the derivatives

of q in tangential directions xk, where k = 1, . . . , n−1, we have determined all first
order derivatives of q on the boundary.

To determine higher order derivatives of q on the boundary, we follow an ar-
gument similar to [LLS16LLS16, Lemma 3.4]. On a neighborhood of x0 in M we may
write

Qu0 := (−∆g + V )u0 + qum0 = −∂2xn
u0 + Pu0,

where P is a non-linear partial differential operator containing derivatives in x′ up
to order 2 and in xn up to order 1. The coefficients of P depend on pointwise values
of q. By expressing

∂2xn
= P −Q

we obtain

∂2xn
u0 = Pu0 −Qu0 = Pu0. (A.6)

Since we already know the quantities

u0, ∂x′u0, ∂
2
x′u0, ∂xnu0, ∂x′∂xnu0, q, ∂x′q and ∂xnq, (A.7)

it follows from (A.6A.6) that the second derivative ∂2xn
u0 can be also determined. By

using this and differentiating (A.5A.5), we may determine second order derivatives
of q on the boundary. The higher order derivatives of q on the boundary can be
determined by differentiating (A.6A.6) and using (A.5A.5) in succession, and by using
induction.

Determination of Taylor expansions of solutions: Let then f ∈ C∞(∂M) be
small enough so that (A.1A.1) has a unique small solution u = uf . Since we have
determined the formal Taylor series of q on the boundary, the formal Taylor series
of u on the boundary is determined by differentiating (A.6A.6) with u in place of u0.

□

Appendix B. Proof of the Carleman estimate with boundary terms

In this section, we proceed to prove Lemma 4.64.6. Let (M, g) be a compact,
smooth, transversally anisotropic Riemannian manifold with a smooth boundary
and let V ∈ L∞(M). There exists constants τ0 > 0 and C > 0 depending only
on (M, g) and ∥V ∥L∞(M) such that given any |τ | > τ0 and any v ∈ C2(M), the
following Carleman estimate holds

∥e−τx1(−∆g + V )(eτx1v)∥L2(M) + |τ | 32 ∥v∥W 2,∞(∂M) + |τ | 32 ∥∂νv∥W 1,∞(∂M)

+ |τ | 32 ∥∂2νv∥L∞(∂M) ≥ C|τ | ∥v∥L2(M), (B.1)

Proof of Lemma 4.64.6. Wemay assume without loss of generality that v is real-valued
and also that τ > 0. The proof for the case τ < 0 follows analogously. Throughout
this proof, we use the notation C to stand for a generic positive constant that is
independent of the parameter τ . We also write v̂ to stand for a C2-extension of
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the function v into a slightly larger manifold M̂ ⋐ R×M0 with smooth boundary,
such that v ∈ C2

c (M̂) and that there holds

∥v̂∥W 2,∞(M̂\M) ≤ C(∥∂2νv∥W 2,∞(∂M) + ∥∂νv∥W 2,∞(∂M) + ∥v∥W 2,∞(∂M)), (B.2)

for some constant C > 0, only depending on (M̂, g). In order to prove the latter
estimate, let us consider the normal coordinate system (y1, . . . , yn) = (y1, y

′) near
∂M in R×M0 where we are assuming that ∂M is given by {y1 = 0}, and the metric
g near ∂M is given in these coordinates via the expression

g = (dy1)
2 + g′(y1, y

′),

where g′ can be viewed as a family of smooth Riemannian metrics on ∂M , smoothly
depending on y′ for all |y′| < δ sufficiently small. We make the convention that

y1 > 0 on M̂ \M . Let us now define v̂ on M̂ via

v̂ = v on M, (B.3)

and

v̂(y) =

(
v(0, y′) + y1 ∂νv(0, y

′) +
y21
2
∂2νv(0, y

′)

)
η(y1), y ∈ (0, δ)× ∂M, (B.4)

where η is a smooth non-negative function such that η(t) = 1 for all |t| ≤ δ
2 and

η = 0 for all |y1| ≥ δ. It is straightforward to see that v̂ ∈ C2
c (M̂). The claimed

estimate (B.2B.2) now follows from the definition (B.4B.4).
We define

Pτv = e−τx1∆g(e
τx1v), (B.5)

and note that
Pτv = ∂2x1

v +∆g0v + 2τ∂x1
v + τ2v.

We claim that∣∣∣∣∫
M

Pτv ∂x1
v dVg

∣∣∣∣+ Cτ2∥v∥2W 2,∞(∂M) + Cτ2∥∂νv∥2W 2,∞(∂M)

+ Cτ2∥∂2νv∥2W 2,∞(∂M) ≥ 2τ∥∂tv∥2L2(M). (B.6)

To show (B.6B.6) we begin by writing∫
M

Pτv ∂x1
v dVg =2τ

∫
M

|∂x1
v|2 dVg

+

∫
M

∂2x1
v ∂x1

v dVg︸ ︷︷ ︸
I

+

∫
M

∆g0v ∂x1
v dVg︸ ︷︷ ︸

II

+

∫
M

τ2v ∂x1
v dVg︸ ︷︷ ︸

III

.

Note that M ⋐ R ×M0 and dVg = dx1 dVg0 . We can use integration by parts to
bound each of the terms I–III as follows. For I, we first note that∫

M̂

∂2x1
v̂ ∂x1

v̂ dVg =
1

2

∫
M̂

∂x1
(|∂x1

v̂|2) dVg = 0.

Together with the estimate (B.2B.2), we obtain

|I| =

∣∣∣∣∣
∫
M̂\M

∂2x1
v̂ ∂x1

v̂ dVg

∣∣∣∣∣
≤ C

(
∥∂2νv∥2W 2,∞(∂M) + ∥∂νv∥2W 2,∞(∂M) + ∥v∥2W 2,∞(∂M)

)
.

For II, since [∂x1 ,∆g] = 0 on (M̂, g), we may apply integration by parts again to
deduce that ∫

M̂

∆g0 v̂ ∂x1
v̂ dVg = 0.
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Thus, using (B.2B.2), we can show analogously to term I that

|II| ≤ C
(
∥∂2νv∥2W 2,∞(∂M) + ∥∂νv∥2W 2,∞(∂M) + ∥v∥2W 2,∞(∂M)

)
.

Finally for the term III we first note that

τ2
∫
M

v̂ ∂x1
v̂ dVg =

τ2

2

∫
M

∂x1
(v̂2) dVg = 0.

Thus, using (B.2B.2), we have

|III| ≤ Cτ2
(
∥∂2νv∥2W 2,∞(∂M) + ∥∂νv∥2W 2,∞(∂M) + ∥v∥2W 2,∞(∂M)

)
.

Combining the previous three bounds yields the claimed estimate (B.6B.6). Using
(B.6B.6) and applying the Cauchy-Schwarz inequality∣∣∣∣∫

M

Pτv ∂x1
v dVg

∣∣∣∣ ≤ 1

4τ
∥Pτv∥2L2(M) + τ∥∂x1

v∥2L2(M),

we deduce that

∥Pτv∥2L2(M) + Cτ3∥v∥2W 2,∞(∂M) + Cτ3∥∂νv∥2W 2,∞(∂M)

+ Cτ3∥∂2νv∥2W 2,∞(∂M) ≥ τ2∥∂x1
v∥2L2(M), (B.7)

We recall that by the standard Poincaré inequality on M̂ , there exists C > 0 such
that

∥∂x1
w∥L2(M̂) ≥ C∥w∥L2(M̂) ∀w ∈ C1

0 (M̂).

Also, analogously to the proof of the estimate (B.2B.2), given any r ∈ C1(M), there

is a C1-extension of r into M̂ such that r̂ ∈ C1
c (M̂) and there holds

∥r̂∥W 1,∞(M̂\M) ≤ C(∥∂νr∥W 1,∞(∂M) + ∥r∥W 1,∞(∂M)), (B.8)

for some constant C > 0 only depending on (M̂, g). Combining the latter two
bounds, we deduce that given any v ∈ C1(M) there holds

∥∂x1
v∥L2(M) ≥ C1∥v∥L2(M) − C2∥v∥W 1,∞(∂M) − C3∥∂νv∥W 1,∞(∂M), (B.9)

for all v ∈ C1(M), where the positive constants C1, C2 and C3 only depend on
(M, g).

Via the bounds (B.7B.7)–(B.9B.9), we deduce that

∥(Pτ − V )v∥2L2(M) + Cτ3∥v∥2W 2,∞(∂M) + Cτ3∥∂νv∥2W 2,∞(∂M)

+ Cτ3∥∂2νv∥2W 2,∞(∂M) ≥ τ2∥v∥2L2(M). (B.10)

This proves the assertion. □

Appendix C. Computations of Dik

In the end of this paper, we compute the values Dik, for different sub-indices
i, k ∈ {1, 2, 3, 4, 5}. Recalling that

ζ1 = ξ1, ζ2 = ξ2,

ζ3 =

(
1 +

√
2

2− δ

)
ξ3, ζ4 =

(
1 +

√
2

2− δ

)
ξ4,

ζ5 =

√
2

2− δ
(ξ1 + ξ2),
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and

ζ1 = |ζ1|e1 + iζ1, ζ2 = |ζ2|e1 + iζ2,

ζ3 = |ζ3|e1 + iζ3, ζ4 = −|ζ4|e1 + iζ4,

ζ5 = −|ζ5|e1 + iζ5,

where

|ξ1| = |ξ2| = 1, ⟨ξ1, ξ2⟩ = 1− δ,

ξ3 = − 1

1 + δ
(ξ1 + δξ2), ξ4 = − 1

1 + δ
(δξ1 + ξ2).

Via straightforward computations, we have

⟨ξ1, ξ2⟩ = 1− δ, ⟨ξ1, ξ3⟩ = −1 + δ − δ2

1 + δ
, ⟨ξ1, ξ4⟩ = − 1

1 + δ
,

⟨ξ2, ξ3⟩ = − 1

1 + δ
, ⟨ξ2, ξ4⟩ = −1 + δ − δ2

1 + δ
, and ⟨ξ3, ξ4⟩ =

1 + δ + δ2 − δ3

(1 + δ)2
.

By

Dij = ⟨ζi + ζj , ζi + ζj⟩,

for different i, k ∈ {1, 2, 3, 4, 5}, direct computations yield that

D12 =(|ζ1|e1 + iζ1 + |ζ2|e1 + iζ2) · (|ζ1|e1 + iζ1 + |ζ2|e1 + iζ2)

=2 (|ζ1||ζ2| − ⟨ζ1, ζ2⟩)
=2 (|ξ1||ξ2| − ⟨ξ1, ξ2⟩) = 2δ,

(C.1)

D13 =(|ζ1|e1 + iζ1 + |ζ3|e1 + iζ3) · (|ζ1|e1 + iζ1 + |ζ3|e1 + iζ3)

=2 (|ζ1||ζ3| − ⟨ζ1, ζ3⟩)

=2

(
1 +

√
2

2− δ

)
(|ξ1||ξ3| − ⟨ξ1, ξ3⟩)

=2

(
1 +

√
2

2− δ

)(
2 + 2δ +O(δ2)

)
,

(C.2)

D14 =(|ζ1|e1 + iζ1 − |ζ4|e1 + iζ4) · (|ζ1|e1 + iζ1 − |ζ4|e1 + iζ4)

=− 2

(
1 +

√
2

2− δ

)
(|ξ1||ξ4|+ ⟨ξ1, ξ4⟩)

=− 2

(
1 +

√
2

2− δ

)
δ +O(δ2)

1 + δ
,

(C.3)

D15 =(|ζ1|e1 + iζ1 − |ζ5|e1 + iζ5) · (|ζ1|e1 + iζ1 − |ζ5|e1 + iζ5)

=− 2 (|ζ1||ζ5|+ ⟨ζ1, ζ5⟩)

=− 2

√
2

2− δ
(|ξ1||ξ1 + ξ2|+ ⟨ξ1, ξ1 + ξ2⟩)

=− 8 +
δ

2
+O(δ2),

(C.4)
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D23 =(|ζ2|e1 + iζ2 + |ζ3|e1 + iζ3) · (|ζ2|e1 + iζ2 + |ζ3|e1 + iζ3)

=2

(
1 +

√
2

2− δ

)
(|ξ2||ξ3| − ⟨ξ2, ξ3⟩)

=2

(
1 +

√
2

2− δ

)(
2 + δ +O(δ2)

1 + δ

)
.

(C.5)

In order to compute D24 more carefully, let us recall the Taylor expansion of√
1 + δ = 1 + δ

2 − δ2

8 +O(δ3), then we have

D24 =(|ζ2|e1 + iζ2 − |ζ4|e1 + iζ4) · (|ζ2|e1 + iζ2 − |ζ4|e1 + iζ4)

=− 2 (|ζ2||ζ4|+ ⟨ζ2, ζ4⟩)

=− 2

(
1 +

√
2

2− δ

)
(|ξ2||ξ4|+ ⟨ξ2, ξ4⟩)

=− 2

(
1 +

√
2

2− δ

)(√
1 + 2δ − δ2 − (1 + δ − δ2)

)
=− 2

(
1 +

√
2

2− δ

)(
1 + δ − δ2 +O(δ3)− (1 + δ − δ2)

)
=− 2

(
1 +

√
2

2− δ

)
O(δ3)

1 + δ
,

(C.6)

D25 =(|ζ2|e1 + iζ2 − |ζ5|e1 + iζ5) · (|ζ2|e1 + iζ2 − |ζ5|e1 + iζ5)

=− 2 (|ζ2||ζ5|+ ⟨ζ2, ζ5⟩)

=− 2

√
2

2− δ

(√
4− 2δ + 2− δ

)
=− 8 + δ +O(δ2),

(C.7)

D34 =(|ζ3|e1 + iζ3 − |ζ4|e1 + iζ4) · (|ζ3|e1 + iζ3 − |ζ4|e1 + iζ4)

=− 2 (|ζ3||ζ4|+ ⟨ζ3, ζ4⟩)

=− 2

(
1 +

√
2

2− δ

)2

(|ξ3||ξ4|+ ⟨ξ3, ξ4⟩)

=− 2

(
1 +

√
2

2− δ

)2
1

(1 + δ)2
(
2 + 3δ − δ3

)
,

(C.8)
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D35 =(|ζ3|e1 + iζ3 − |ζ5|e1 + iζ5) · (|ζ3|e1 + iζ3 − |ζ5|e1 + iζ5)

=− 2 (|ζ3||ζ5|+ ⟨ζ3, ζ5⟩)

=− 2

1 + δ

(
1 +

√
2

2− δ

)√
2

2− δ

(√
4− 2δ(1 + δ +O(δ2))− 2− δ + δ2

)
=− 2

1 + δ

(
1 +

√
2

2− δ

)√
2

2− δ

×
(
(2− δ

2
+O(δ2))(1 + δ +O(δ2))− 2− δ + δ2

)
=− 1

1 + δ

(
1 +

√
2

2− δ

)√
2

2− δ

(
δ +O(δ2)

)
(C.9)

and similarly,

D45 =(−|ζ4|e1 + iζ4 − |ζ5|e1 + iζ5) · (−|ζ4|e1 + iζ4 − |ζ5|e1 + iζ5)

=2 (|ζ4||ζ5| − ⟨ζ4, ζ5⟩)

=2

(
1 +

√
2

2− δ

)√
2

2− δ
(|ξ4||ξ1 + ξ2| − ⟨ξ4, ξ1 + ξ2⟩)

=
2

1 + δ

(
1 +

√
2

2− δ

)√
2

2− δ

(√
4− 2δ(1 + δ +O(δ2)) + 2 + δ − δ2

)
=

2

1 + δ

(
1 +

√
2

2− δ

)√
2

2− δ

(
4 +

5

2
δ +O(δ2)

)
.

(C.10)

Proof of Lemma 5.25.2. With (C.1C.1)–(C.10C.10) at hand, let us split the analysis into two
cases.
(1) By using (C.5C.5), (C.6C.6) and (C.8C.8), we have that 1

D23+D24+D34
is a bounded as

δ → 0. Similarly, (C.2C.2), (C.3C.3) and (C.8C.8) imply that 1
D13+D14+D34

is also bounded

as δ → 0. Similarly 1
D12+D13+D23

is bounded as δ → 0. On the other hand, by

(C.1C.1), (C.3C.3) and (C.6C.6), we observe that 1
D12+D14+D24

= O(δ−1). Meanwhile, D−1
15 ,

D−1
25 and D−1

45 are bounded as δ → 0, but D−1
35 = O(δ−1).

(2) Similarly, 1
D12

1
D34

= O(δ−1), 1
D13

1
D24

= O(δ−3) and 1
D14

1
D23

= O(δ−1).

Therefore, combining the above, we conclude that

Eδ =

∣∣∣∣ 1

D15

(
1

D23 +D24 +D34

)
+

1

D25

(
1

D13 +D14 +D34

)
+

1

D35

(
1

D12 +D14 +D24

)
+

1

D45

(
1

D12 +D13 +D23

)
+

1

D12

1

D34
+

1

D13

1

D24
+

1

D14

1

D23

∣∣∣∣
≥C0

δ3
− C1

δ2
− C2 > 0,

for all sufficiently small δ > 0, where C0, C1 and C2 are some positive constants
independent of δ. Hence, the coefficient Eδ = O(δ−3) ̸= 0 for all sufficiently small
δ > 0. □
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[CF21] Cătălin I. Cârstea and Ali Feizmohammadi. An inverse boundary value problem for
certain anisotropic quasilinear elliptic equations. J. Differential Equations, 284:318–

349, 2021.
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