AN INVERSE PROBLEM FOR A SEMILINEAR ELLIPTIC
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EQUATION ON CONFORMALLY TRANSVERSALLY
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ABSTRACT. Given a conformally transversally anisotropic manifold (M, g), we
consider the semilinear elliptic equation
(=Ag+V)u+qu? =0 on M.

We show that an a priori unknown smooth function g can be uniquely de-
termined from the knowledge of the Dirichlet-to-Neumann map associated to
the equation. This extends the previously known results of the works [FO20,
LLLLS21a]. Our proof is based on over-differentiating the equation: We lin-
earize the equation to orders higher than the order two of the nonlinearity
qu?, and introduce non-vanishing boundary traces for the linearizations. We
study interactions of two or more products of the so-called Gaussian quasi-
mode solutions to the linearized equation. We develop an asymptotic calculus
to solve Laplace equations, which have these interactions as source terms.

Keywords. Inverse problems, boundary determination, semilinear elliptic
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1. INTRODUCTION

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3 with
a smooth boundary. We assume that (M, g) is conformally transversally anisotropic
(CTA), that is to say,

M € I x My, (1.1)
and the metric g has a smooth extension to R x My so that
g = c(x1,2") (dry ® dxy + go(x')), (1.2)

where (Mo, go) is a compact (n — 1)-dimensional Riemannian manifold with a
smooth boundary M, | ]. Let ¢,V be real-valued smooth functions
on M and consider the semi-linear elliptic equation:

(1.3)

(=2, +V)u+qu?=0 in M,
u=f on OM.

We make the standing assumption that 0 is not a Dirichlet eigenvalue for the
operator —Ag,+ V. As shown in | , Proposition 2.1], the Dirichlet problem
(1.3) is well-posed for sufficiently small Dirichlet data f. Precisely, given any « €
(0,1), there exists C, ¢ > 0 such that for all

f € Us = {heC®@M)]||flczacom <5},
the Dirichlet problem (1.3) has a unique solution « in the set
{we C**(M)| |wl| 2.y < C8}. (1.4)
Moreover,

ullcz.eary < Cllfllcze o)
We define the associated Dirichlet-to-Neumann map (DN map in short) for (1.3)
by

Ayf = Ovuly,, for f e Us,

where u is the unique solution to (1.3) that lies in the set (1.4) and v denotes the
unit outward normal vector field on OM.

In this paper, we consider the following inverse problem: Given an a priori fixed
CTA manifold (M,g) and a smooth zeroth order coefficient V', is it possible to
recover an a priori unknown function ¢ given the knowledge of the map A,? We
show that this is indeed possible under the following minor technical assumption
on the transversal manifold (M, go):

(H1) Given any p € My, there exists a non-tangential geodesic passing through p
that has no self-intersections.

Precisely, we prove the following uniqueness result.
Theorem 1.1. Let (M,g) be a conformally transversally anisotropic manifold of
the form (1.1)~(1.2) and suppose that (HI) is satisfied. Let V € C*(M) and

assume that zero is not a Dirichlet eigenvalue for —Ag +V on M. Let q1,q2 €
C>® (M) and assume that for some 6 > 0 sufficiently small and for any f € Us

AQ1f = AQ2f'
Then
g =qs in M.

We will provide a discussion of the geometric assumption (H1) (and the possibil-
ity to remove it entirely) as well as the main novelties of Theorem 1.1 in Section 1.2.



1.1. Previous literature. Inverse problems for non-linear partial differential equa-
tions is a topic with a vast literature. When the manifold is assumed to be Eu-
clidean, the first result goes back to the work Isakov and Sylvester in [[S941] where
the authors considered the equation

—Au+ F(x,u) =0,

on a Kuclidean domain of dimension greater than or equal to three and studied
the problem of recovering a class of non-linear functions F(x,u) that satisfy a
homogeneity property as well as certain monotonicity and growth conditions on its
partial derivatives. The analogous problem in dimension two was first solved by
Isakov and Nachman in | ]. For further results in Euclidean geometries, we refer
the reader to the works [ , , , , , ] in the
context semilinear elliptic equations, to | , , , , , ,

, , , ] in the context of quasilinear elliptic equations and
to | , ] for fractional semilinear elliptic equations. We also mention the
early work | ] and the work [ | on similar results on Euclidean geometries
for parabolic equations.

Most of the results discussed above are based on the idea of higher order lin-
earization of nonlinear equations. The idea of a first or a second order linearization
was initiated by in | , ] and the idea of higher order linearizations was intro-
duced and developed fully by Kurylev, Lassas and Uhlmann [ ] in the context
of nonlinear hyperbolic equations over Lorentzian geometries. There, the authors
showed that in geometric settings, it is possible to solve certain classes of inverse
problems for nonlinear hyperbolic equations in a much broader geometric general-
ity compared to analogous inverse problems stated for linear hyperbolic equations.
We refer the reader to the works | , , , , , ,

, ] for more examples of inverse problems for nonlinear hyperbolic
equations solved in broad Lorentzian geometries. We also point out the simultane-
ous recovery results | , ] in inverse problems for semilinear parabolic
and hyperbolic equations in the Euclidean space.

Recently, the works | , ] introduced a similar higher order lineariza-
tion approach in the context of semilinear elliptic equations on CTA manifolds. We
also refer the reader to the more recent works | , ] on study of sim-
ilar inverse problems for nonlinear elliptic equations stated on CTA manifolds. In
[ , ], it was proved that for elliptic semilinear equations of the form

—Agu+ F(z,u)=0 on M, (1.5)

with non-linear functions F(z,z) that depend analytically on z, the problem of
recovering the differentials 0% F(z,0) with & > 3 is equivalent to the question of
injectivity of products of four solutions to the linearized equation

(—Ay+V)u=0 on M.

This density property was subsequently proved in [ , ] without im-
posing any geometric assumptions on the transversal manifold (M, go), through
studying products of four Gaussian quasimode solutions to the linear equation.
The underlying theme discovered in the latter works is that one can solve inverse
problems for nonlinear elliptic equations in CTA manifolds without imposing ad-
ditional strong assumptions on the transversal manifold (Mjy, go). This is in sharp
contrast to the study of inverse problems for linear elliptic equations on CTA mani-
folds [ , ] where additional strong assumptions must be imposed
on the transversal manifold such as simplicity or existence of a strictly convex
function on (M, go).
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In this paper, we have considered an extension of | , | that allows
non-linearities F(x,u) in (1.5) that have a quadratic term with respect to the u-
variable. As far as we know, the only previous result that is concerned with recovery
of quadratic non-linear functions on CTA manifolds is | , Theorem 2| in the
context of three and four dimensional CTA manifolds under additional geometric
assumptions on the transversal manifold.

1.2. Outline of the main novelties. One of the key themes in the recent works
that study inverse problems for nonlinear equations of the form

—Agu+qu™ =0, onM,

on CTA manifolds (M, g) with any integer m > 2 is the reduction from the problem
of recovering the unknown coefficient ¢ to the density problem of showing that the
products of m + 1 harmonic functions on (M, g) forms a dense set in L>°(M). This
reduction is based on an m-fold linearization argument for the nonlinear equation.

When m > 3, the latter density problem involves the product of four harmonic
functions. Following the arguments of | ] and choosing harmonic functions
based on Gaussian quasimode constructions near four intersecting geodesics on the
transversal factor (Mg, go), the density property can be proved. The harmonic
functions are called complex geometric optics solutions (CGOs). However, when
m = 2, one only obtains products of three CGOs corresponding to the Gaussian
quasimodes and this is not a sufficiently reach set to conclude our desired density
claim.

In this paper, we introduce a method to solve the coefficient determination prob-
lem concerning the case m = 2, by considering further linearizations of the equation
up to fourth order, rather than just considering second order linearizations of the
equation. In this sense we over-differentiate the nonlinearity, allowing us to implic-
itly obtain products of more harmonic functions. Over-differentiation of nonlinear
equations appears in many of the works on inverse problems associated to nonlinear
hyperbolic equations, see for example | , , , , ]
For example, the seminal work | | considers a wave equation in the presence
of a quadratic nonlinear term and the interaction of linearized solutions is studied
through Fourier integral operators, microlocal analysis and conormal singularities.
The paper considers fourth order linearization which can be viewed as twice over-
differentiating the equation. Heuristically, this is due to the fact that the fourth
order of linearization is roughly the first instance where information propagating
from a point source type singularity in the interior can be observed at the boundary.

To the best of our knowledge, over-differentiation of elliptic nonlinear equations
has not been treated before in the literature since there is no a calculus for studying
the interaction of Gaussian quasimodes. By this we mean studying equations of
the form

—Agw = fujug on M, (1.6)

where w1 and uy are two CGOs corresponding to Gaussian quasimodes. In our
paper, we show that the equation (1.6) can be solved asymptotically with respect
to the semi-classical parameter of the Gaussian quasimodes and in doing so we
obtain precise closed form expressions for w modulo a small correction term, see
Section 4 for details. This will be partly based on a Wentzel-Kramers—Brillouin
(WKB in short) type approximation for w as well as a new Carleman estimate on
CTA manifolds with boundary terms, see Lemma 4.6. Up to correction terms and
normalizations, this means that if the CGOs u; and usy are of the form e”/’(ao +
a_1/T+---), there is a solution w to (1.6) of the form

e (b,g/T2 +b_s/T3 +) ,



where W is the sum of the phase functions of u; and us and the coefficients b_; can
be determined from the amplitudes of u; and us.

We mention that our Carleman estimate can have future applications in other
problems that require a propagation of smallness argument from the boundary
on CTA manifolds. Our calculus for solutions of equations of the type (1.6) can
be naturally modified to apply for other equations. For example, it provides an
alternative to using singular solutions and the theory of Fourier integral operators
for inverse problems for hyperbolic equations. We refer to | | for a discussion
about the matter. We also mention that while we work in a geometric setting, our
over-differentiation method and calculus can have applications in studies of models
in R™, where one is interested in highly localized solutions to nonlinear equations
in and outside inverse problems.

Let us also mention that as the correction term in our WKB analysis of w in
(1.6) has a non-vanishing trace on OM, we need to introduce a variant of the
higher order linearization method with a family of Dirichlet data that also depend
on additional powers of the involved small parameters (see Section 2.2 and also
Section 5). Instead of using boundary values of the form ), €; f;, which is standard
in the literature, we use for example boundary values of the form

Z €ifi + Z €i€j fij-
K3 (2¥]
Here f; and f;; are functions given on the boundary M.

Finally, we remark that the assumption (H1) is only imposed in this paper in
order to simplify the presentation of the Gaussian quasimode solutions to the lin-
earized equation (2.4). This allows us to better convey the key ideas discussed
above without the additional need to discuss the additional technicality of ana-
lyzing self-intersections of geodesics. It is well known that Gaussian quasimodes
for equation (2.4) can also be constructed in the presence of self-intersections of
geodesics, see for example [ ].

1.3. Organization of the paper. The paper is organized as follows. In Section 2,
we reduce the setup of our study to a case where the conformal factor ¢ in (1.2) of
the CTA manifold is constant 1. There we also review the higher order linearization
method, and derive the linearized equations and associated integral identities we
use. We review suitable Gaussian quasimodes for the first linearized equations
in Section 3. In Section 4, we find solution formulas for the special solutions of
the second and third linearized equations. In Section 5 we prove Theorem 1.1 by
utilizing these solutions. Finally, we prove a boundary determination result, derive
Carleman estimates and compute coefficients related to products of solutions in
Appendix.

2. PRELIMINARIES

2.1. Reduction to the case ¢ = 1. We show that for our purposes we can assume
without any loss in generality that ¢ = 1. This is standard, see e.g. | ]
or | , Section 2.3]. To see this, let us define § = (dz1)? + g so that g = cg.
Using the transformation law for changes of the Laplace-Beltrami operator under
conformal rescalings of the metric, we write

c#(ngquVquun) = —Ago+ Vo4 §?, (2.1)
where v = ¢"Tu, V = ¢V — (chszg c_anz) and § = ¢~ "z ¢. This shows that
there exists a one to one correspondence between solutions to (1.3) with f € Uy
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and solutions to the following equation
Ay +V)v+ g2 =0, reM (2.2)
v=h, r € OM

provided that Hc_"T_QhHCz,a(aM) < §. Hence, the DN map for (1.3) determines the
DN map for (2.2). Thus the problem of unique recovery of ¢ from the DN map for
(1.3) is equivalent to that of determining ¢ from the DN map for (2.2). With this
observation in mind, for the remainder of this paper and without loss of generality,
we assume that ¢ = 1 so that

g =dx1 ®dxy + go.

2.2. Higher order linearization method with boundary values. In this sec-
tion, we discuss the higher order linearization method of equation (1.3). Our
method is slightly different from the, by now standard, one | , ]. The
difference is that we include boundary terms, which are not linear in the used small
parameters.

Let ¢; € R and f;, fij, fijx € C**(OM), for some 0 < o < 1 and for 4,5,k =
1,...,4, and € = (€1, €2,€3,€4). In the most general case of this paper, we take
boundary values f to be of the form

4 4 4
fe= Zeifi + Z €i€jfij + Z ci€jerfije on  OM. (2.3)
i=1 ij=1 i,5,k=1

Observe that the Dirichlet data f. € Uy for sufficiently parameters €;, where Us is
defined by
Us := {f € C*>*(OM)| || fllc2oom) <0},
for some sufficiently small number § > 0. By using the implicit function theorem
and the Schauder estimate for linear second order elliptic equations, one can show
that the solution us to the nonlinear equation (1.3) depends smoothly (in the
Frechét sense) on the parameters e,...,e4 (see | , , Section 2] for
detailed arguments).
The first linearization of the equation (1.3) at the zero boundary value is

{(—Ag +V)® =0 in M,

, 2.4
v@ = f, on OM, (24)

for i =1,2,3,4. Here
v =

e=0 uf7
where we have denoted ¢ = 0 for the case ¢, = €3 = €3 = ¢4 = 0. The second
linearization

€

(i) .— 92
w =07 o

of uy satisfies the second linearized equation (2.4)

(2.5)

(—Ay + VYw) = —2¢quDv@)  in M,
w(@) = fij on OM,

for different i, j = 1,2, 3,4, where the functions v() := Ope;
solutions to the first linearized equation
Furthermore, by denoting

c—o Uy are the unique

wk) = 93

€;€5€L €1€2€3€4

(1234) ._ 54
ol and w =0 |5:ouf’



one can see that they satisfy
(-A, + V)w(ik) = —2q (U(i)w(jk) 4 p@pik) 4 U(k)w(ij)) in M,
w(iik) = fijk on OM,
for different i, 5,k =1,2,3,4, and
(A, + Vw23 = —2¢ (v(1)w(234) 4 1(2)qp(134)
o3 p(124) 4 5(4)4,,(123)
w2 4 (1320 4y (19} in M,
w1234 — on OM.
(2.7)

We will construct special solutions for the above linearized equations in Section 3.

(2.6)

2.3. Integral identities for the inverse problem. Let us consider two poten-
tials g1, g2 € C*°(M). Let v®, ng), ngk) and wg234) be the respective solutions
of (2.4), (2.5), (2.6) and (2.7), where the index S = 1,2 refers to the potentials
g =qp, and 4,7,k =1,2,3,4. We denote by v ¢ C?(M) an additional solution
to the linear equation:

(=2, +V)o® =0 in M,
v® = fy on OM.

We record the integral identities for the second, third and fourth order linearized
equations.

Lemma 2.1 (Integral identities). Let {fi}2_1, {fij}{ j=1, {fi,j,k}?,j,kﬂ C C%2(0M),

and for e € R in a neighborhood of zero, define f. via (2.3). The following integral
identities hold, for each i,j,k=1,...;4 and m=1,...,5.
(1) The second order integral identity

[ oo At~ 8t s =2 [ (- @D av,. (28)
om M
(2) The third order integral identity
[ o] (= At fnds
oM e=0
:2/ {ql (v(i)ngk) + v(j)wgik) + v(k)wiij)) (2.9)
M

—gs (Uu)wgk) o@Dyl 4 v(k)wéij)) } o™ gy,

e=0 (

(8) The fourth order integral identity

/(‘3M 831626364}6:0 (Aq1f£ - qufe) f5 ds

:2/ {ql (v(l)w§234) + v(2)w§134) + v<3)w§124) I v(4)w§123)
M

+w§12)w5

g (v(l)wéz‘%) + v(g)w§134) + U(3)w§124) + v(4)wél23)

34) (13)

+ wg24) +w§14)w§23)>

+wélz)wé34)+w£13)w§24)+wé14)w§23)) o® dv,,

(2.10)
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Here, the functions v, wéik) and wéijk) are the unique C*“(M) solutions to (2.4),
(2.5) and (2.6) with ¢ = qq, respectively, for £ = 1,2, i,j,k = 1,2,3,4. Finally,
v®) € C2*(M) is the unique solution to (2.4) with Dirichlet boundary data f = fs.

Proof. The proof is based on integration by parts. We only prove (2.8) explicitly.
The other two integral identities follow similarly.

(1) Let us consider the second linearized equation (2.5) with ¢ = gg for g =1, 2.
Integrating by parts yields

/ 6621:6;' (Alth _AQ2fe) fm ds
oM =0

:/ <8V’UJ§U) 8 (l] ) fm ds

oM

:/ (Agwgij) - Agwéij)> v dVy +/ % (wgij) - wgij)) - VIp(m™) avj
M M

:/ v (wﬁ“) _ wyj)) o™ 4V, + 2/ (@1 — gD o@um gy,
M M

— / (wgm — wém> Agv(m) vy
M

:2/ (g1 — g2)o DDy g,
M

where we have utilized wi = fij = w2 on OM and (—A, + V)v™ =0in M.
(2) We have

/ elejek

The above integration by parts combined with the equations (2.4) and (2.6) results
in the claimed identity. Proof of (3) is obtained similarly. O

(Aarfe = s FdS = [ (0,007 —0,0™) 1, a5
=0 oM

3. COMPLEX GEOMETRICAL OPTICS AND (GAUSSIAN BEAM QUASIMODES

Let us introduce the complex geometrical optics type solutions for the first order
linearized equation. These are solutions to the linearized equation (2.4) that con-
centrate on planes of the form I x v, where I is an interval and ~y is an inextendible
non-tangential geodesic on M. We call them CGOs in short. We also assume in
this paper for simplicity that v does not have self-intersections.

We recall the Gaussian quasimode construction for the equation (2.4) that orig-
inated from | , Section 3] in the setting of CTA manifolds. We follow the
constructions | , Section 4.1, Proposition 5.1] and | , Section 5 and
Appendix] that allow a zeroth order term V in (2.4) as well as providing decay
estimates in higher order Sobolev spaces. We refer to these works for details of the
constructions in this section.

We first consider a unit speed non-tangential geodesic « : [l1,l2] — My that
connects two points on the boundary dM,;. We assume that v does not have self-
intersections for simplicity. We write (Mo, go) for an artificial smooth extension of
(Mp, go) into a slightly larger smooth Riemannian manifold and denote by (¢, y) the
Fermi coordinates in a tubular neighborhood of the geodesic «y, where t € [I1, 5] and
y € Bs/(R"2) for some § > 0 sufficiently small. We refer the reader to | ,
Section 3] for the details of the construction of Fermi coordinates.

We define the complex parameter

s=7174+i\, >0, MNeER,
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where i = v/—1, X is to be viewed as a fixed parameter, and 7 > 0 is an asymptotic
parameter that tends to infinity. Given any K > 0 and N > 0, there exists
a positive integer N’ depending on K, N (see (3.7) for the precise choice) and
solutions vy € H¥(M) C C%%(M) for k € N sufficiently large (especially so that
H*(M) c C%%(M)) to the linear equation

(—Ay+V)vs =0 in M,
of the form

Us($17t7y) = eﬂ:szl (T

n

gZQiSw(t’y)as(zlatay) +rs(xlvta y)) ) (31)

where Y is a cutoff function supported in a ¢’-neighborhood of the origin and each

term in the right hand side has certain properties that we will describe next. In

what follows next, we describe the construction and properties of the phase term

W € C°(M), the amplitude a, € C°°(M) and the remainder term r, € C%*(M).
The phase function ¥(t,y) satisfies

b(y(t) =t VI(y(t) =), Im(D*Y(y(t))) 20, Im(D*$lyq)r) > 0.

(3.2)
More explicitly, in terms of the Fermi coordinates we can write
1 n—2
vty =t+5 > Hix(ym +O(ly), (33)
k=1

where the complex-valued symmetric matrix H(t) = (H,x(t))
expression

;';il is given by the
H(t) =Y (@)Y ~Yt), forany te [ly,ls],
and Y is a non-degenerate matrix that solves the second order linear differential
equation
Y+ DY =0 forany t€ [l

Here, the symmetric matrix D is given by D;, = %a?kgu foreach j,k=1,...,n—2.
The matrix H additionally satisfies

Im(H)(t) >0 for any t € [l1,la], (3.4)
and

det(Im(H (t))) - |det Y ()|* = 1.
Next we describe the amplitude function in the expansion (3.1). The amplitude
as(x1,t,y) is of the form

+ +
ay (z1,t, Qs (xl,t,y)
as<z1,t,y>:<ao<t,y>+l(; Doy s ht) >x('§') (35)

where the principal amplitude aq(t,y) itself is given by the expression
ao(t,y) = aoo(t) +ao,1(t,y) + -+ +aon—1(t,y).
Here, ago(t) is an explicit positive function on + given by the expression
1
ao,0(t) = (detY'(¢))" 2, (3.6)

and the subsequent terms ag ;(¢,y) with j = 1,2,..., N’ — 1 are homogeneous
polynomials of degree j in the y-coordinates. These terms arise as solutions to
certain transport equations along the geodesic v on M.

The remaining amplitude terms a,f, for k = 1,2,...,N’ — 1, have analogous
expressions of the form

a:kt(xl,tvy) = alzi:,o(xlvtyy) + a}:i:,1(x17ta y) +-+ al:i:,N/_l(tay)a
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where aki ; are homogeneous polynomials of degree j in the y-coordinates, for j =

0,1,..., N’ — 1. These amplitudes arise as solutions to certain complex transport
equations on the plane y =0 on M (see | , Section 4] for more details).
Finally, using [ , Proposition 2, Lemma 4] and fixing the order
N' =2+2N + 2K, (3.7)

for the Gaussian quasimode construction, it follows that given any fixed K € N,
there exists a remainder term 7, in (3.1) in the Sobolev space H¥ (M) satisfying
the decay estimate

I7sll e any S 77N (3.8)

Remark 3.1. Let us emphasize that the above estimate has two mice features.
Firstly, we obtain precise decay estimates for the remainder term rs with respect to
the large parameter 7. Secondly, note that the regularity of the CGO ansatz vs is
the same as that of rs and therefore by choosing for example any fized K > 5 + 4
and using the Sobolev embedding H=T* C C3(M), we may construct remainder
terms r, that are in C3(M). This would be suitable for us, as we will later use the
boundary traces of the CGO solutions above in order to apply Lemma 2.1.

4. SOLUTIONS FOR THE LINEARIZED EQUATIONS

We discussed CGO solutions for the first order linearization of the equation
(=Ay; + V)u + qu? = 0 at the zero solution as in the previous section. In this
section, we construct solutions for the second and third order linearizations of the
equation.

4.1. Solutions for the second order linearization. In what follows, we assume
that geodesics do not have self-intersections. Let pyg € My and let 71 be a non-
tangential geodesic passing through pg in some direction v € S,,My. Here Sy, My
stands for unit length vectors of T}, My. We will use the following definition.

Definition 4.1. We say that two geodesics intersect properly if they intersect and
are not reparametrizations of each other.

Assume that 5 is another nontangential geodesic, and that it intersects ~; prop-
erly at po. If v € S, M) is the velocity vector of 2 at pg, then v’ is linearly inde-
pendent of v due to the uniqueness of geodesics. Due to a compactness argument
(see e.g. [ ]), the geodesics 71 and 2 can only intersect at a finite number
of points.

We consider CGO solutions v = vg) and v(® = vg) to the equation (2.4)
corresponding to geodesics 7, and 72, respectively. That is, the CGOs v for
k =1,2 are of the form (3.1):

k) — sz (T"T_?eiskwka(f) + r_(rk)) , (4.1)

where Yy, a(Tk) and r&k) have the properties described in the previous section. We

have also denoted
Sk = cxT + iXg, (42)

where ¢, A, € R, and 7 > 0 is a (large) parameter.

In the next lemma, we construct solutions for the second linearized equation.
After proving the lemma, in Proposition 4.4, we show that if the DN map is known,
the boundary value of the solutions can be fixed.
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Lemma 4.2. Let K,N € NU{0}. Assume that vV and v® are CGOs, which
correspond to properly intersecting geodesics on My and are of the form (4.1). If
the restrictions of the amplitudes a'*) to My are supported in small enough neigh-
borhoods of the geodesics vy, for k = 1,2, and N' = N'(K, N) is large enough, then
the equation

(A + V)w = —2qvWv® in M (4.3)
has a smooth solution w up to the boundary OM with the following properties: The

solution w s of the form
w=wy+e VR,

where

wo = 7—”4_2e(islisz)xl+i(51wl+51wl)bT:
with

1 1 1

b-r = 7b_2 + 73b_3 +-- 4+ Wb—QN’a
T T T
2q 1 () (44)
b_g ag -

- (£ep £ e2)? — |e1 V9o, + CQV901/12|2%

The function ¥ is given by

U = (fc £ co)xy + ic1y)r + icotbs. (4.5)
and R = R, is a remainder term that satisfies

IRl e ary S 77

Proof. We first find an approximate solution for the equation

(=Ay + V)ig = —2¢VYVP in M, (4.6)
where

VT(k) zeﬂ:skmleiskd}k a.(,—k)

After that, we scale Wy and correct it by using either Carleman or elliptic estimates
to a solution of (4.3). Here 1, and a'*) are constructed with respect to geodesics
v, that intersect properly on the transversal manifold M.
We shorthand our notation and write
e:l:slfrleisl’(/}l e:‘:SQ.’EleiSQwQ = eT\I/eA7
where ¥ is as in (4.5) and
A =i(FM £ A2)z1 — Mhr — Aatha.

Using the expressions for the amplitude functions (3.5), the equation (4.6) can be

written as
2(N’'—-1)

. - E_
(Ag—V)wg =e Yeh Z %
k=0

where the functions E_j, € C®°(M), k=0,1,...,2(N’ —1), are supported near the
intersection points of the geodesics v; and 5. We have

Ey = 2qaél)a(()2).
Let us consider a WKB ansatz for wg of the form
e™b.
A direct calculation shows that

(A, —V) (eTq’Z))

TV (72(%\1/, VIUND + 7[2(V9D, VIT) + H(A,T)] + (A, — V)A) ’
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where (1, () denotes the complexified Riemannian inner product. At the center of

n
normal coordinates (n,{) =n-¢ = Znig}, for any n,¢ € C™. Note that (-, -) is
i=1
not a Hermitian inner product of complex vectors. Especially (n,7) = 0 does not
imply the complex vector n = 0. We assume that b, is an amplitude function of
the form
1

2
T
At an intersection point of the geodesics, we have by the properties of Gaussian
beams (see (3.2)) that
VIU = (£e1 £ ea)er + i1 VOYy +icaVPy = (c1 £ ca)er +i(eryn + caya),
where 47 and 4, are the velocity vectors of 7, and 5 at the intersection point. Here
e1 = Oy, x, for & = (21,...,x,). Since the geodesics 1 and -y, intersect properly
(VIU, VIU) = (L1 £ 2)? — |e1 VU1 + 2 V0o |?
= +2c1c0 + 5 — 3 — 2c1¢2(1,2) — €3
= 2c1c2 ((J1,92) F1) #0
at the intersection points of the geodesics. By the above and assuming that a(")
and a(? are supported in small enough neighborhoods of 4, and 7, we have

[(VIW,VIT)| > constant > 0 (4.8)

on the support of each E_g, for all k =0,1,...,2(N’' —1).
Let us set by = b_; = 0 and define the coefficients b_j; for k = 2,...,2N’
recursively by the formula
e e [2(V9b_p41, VI) + b 1A,0] = (Ag = V)b_gpo
ok (V90 V9l) '
specially,

R . 1. 1.
b, = b_o+ ngb_g + -+ wa—ZN’- (47)

(4.9)

N 2q
oA (1), (2)
b2 = Geg, veg) 0 Y0

We also see by a recursive inspection that by, is supported on the set where (4.8)
holds. Thus by are well-defined. It follows by re-indexing sums and using b_; =
by = 0, such that

(8, = V) (e77b,) = 2qV OV
N’ A . -
Y [P VI + (T, 990 4 by (A,
k=2
+7 R (Ag = V)boy, — eAE—k+2}
=Y (T_QN/+1 ([2<v98_2]\[/, Vg‘l/> + I;—QN/(Ag\I/)} + (Ag - V)[;—QN"H)
+ T—2N’(Ag _ V)szN/); (410)

where we have used (4.9) to get to the last equality.
Next, we scale and correct e”Vb, so that it solves (4.3). We write

n—2 ~ ~
n=2 Ly
w=71 % € b+ R,.

Note that
qv(l)v(2) — qT”T’r"VT(l)VT(Z) + qeislx1i32x1r7
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where 7 corresponds to the correction terms (1) and ) and is given by

r= T&l)T%ei”wag) + 7“52)7'%2 eis”’blag) + 7“9)7“52).

Hence, R, solves

(By = VIR = = [(8g = V)7 T e, — 277 qUVD)| 4 2gemimtsany,
(4.11)
whenever w solves (4.3). Now, if N’ is chosen large enough, i.e.
N'>2+2N +4K,
then we have 7 = Opx () (77N) by combining the bounds (3.8) for the correction
terms 7“56 ), B = 1,2 together with the bounds

T €22 | e (agy + 7T €2 g ary S T (4.12)

For example, see | , Lemma 4] for the estimate (4.12).
Redefining N’ to be larger, if necessary, the equation (4.11) for R. together with
(4.10) implies
(Ag — V)R-,— = €T(iclic2)rloHK(M) (TiN).
By writing
R, = e TEaxe)uip o ang  p = e_AI;T,

and in the case that

:l:Cl + Co 7é 0,
the claim in the lemma follows from | , Proposition 2] (also from the Carleman
estimates | , Lemma 4.1, Proposition 4.3]). The claim that R, and

consequently w are actually smooth functions follows from the previous reference
together with the fact that the right hand side of the above equation for R, is a
smooth function on M. Alternatively, in the case that

:|:Cl + Cy = 0,
we may impose zero boundary conditions for R, and use standard elliptic estimates
to complete the proof of the lemma. O

Remark 4.3. Let us emphasize that the function w constructed above is globally
well-defined on M. Indeed, recalling that M C I x My we observe that for each
fized x' € I, the principal function wg is smoothly defined in x' and it is com-
pactly supported and smooth in a small neighborhood of the intersection of the two
geodesics in My. With regards to the remainder term R,, we remark that in the
case £c1 £ co # 0, R, is a smooth function defined on an open manifold U such
that M € U, which satisfies

1R llax @y S N

see e.g. | |. In the case +c1 £ co =0, R; is also smooth due to elliptic
reqularity and has zero boundary values on OM.

Let us next consider the second linearized equation (2.5) for two possibly different
potentials ¢; and ¢g2. We show that if A, = Ag,, then the solutions of Lemma 4.2
corresponding to potentials g1 and ¢ can be taken to have same boundary values.

Proposition 4.4. Assume as in Lemma 4.2 and adopt its notation, and assume
that Ag, = Aq,. Then the second linearized equations

(A, + V)w® = —2¢50M0® | g =12, (4.13)
have solutions of the form

w® = P 4 VRO,



14 A. FEIZMOHAMMADI, T. LIIMATAINEN, AND Y.-H. LIN

Here
w(()'B) _ 7_"‘4_2 e(:I:sl:t52)f61+i(81¢1+52w2)b(5),
D = ) 4 g Y,
B 2qp 1) (2
b'f) = (1))

(£c1 +e2)? — |e1 VIou; + cgvg0¢2|2a0
Moreover R®) = Opzn(t7N) (8=1,2) and
1 _ (2
w! )‘8M = )‘8M'
In order to prove Proposition 4.4, we need a boundary determination result:

Proposition 4.5 (Boundary determination). For m > 2, m € N, let (M, g) be a
compact Riemannian manifold with C*° boundary OM and consider the boundary
value problem

{—A +V)u+qu™ =0 in M, (4.14)

g
u=f on OM.

Assume that the DN map A, of the equation (4.14) is known for small boundary
values. Then A, determines the formal Taylor series of ¢ on the boundary OM.

In addition, if f € C*“(OM) is so small that (4.14) has a unique small solution,
the DN map determines the formal Taylor series of the solution v = uy at any
point on the boundary.

We also need the following Carleman estimate with boundary terms.

Lemma 4.6 (Carleman estimate with boundary terms). Let (M, g) be a compact,
smooth, transversally anisotropic Riemannian manifold with a smooth boundary.
Let V € L*®(M). There exists constants 19 > 0 and C' > 0 depending only on
(M, g) and ||V||p=(n) such that given any |7| > 7o, and any v € C*(M), there
holds

Clrlvllz2ary <le™™ (=Ag + V(™™ 0) | 2qar) + 712 [[v]lw2o< oar) (4.15)

3 3
+ 712 (|0uv || w2 (oary + [TI2 1020 w2 (a01)s

We have placed the proofs of the above two results in the the Appendix A and B,
respectively. The proof of Proposition 4.5 uses a standard boundary determination
result for linearized second order elliptic equations. The proof of Lemma 4.6 is
by integration by parts and using standard elliptic estimates. In this paper, the
preceding Carleman estimate with the L?(M) bound is sufficient in deriving the
upper bound for the correction term R®) in Proposition 4.4 for § = 1,2; however
let us also mention that analogous Carleman estimates with boundary terms can
be obtained in higher Sobolev spaces H* (M), for k € N.

Proof of Proposition 4.4. Let us first consider the case +c¢; + ¢o # 0. By Lemma
4.2 we have a smooth solution of the form

w? = w((f) +e™YR®
for the equation
(=D + V)w® = —2¢y0Wp?),

In general, controlling the boundary value of R(® is hard. As already mentioned in
Remark 4.3, we have that R is a smooth function defined on an open manifold
U such that M € U, which satisfies

C
HR(2)||HK(U) < TTV
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if N' = N'(K, N) was chosen large enough.
By redefining K as K + 5/2 (and thus also redefining also N’ larger) and using
trace theorem
RP|or = O onny (77) (4.16)
and

ORD| = Oproan (), R = Oproan(r). (417)

Let us then consider the equation (4.13) for ¢; with boundary value w(?) } onr As
0 is not a Dirichlet eigenvalue of —A, + V and noting that w?|ga/ is also smooth,
it follows from elliptic regularity (see e.g. [ ]), that there is a unique smooth
solution w™® to the equation

{(—Ag + V)w® = —2¢;0Mv@  in M,

4.18
wl) = w(2)|aM on OM. ( )

We write
w® = wt()l) +e™RW),

where w(" = 775 eEsEsmtilvitsav)p() s the WKB ansatz given as in
Lemma 4.2 such that

(Agy — V)w(()l) —2qvW®@ =™V F,

Here
F = Ogxn (™), (4.19)

which can be derived by making the WKB ansatz w(()l) precise enough (i.e. N’ large

enough). Since w) solves (=A, + V)w®) = —2¢;vMv?) | we have that RV solves
the conjugated equation

e (A = V)e™RWY = Ogw iy (7).

Unfortunately, we can not directly deduce from standard Carleman estimates that
the correction term ||[R™M)||12(ps) is small.

As matter of fact, in order to obtain that |[R™M)|z2(p is small, we use the
assumption A4, = Ay,, which implies that the DN maps of the second linearized
equations (see equation (2.5)) for ¢; and ¢o are the same, that is to say,

ag,-ejAth (fe) ’e:o = 862,iej Aq1(fe) ‘5:0'

By additionally using the boundary determination result (Proposition 4.5), we have
that
@1 =¢q2 ondM

up to infinite order. The ansatzes wél) and w(()2) depend on (M, g) and the potentials

q1 and ¢ respectively. The dependence on the potentials is local. That is, the
dependence is on pointwise values of the potentials and their derivatives, see (4.4).
It follows that

Yo fonr T 10 o (4.20)
and also
1 2 1 2
a,w} >‘8M = dwl )]W and 92w >]8M = 2wl >’6M (4.21)
Consequently, by using wi|y,, = wa2l|y,,, we have that
1 _ —TT 1 (1) _ —TY 2 (2) _ p(2
R()‘dM_e loa (! = g )‘BM_e loas (0 — g )‘BM_R()‘aM'

By (4.16) we thus have that
RW|, = Ogroa(t™).



16 A. FEIZMOHAMMADI, T. LIIMATAINEN, AND Y.-H. LIN

Furthermore, we have 0,w1|y,; = Oywa|y,, since Ag, = Ag,. Consequently, by

(4.21) we have
R0y =0, (e (W =) | =0, (e w® —uf®))|

=0,RP|,,, = Opx (7).

oM

By the boundary determination result of solutions on the boundary in Proposition
4.5, we have 0%w; |8M = 8311)2’61\4. Thus, combining (4.17) and (4.21) shows
83R(1)|8M = Opx o (7). In conclusion, we have that R solves

eT™(Ay = V)e™YRY = Oyx (™)  in M, (4.22)
LR = OHK(aM)(’TiN) on OM, (=0,1,2. '
Now, it follows from Lemma 4.6 by taking K = "7'"1 and using the Sobolev embed-

ding HX(OM) C L>(0M), and finally redefining N as N — 2 that
IBW | z2ary = O(r ).

In the remaining case +c; +c5 = 0, the correction terms RW and R@ have zero

boundary values by Remark 4.3. Since we also have w81)|aM = wé2)|aM by (4.20),
the claim follows also in this case. (|

4.2. Solutions for the third linearization. In this section, we consider solutions
for the third linearizations of (—A, + V)u+qu? = 0 at the zero solution. Recalling
that the third linearized equation is of the form

(A, + V)wlidh) = _9q (Umw(jk) 1@ pik) 4 U(k>w<z‘j>> in M, (4.23)

where vV and w*) | are solutions to (2.5) and (2.6), respectively, for different
i,j,k = 1,2,3. Again, we assume that the solutions v*) are CGOs of the form
(4.1):

oF) — gEska (T”T*eiskwkag) + r;k)) 7

where 1 corresponds to a nontangential geodesics v of (M, go). Here sp =
cpT + i\, also as before. We assume that 1, 72 and -3 intersect at the point py.
We also assume that the supports of v(*) restricted to My are so small that that the
mutual support of v, v and v(®) does not intersect the points on the geodesics
~vx where only two of the geodesics intersect. Lastly, we assume that all the pairs
of geodesics ; and 7, 7 # k, intersect properly.

In order to analyze the solution ansatz for the third linearized equation (4.23),
we can simply consider the case ¢ = 1, j = 2 and k£ = 3. By Lemma 4.2, the
equation (—A, + V)w®) = —2¢gvPv(3) has a solution of the form

w(zg) _ ’LU(()23) + efq,(za)R(gg).

Here w(()23) is given by the WKB ansatz
w(()23) _ T"T_26(:|:52:|:53)1:1+i(521/)2+53w3)b(23)7
b = 772 o 2NE
23 2q 2) (3
) — ).

 (Fep £ e3)? — e Vo, + Cgvgoi/fs\QaO

We take the solutions w3) and w('?) to be ones given by similar formulas as w(?3).
Using these formulas for w(**) and v() we see that (4.23) can be written as

3(n—2)

(A~ V)w =752 (N H + p),
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where w = w123 and

{f/ = (:|:61 +cy Cg)],‘l + iCﬂﬂl + iCQ¢2 =+ iC3’¢3

A =i(EN £ Ao £ A3)x1 — Aih1 — Aatha — Aztfs

3N'-1 4.24)

H_j (
H= % —&
k=2

p= OHK(M)(T_N)~

The amplitude H € C*°(M) is supported on neighborhoods of the points where
all the geodesics 1, 72 and 73 intersect and which do not contain points where
only two of the geodesics 7y intersect. The order 3N’ — 1 of the amplitude H is
a consequence of the respective orders 2N’ and N’ — 1 of the expansions of w(i/)
and a®). We have also assumed N’ to be large enough so that the condition for
p in (4.24) holds. Meanwhile, the factor 7252 s a result of the product of the
respective normalization factors 77 and 75 of w@ and v®). The functions
H_}, depend on ¢ only in terms of the pointwise values g and its derivatives.

By (4.4), the leading order coefficient of H satisfies
H_, :4q2aél)a(()2)a((33)

1
: <(icl + )2 — |1 V901 + 2 V90 |2
) (4.25)
ter £ e3)? — |er V9o + ez V9ous)?

1

1
+ (:I:CQ + 03)2 — ‘Cgvgoibg + 03V90¢3|2> '
If we additionally assume that
[(VIW,VIT)| > constant > 0

on the support of H, it makes sense to try an ansatz

3(n—-2) _= %
s e"veAB

for a solution w of (4.23), where

3N'+1

B_y
B= Y — (4.26)
k=4

Here B_y, k=4,3,...,2(N’ 4+ 2) are given by the recursive formula
AH_jys — [2(VIB_py1, VIU) + B3 Ag0] — (Ay — V)B_jys

B_y = = = (4.27)
(VIT,VIT)
and setting B_o = B_3 = 0. Especially
H_
—4 = ~72,\,7 (4.28)
(VIU, V)

where H_, is given in (4.25). The support of B is the mutual support of v(¥).
We obtain the following result. We omit the proof as it is a direct adaptation of
the proof of Lemma 4.2.

Lemma 4.7. Let K,N € NU {0}. Assume that vV, v® v®) are CGOs of the
form (4.1) corresponding to geodesics y1,72,7s on My, respectively, such that the
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pairs of geodesics vy and y; intersect properly for i,k =1,2,3 and i # k. Assume
additionally that U given by (4.24) satisfies

(VIU, VIT) £ 0
at the points where all the geodesics 1, o and -3 intersect. If the restrictions of

the amplitudes a® of v*) to My are supported in small enough neighborhoods of
the geodesics v, and N' = N'(K, N) is large enough, then the equation

(—Ay +V)w=—2¢ (v(l)w(%) + @13 v(?’)w(u)) in M, (4.29)

where w) is given as in Lemma 4.2 has a smooth solution w up to the boundary
OM with the following properties: The solution w is of the form

w=wy+e YR,

where the function wg is of the form

where N and B = B; are given by (4.24) and (4.26) respectively. Especially B_,
is given by (4.28). The amplitude B depends on q only in terms of the pointwise
values q and its derivatives. The remainder term R = R, satisfies

HETHHK(M) SN

As stated, the amplitude B depends on ¢ only in terms of the pointwise val-
ues ¢ and its derivatives. Thus, by assuming that we know the DN map of
(—Ay + V)u + qu* = 0, we may determine the value of wp on the boundary by
boundary determination result (Proposition 4.5). Consequently, by using the Car-
leman estimate with boundary terms (Lemma 4.6), we have the following analogous
result of Proposition 4.4. Note that

<Vg\i}, V‘ﬁ!) = (:l:Cl + Co + 63)2 — ‘Clvgo’(/h + cQVQOz/)g + 63V9°w3|2.
Proposition 4.8. Assume as in Lemma 4.7 and adopt its notation. Assume addi-
tionally that Ag, = Ag,. If the restrictions of the amplitudes a® of v%) to My are

supported in small enough neighborhoods of the geodesics vy, and N’ = N'(K,N)
is large enough, then the third linearized equations

(—Ay + V)w® = —2q3 (v(l)w(;s) + U(Q)w(ﬁl?’) + v(g)wélz)) in M, (4.30)

where wgk), for 8=1,2 and different i,k = 1,2,3, are given as in Proposition 4.4.
Moreover, the solution w'®) is of the form

w® = WP 1 Y RB),

where

w(()B) _ T3(n8—2) eT{Iv}eKB(B),

B(ﬂ) — T—4B(_,B4) et T_BN,+1B(_63)N/+1.
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Here A and U are given by (4.24). Especially, the quantity B_, in (4.28) can be
written as

1
BB 434D @ o®
-4 ™% do %o (£c1 £ 2 £ e3)? — |1 V901 + 2 VI0hy + c3VI01)5]?
1
X
(Fe1 £ e2)? — [e1VI0rhy + Va0 |?
1
ter +e3)? — |er V9o, + ez Vo2

(4.31)

M

1
+ (:ECQ + 63)2 — |CQV90’L/12 + C3V901/13|2> '
and RP) = OL2(M)(T_N), for 8 =1,2. Moreover
1 2
W )‘8M = o )’6M'

We skip the proof of Proposition 4.8 as it can be obtained from the proof of
Proposition 4.4 by replacing w by w and ¥ by U etc. The function F in (4.19) in
the proof also needs to be replaced by a function of the class OLz(M)(T_N) since
R® in Proposition 4.4 is Or2(a) (77N). We remark that by deriving Carleman
estimates similar to those in Lemma 4.6 for higher Sobolev spaces, we could in fact
have that R is of the size 7=V also in higher Sobolev spaces H% (M) by taking N’
large enough.

5. PROOF OF THEOREM 1.1

In this section we prove our main result, Theorem 1.1. We will see that it is
possible to deduce
&=
in M from third order linearizations and the DN map of the equation (—A, +
V)u + qu? = 0. Our method for the third linearized equation however does not
imply g1 = g2 in general. In order to show that

g1 = qz in M,

we in fact need to consider fourth order linearized equations. To give a proof of
Theorem 1.1, we could consider the fourth order linearization from the beginning.
However, we first consider third order linearizations and prove ¢ = ¢35 to better
explain the main ideas of the proof.

5.1. Proof of ¢? = ¢3. Let py € My, and let v; be a non-tangential geodesic that
has no self-intersections. We consider the equation

(—Ag +V)ug + QQU% =0 in M, (5.1)
ug = f on OM,
for B = 1,2, where f = f. € C**(0M) is of the form
4 4
fe = Z fifi + Z GiEjfij on OM. (52)
i=1 i,j=1

Let us recall the linearizations (5.1) from Section 2.2. The first linearization

reads
() _ :
{(Ag +V)vy’ =0 inM, (5.3)

v[(;) =/ on OM,
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where U(Bi) = 0¢,|._oup for 3 =1,2,and i = 1,2, 3,4. By the uniqueness of solutions
to (5.3), we obtain

v = ng) = vél) in M,

for i = 1,2,3,4. The second linearization of (5.1) satisfies

(A, + V)ng) _ 72qﬁv(i)v(ﬁ') in M, (5.4)
ng) = fij on o |
where (i3)
ij) _ 62
wﬂ €€ =0 UB,

for 8 = 1,2 and different ¢,5 € {1,2,3}. Lastly, the third linearization of (5.1)
satisfies

ijk i (Gk N (ik ij .
(—Ag + V)wéj ) = —2qp (v( )ng )+ U(J)wg ) 4 v(k)ng)) in M, (5.5)
w(ﬂml) =0 on OM,
where N
’LU(BZ]k) = 8§i€j€k o ug.
Since Ag, = Ag,
0 = agiEjEk =0 (A(h - qu) (ff) (5'6)
Thus, by Lemma 2.1 we have
0= / {q1 (v(i)w§jk) + v(j)wgik) + v(k)wyj))
M (5.7)

—gs (vu)wgk) oW 4 U(k)wga‘)) } oD av,,
where v( and w(ﬂj %) are the solutions of (5.3) and (5.4), respectively, for different
i,j,k=1,2,3,4and f=1,2.

We choose v(*) to be CGOs corresponding geodesics on (My, go), which intersect
properly pairwise at pg. We show that the integrand on the right hand side of (5.7)
restricted to a neighborhood of pg in My is close to a multiple of the delta function.
We let v(1) correspond to the geodesic 41 and choose the other 3 geodesics next.

5.2. Choices of initial vectors for the third linearization. Let § € (0,1), and
we denote the initial data of y; by & € Sp,Mp. We recall that by definition ~;
is nontangential and has no self-intersections thanks to (H1). By perturbing &,
we find & € S,y My such that the associated geodesic v, is also non-tangential,
has no self-intersections (the latter fact follows from the argument in the proof of
[ , Lemma 3.1]), and that

6] =& =1
and
(€1,62) =1-4.
Let us define
1 1
s = —m(fl + &) € Spo My and &y = —m(éfl + &) € Sy M.
A direct computation shows
4
1 1) 1) 1
;&—Ewﬁz—1+5§1—1+5§2—1+5§1—1+5§2_0. (5.8)

We redefine ¢ smaller, if necessary, so that the geodesics 3 and 74 corresponding
to 3 and &, are also nontangential and have no self-intersections.
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Note that & is not proportional to & as & and & are linearly independent.
Similarly, for k = 3,4, the vector & is neither proportional to £ nor to &. Lastly,
&3 is not proportional to &. Indeed, if A € R is such that &5 = A&y, we have that
1 =0A and § = A, implying that 6 = £1. However, § € (0,1). This means that all
the pairs of the geodesics corresponding to initial data & /|&x| intersect properly.

Note also that since |&1] = |&2| = 1, we have

6l = ge (6 + el + 2561 62)
g (el + el + 20(62,60)) = 6ol
That is
1 1
&7 = &) = (e (1+0*+25(1-0)) = 170 (1+20-06%) (5.9

Let us then define vectors Ek eTM, k=1,2,3,4, by
& =l&ler +i&, & = —|&ler +i

= e = ) (5.10)
£3 = |3ler +1i&3, &4 = —|€aler + i&s.
Then
4
> & =0 (5.11)
k=1
Note also that
<£k7£k> 207 k:1774 (512)

Related to these vectors &, we will consider in the proof of Theorem 1.1 CGOs,
which can be written of the form

o) = ReE)as (T"T*eiwfk\wkas +TS> _

Here the phase functions ¢ are constructed with respect to the geodesics 7, with
initial data v, (0) = po and ,(0) = é—zl We note that
V9 (Re(€)ar +ilklvn))| =& (5.13)
7% (0)
Consequently, the ansatzes w(()ik) in Lemma 4.2 for the solutions of (7A9+V)w(“‘3) =

—2¢quDy(*) have amplitudes with a factor that divides by

(VO (Re(&; + Ex)wr +i(1&1i + [&klvn)), VI (Re(€; + Ep)or + (&l + €klvr)))

for different i,k = 1,2,3. At an intersection point of the geodesics ~; and ~j the
above equals

(€ + &€+ &) =2 <Vg (Re(ii)xl + i|€z‘|1/)i)avg (Re(gk)iﬁl + i|fk|7//k)> =2 <Ez’agk> :
Here we used (5.13) and (5.12). Motivated by this, we define
Cir = 2(&;5&x) -

The coefficient C;; can be collectively written as

Cor = 206 ((—1)”’“ -

(i fk>)
€illEk] )

We calculate expansions for C;j, for small § > 0 parameter. A direct computation
shows that

(6, 5) = <§1,—

1

1 1
1 +5(§1 +5€2)> = _75(‘§1|2 +6(&1,&2)) = —m(1+5—52)

1+
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and ) )
<§27§3> 1 +5 (<€17£2> +6|§2| ) = _ma
where we used (£1,&) = 1 —d. We also have
2
1lle3 ((1+6)2 (1+26 — 52))
and )
(&2,85) T 1
= -1+ 0O(9).
172
|§2||§3‘ ((1+6)2 (1+25 52))

Here we have utilized the Taylor expansions
(1+r)2=1+ g +0@?*) and (A+r)"t=1-7+00?),

which hold for sufficiently small |r|. Combining the above formulas yields

_ . <£1a€2>>
Cia = 2eilel (—1- £5E2) — 1+ 00)
, 1426 —62)"/?
Cs =2l (1~ E60) =2 EXL =T (1 (1 o)
=4+ 0(9),
, 1426 —62)"/?
=2l (1~ ) =2 (1 (1w 0w)
= O(9).
(5.14)
We also remark here that C; # 0, i # k, for § > 0 since
D)tk _ (&, &)
e (6. )
iy Sk o
EEA

because the pairs of vectors & and & are linearly independent. Finally, we note

that
R
Cia Ci3 Cys

when 6 — 0. Thus

1 1
‘_4+0(5) +4+(9<5)*(f)(&)‘*’o’

1 1
—+ —+ — #0, 5.16
Ci2 C13 C13 7 (5.16)

for all small enough § > 0.
Remark 5.1. Let us define a Lorentz metric ) for M by the formula
n(cier + Vi, cae1 + Vo) := (cre1 +iVi, coer +iVa),,

where c1,co € R and V1,Vo € TMy. Note that n is real since Vi and Vy are
orthogonal to ey with respect to the metric g. We required that the vectors &, ..., &,
n (5.10) are lightlike vectors with respect to n and sum up to 0. The former
Tequirement 1s because the corresponding phase functions need to satisfy the complex
etkonal equation. The latter requirement is discussed in the next section.
A fact is that three n-lightlike vectors can only sum up to 0, if the parts in T My of
two of them are linearly dependent. This would correspond to geodesics that do not
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intersect properly. Due to this geometric fact, we overdifferentiate in this paper the
nonlinearity qu? to obtain integral identities that consider more than three CGOs.

5.3. Proof of ¢ = ¢3 (continued). Let us then return to proving ¢? = ¢35. Let
&ey k=1,2,3,4, be as in (5.10). We set
¢k = |&k| and

and
s1=cT7+iA and sp=cer, for (¢=23,4.
Then the corresponding CGOs are of the form

oD = e&lT+iNz (T"ggi(\flhmwlal n rl) 7

v?) = elElTn (T%eilglewzaz + 7’2) )
) = eléslza (T%eilgr‘lw?’ag + Ts) ;
@) = o~ (T"T”eilsumM n m) ,

We may assume that v®), k =1,... 4 are supported in small enough neighbor-
hoods of the corresponding geodesics v, so that the mutual support of v(*) belongs
to neighborhoods of the points where all the geodesics ~; intersect and where any
pair of the geodesics intersect only once. Let us denote the points where all the
geodesics vy, intersect by pg,p1,...,PQ-

Let i # j € {1,2,3,4}, i # j and 8 = 1,2. By assumption, the DN maps of the
equation (1.3) for the potentials ¢; and g2 satisfy A, = Ag,. By Proposition 4.4
there are boundary values f;;, which are the same for both ¢; and g2, such that the
solutions of the second linearized equations (5.4) are of the form

w(ﬁu) _ wéﬁ{ag) + er\w”)R(ﬂu)7
where the ingredients are as follows:
WO = (1) "Ve; + (~1) ey + e + euy),

w(()fjfé) _ 7."4_2e((—1)1+isz‘+(—1)1+j5_7‘)fﬂl-i-i(sz‘1111‘4-5.7'111.7‘)bﬁ(gij)7

BT = 720D g N (5.17)
plid) 295 BONE)
B (G R O T R AT e
By (5.13), at points of the form (x1,pg) € M we have
g 205 (i) (i
pla) = 296 (), G)
257 ¢, "0 0
Here a(()i) and aéj ) are independent of the variable z; € R.
To simplify the following calculations, let us define
4 4
Wio3y = Z ((—1)1+kck$1 + ick¢k) = iZCk’(/)k (5.18)
k=1 k=1

and
A1234 = /\(ixl - 1/11)-
Let us observe that

4
g2 By — g03) 4 g2 — g04) | g23) = izckl/)k = Uy934. (5.19)
k=1
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Since Wqo34 is purely imaginary at the intersection points py, b = 0,...,Q, the
exponentially large linear factors will cancel in terms of the form fu(i)w(ﬁj Fo® ap-
pearing the integral identity for the third linearization (5.5). We also have at the

intersection point py of the geodesics that

vy(\p(u) + @(34)) - Vg(\p(13) + \11(24)) - vg(\p(l‘l) + \p(23))

Po

4
= iVIWyg34],, =1 & =0.
k=1

Po Po

(5.20)

4
i E Ckvgwk
k=1 Po

This implies that pg is a critical point of the phase functions of functions of the
form v@w" @, The critical point is also nondegenerate by (3.2) in Section 3
and thus we will be able to apply stationary phase in the asymptotic parameter 7.

Let us first consider the case py is the only point where all the geodesics 1, ..., 74
intersect. With the above preparations and using A4, = Ay, the integral identity

(5.7) of the third order linearization reads

0 :/ [ql (v(l)wfs) + v(2)w§13) + v(g)wgm)) (5.21)
M

) (v(l)wém)’) + U(z)wélg) + v(g)wglz)) v v,

st [ ervime [ohmsaDaPld o gt - ) (€l + i + Ci) + ] v,
M

where R = Op1(ay(771). The factor 772 arises from the amplitude functions of the
solutions wgk), see (5.17) and the power "T_Q of 7 is the sum of w and ”T_Q.
By (5.19) the exponentially large factors of the integrand cancel. Recall that the
dimension of My is n — 1.

We multiply the integral identity (5.21) by 71/2 and 72. This achieves the correct
normalization 74m(M0)/2 for stationary phase. By (5.20), at the intersection point
po of the geodesics v for 1 € I C R holds

VIW 1 934(x1,po) = 0.

In normal coordinates (y',...,y" 1) centered at the point py in My
n—1
Re Wigaa(y) = Y Ajy’y" + O(lyl), (5.22)
Jik=1

for some negative definite matrix A by the properties (3.2) of the phase functions.
Note also that

i / eIyl dy=0(1) and T / |y\e‘7|y|2 dy = (’)(7_%).
Rn—1 Rn—1
Thus, stationary phase shows that the limit 7 — oo of (5.21) equals

o (a(()l)a(()Q)a((J3)a(()4)) ‘po (szl I 0;31 i 0531)

></e/‘1234(“‘1’p°)(q?($1,po)—qg(xhpo))d%
R
where
4= / e* ATy £ 0,
Rn—1

We refer to | , Proof of Theorem 5.1, Step 4] for more details on this
stationary phase argument. Here we have also used that a(()k), k=1,...,4, depend
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only on the transversal variables. We also continued ¢; and ¢y by zero from I to R
in the x7 variable.

The geodesics i, kK = 1,...,5 were parametrized so that v;(0) = pg. Thus
Yr(po) =0 for each k =1,...,5 and we have

61\1234@1,?0) — €i>\l’1.

Since Cjy + Ci3 + Cs3 # 0 and aék)m # 0 by (5.16) and (3.6) respectively,
combining the above shows that

/ M (qf(z1,p0) — ¢3(21,p0)) dzy = 0.
R

Inverting the Fourier transformation in the z; variable shows that ¢?(x1,po) =
q3(x1,po). Since py was arbitrary, this completes the proof in the case py was the
only point where all the geodesics intersect.

Consider then the remaining case where are several points py, b = 0,...,Q,
where all the geodesics 71,72,73,74 intersect. Note also that outside (disjoint)
neighborhoods U, of py, the function e™¥123¢ is exponentially small. We also remark
that in a neighborhood of p, we may write an analogous expression as in (5.22) for
some negative definite matrix A. The fact that A is negative definite at p; is due
to property (3.2) for each of the functions 9, k = 1,2, 3,4 at the point p, and the
fact the geodesics 71, ..., 74 intersect transversally at the point py.

Thus, for different 4, j, k,l = 1,2, 3,4, by normalizing and taking limit 7 — oo of
(5.21) we obtain

Q
0= lim Z/ lql W) 4 @18 4 B)y (12))
T—00
b=0" U

—q (v(l)wé%) + U(Q)wél?’) + U(S)wéu)) ] v® v,
(5.23)

A1234 TWi234 (1) (2) (3) () 2 2
TIEEOT o Z/U e ag ag ag ay (47 — q3)

X (C () + C () + i () | V.
Here we have denoted
Cik(pb) = <Vg ((*1)1“‘31% + icﬂ/’i) ,Vg ( 1+ka$1 + ick¢k)>| Do 5& 0
Note that C;i(py) # 0, since v; and g, i #
2

i k, intersect properly, cf. (5.15).
Therefore, by applying stationary phase to (5.23)

3) it follows that
Q A~

> hy(Ne* =0, AeR.

b=0

Here c¢; are the distinct geodesic parameter times of 41 where ;1 (cp) = pp and

ho(N) := Fuy oa <a(()1) ' (4) (Ciy +Ciy +C33)

(5 (x1,p0) — tﬁ(l’l,pb))) ,

Py

where F,,» is the Fourier transform in x; variable. By | , Lemma 6.2]
ho=---=hg =0.

Especially ¢?(x1,p0) = ¢5(1, po), which concludes the proof of ¢¢ = ¢3 also in the
case where there are several points where the geodesics v all intersect.
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5.4. Proof of ¢ = ¢» and fourth order linearization. We proved ¢ = ¢3
using third order linearizations of the equation (—A, + V)u + qu? = 0. Here we
consider fourth order linearizations of the equation and use it to complete the proof
of Theorem 1.1. Most of the steps here will be similar to those we used to prove
¢ = ¢3. However, the steps are somewhat more complicated.

Let po € My, and let 7; be a non-tangential geodesic, which has no self-
intersections. We recall that the existence of ; is guaranteed, thanks to (HI).
Let & € Sp, My by the initial data if 7;. Let us consider the equation

{(Ag +V)ug +qsud =0 in M, (5.24)

ug = f on OM,

this time with boundary values f € C*°(0M) of the form (2.3), for 8 = 1,2. The
first and second linearized equations are the same as before and read

(—A, + V) =0,
(—Ag + V)w(;j) = —2¢z0 W9,

Here v() and w , i#je{l,...,4}, p = 1,2, have boundary values f; and f;;

respectively. The solutions v(l) are the same for both potentials ¢; and ¢2. The
third order linearizations wé” k)

satisfy

{(A +V)wg GIk) — _og, (v(i)w(ﬁjk) + v(j)wgk) + v(k)w(ﬁij)> in M,

now have (possibly) non-zero boundary values and

(7k) — = fijk on OM,
where w(”k) = 8§7€J5k o U for § = 1,2 and different i,5,k € {1,...,4}. The

boundary values fijx are the same for both of the equations (5.5), which correspond
to the potentials ¢; and gs.
The fourth order linearization

(1234) 4
861626364 }e 0 up

is the solution of

(—A, + V)w/(31234) — _2g (v(l)w(;?"l) 4 v(2)w/(3134)

D2 4 0,02

—I—wém)w(ﬁg@ + w(ﬁlg)w(ﬁm) + wéu)wé%)) in M,
w(;234) =0 on OM.
(5.25)

Using A4, = A4, we have by Lemma 2.1 the integral identity

O:/ {fh (v(l)w§234)+v w3 § y@),(120 | (4),,029)
M
_~_w§12)w§34) —|—w§13)w§24) +w§14)w§23)>
— (v(l)w§234) + v(2)wé134) 4 U(g)w§124) T v(4)w£123)
+w§12)w§34) i wg13)w§24) n wém)wg%)) }0(5) dv,.

(5.26)
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We will use five CGOs as the solutions v*), k = 1,...,5. As before, these have
the form

o) — eEsk (T"T‘?eisma(p i Tgo) 7

where s = ¢, + i\,. However, the geodesics of (Mg, go) corresponding to the
phase functions v will be different from what we used earlier. We choose the
geodesics so that each pair of different ones of them intersect properly. This is as
before. However, we additionally require the geodesics to be so that

(e £ ¢ £ er)® — |eidi + ¢35 + adnl® #0,

when all the geodesics i intersect. This is the condition (V¢ \T/, N \I/> 2 0 of Lemma
4.7 and Proposition 4.8.

With suitable choices of other geodesics s, 73, V4,75, and coefficients cg, k =
1,...,5, we show that the integrand on the right hand side of (5.26) restricted to
a neighborhood of pg in M is close to a multiple of the delta function at pg.

5.5. Choices of vectors for the fourth order linearization. The fourth order
linearization w123 of (—A, + V) + qu? = 0 satisfies

(A + V)12 = _9q (v(l)w(234) 1@y (130) 4 (3),,(124) 4 (4),,(123)

Fw(12qpB3)  4p(13)4y(24) 1 ;) (14)4,(23) in M.

(5.27)

Our aim is to show that the solution w1234 behaves like v(Mv@ v yp® up to a
multiplication by an amplitude function for 7 sufficiently large.

e Failed choices of vectors. Let us first discuss why the earlier vectors ;, i =
1,2, 3,4, do not work here. If we use the earlier vectors (5.10) and the corresponding
CGOs we will find that for example w23 in (5.27) solves

(A, + Vw2 = —2¢ <v<1>w<23> 1p@y(13) 4 7,<3>w(u>)

, (5.28)
—e7 Zje{l,2,3}|§.7’\((*1)]+19514ri1/h‘)d7

where @ is some amplitude function whose precise form is not important for this

discussion. At the intersection points of the geodesics corresponding to &,

3 3
\ Z|£j|((_1)j+lx1 +iY;) | = ZEJ =,
j=1 =

by (5.11). Now, if we try a WKB ansatz of the form e” Zae{2,374}|§a\((,1)a+1$i+i1ﬁa)lv)
to solve (5.28), where b is an amplitude function, we end up dividing by (£4,&,),
which is 0. Consequently, the ansatz does not work and we need to use vectors that
are different than &, .

e Successful choices of vectors. We choose new vectors to define the CGOs
v®) | such that we can apply these CGOs to achieve our target. Denote the vectors
by

Cr, k=1,2,3,4,5.

Let 6 > 0 and let &;, j = 1,2,3,4, be as in Section 5.2. Especially (£1,&) =1—0
and |&1] = |&2] = 1. Note that the integral identity (5.26) implicitly concerns 5
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possibly different v(¥). We choose the vectors (j, € T, oMo as follows
G =&, G = &,

(3= <1+\/225> £, Q= <1+\/225> &4,
q - 2
an C5*\/m(§1 +&2).

Note that |(5| = 2. We define (;, by
G =[Gler +i¢1, (o = |Caler + i,
G =|Gler +is, (4 = —[Caler + i,
and (5 = —[Gler +iGs.
We also define
k= |Gkl

In particular, we have ¢y = co =1 and c¢5 = 2. Then

> 2 1 5 5 1
;Cﬂ’ =Gl (H\/z_a) <1+551+1+552+1+551+1+552>

+4/ %(fl +&2)=0. (5.29)

5
Re [> ¢ | =o0. (5.30)
j=1

and

Consequently, the sum of the vectors ¢, vanishes:

¢ =0. (5.31)

J
j=1

The condition (5.31) will imply that the non-stationary phase at pg and exponen-
tially growing factors of in the integrand of the integral identity (5.26) will cancel
out. We showed in Section 5.2 that the vectors &1, ...,&, are pairwise linearly in-
dependent. Consequently (i, ..., are pairwise linearly independent. We also see
that (5 is not proportional to any of the other vectors (i,...,(4. It follows that
the geodesics of (My, go) corresponding to (i, ..., (s intersect properly. Since the
vectors (s, ...,(s can be taken to be up to a scaling arbitrary small perturbations
of &1, the corresponding geodesics are nontangential by continuity and they do not
have self-interactions. We recall that the latter fact from the end of the proof of
[ , Lemma 3.1].

We then consider how solutions to (5.27), which correspond to the CGOs de-
termined by the vectors Zj, j =1,2,3,4, look like. Let us first note that at the
intersection points of the corresponding geodesics

(F£c; £ ¢ £ cp)? — [ VI; + ¢, V9, + Vi |> £ 0 (5.32)

for all indices 4, j, k € {2,3,4} which are all different. Indeed, by (5.31) we note
that

(£ci £cj £ep)? — |ciVPOP; + ¢,V + cx VOUL|? = () + Cny € + Con)s
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where I, m € {1,2,3,4,5} are the unique two different indices, which do not belong
to the set {j,k,1} € {1,2,3,4,5}. Then, we have

<Zl +vaZl + Zm> = 2<Zl72m> = 2(:I:Clcm - <<la <m>) 7£ O,

since [{¢i, Cm)| < |G||Cm| = ciem. Here we have the strict inequality since ¢; and ¢,
are linearly independent.

By (5.32), we may apply Lemma 4.7. Thus, by having the restrictions of the sup-
ports of v*) to My in small enough neighborhoods of the corresponding geodesics,
the solution w(123) to third linearization

(—Ag + V)w(123) =—2q (U(l)w](-%) + 0@ 13 4 v(3)w§-12))

up to a correction term is given by a WKB ansatz with amplitude of the form
(4.26). The leading order coefficient of the ansatz is

1
5023 _y 2, ,(2),(3)
4 T 0 0 E )2 — [ VI + oV + 3V 90yg 2

1
X
((icl + c2)? — [e1 V911 + caVI0ehy?
1
+e1 +¢3)? — |e1 VI + e3Vorhs)?

M

1
+ (:l:Cg + 63)2 — |CQV901/12 + 03V90¢3|2> '
Note the power 2 of the potential g in B(Jf?’). Let us define for i, j,k € {1,...,4}
all different
Dij = (¢; +(;, ¢ + ()
and  Dijr = (¢; + (5 + (G + ¢+

At an intersection point pg of the geodesics, we thus have is

1 1
R )

(5.33)

a
% Dyy3 \Dis + D3+ Doy

We have similar formulas for the leading order coefficients of the ansatzes for w34
w3 and w(Y . Furthermore, by (5.31) we have

Dios = (¢ + (o 4+ C3,C1 + (o + C3) = (C4 4 C5,C4 + C5) = Dus,
D3y = (¢ + C5,¢y + C5) = Dus,

D134 = Dos,

D124 = Dss.

(5.34)

Therefore, by using (5.34), the solution w(123%) to the fourth order linearization will
be (up to a correction term) of the form

1 1 1 1
- _|_ PR
{Dm (D23 + Dgy + D34> Dys <D13 + Dy + D34>

1 1 1 1
TR o
D35 (Du +Dyy+ D24> Dys <D12 +Di3 + D23> (5.35)

n 1 1 n 1 1 n 1 1 )]
D12 D34 D13 D24 D14 D23
x e’ Eje{1,2,3,4}(Re(Cj)wl +i|¢j 15 Av
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Here A is an amplitude function which has (up to a multiplication by a power of
7) the leading order coefficient

s?aMa®a@a®.

Note the power 3 of the potential ¢ here.

Similar to Section 5.2, where we showed that the factor (5.16) of the third order
linearization is non-zero, we may show that the coefficient in the brackets of (5.35),
call it Es is not zero. We have:

Lemma 5.2. The quantity

1 1 1 1
5 =5 ( )5 )
D5 \ Da3 + Dag + D3y Dys \Di3+ Dy + D3y

1 1 1 1
+ 4+ — (5.36)
D35 \ D12+ Dy + Doy Dys \Di2 + D13+ Das
1 1 1 1 1 1

b =0 0,
Di2D3;  DizDyy Dy Dos (67%) #

for all sufficiently small § > 0.

The proof of the lemma is elementary, but involves rather long calculations. We
have placed the proof in Appendix C.

5.6. Proof of ¢; = ¢2 (continued). Let us then return to proving ¢; = go. Let
(i, E=1,...,5, be as in Section 5.5 above. We have

k= |Gl
and we set
s1=c7+1i\ and s =c¢x, k=2,3,4,5.
The CGOs corresponding to vectors (5 are of the form

CO R (ISTE 2™ PV (T 252 G+ rl) ’
) = elClra (T"T*zeilglﬂl)z@ + 7”2) )

v(3) _ 6|CS|TI1 (T%6i|C3|T¢3a3 + 7,3) 7 (5'37)

@ = eIl (T%eilc“hmfm + T4) )
) = e~ I¢slTa1 (Tanzeilg”lwsas + 7"5) .

Since Ay, (fe) = Ay, (fe), by Propositions 4.4 and 4.8 there are boundary values
fi; and fik, ¢,k = 1,2,3,4, such that the solutions of the second linearized
equations (5.4) and third linearized equations

Ay +V k) _ 9 MOMICLY + (@) g (R + (k)09 in M
(- ) 4p Wg B B ’
”k) = fijk on OM,

for g =1,2, and i, 7, k all different, which are of the form
w(ij) (w) + T‘ll(”)jo)

(5.38)

)

and wé”k) —w(()wﬁk) + eT\I’(”k)E(Bijk).

For given K, N € NU{0}, the correction terms jo) and ﬁ(ﬁijkl) can be assumed to
be Oprz () (77) by taking the amplitude expansions of the CGOs v(¥), k = 1,2, 3,4

to be precise enough (i.e. N’ large enough). We refer to Propositions 4.4 and 4.8

(i5) (wk)

for the specifics of wy”" and wy
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The phase functions ¥(%) and P (idk) satisfy at the point pg where all the geodesics
Y1, ---,75 intersect

W) (pg) = ¢, +

~ - (5.39)
\If(”k)(po) =(; + ¢+ G
The leading order coefficients of the amplitudes of w(B and wy KD are
ik 298 (&) (k
b5 5 (p0) = 5 ag ey,
‘ 1 1 (5.40)
B (o) = 4620l ) .
—4,8\P pro @0 D \Dix + Dy + Dy
Let us denote Wig345 as the sum of all the phase functions of v, ... v®) in

(5.37), where 7 is a parameter. More precisely, U1a345 is given as

Wizgas = (I 1+1Gal 161 = [Gal = IG5 )1+ (I 1+ 1o o+ IGaltbs+[Cala+IGs s )

Let us also set

Ay234 = A(izy —¢1).
At the point py where all the geodesics 71, ..., intersect

VI9W12345(21,p0) = 0 (5.41)
for x € I C R by (5.29), and

Re(W12345)(71,p0) = 0 (5.42)

by (5.30). The condition (5.42) implies that ¥i3345 is not exponentially growing
in 7. Moreover, by (5.41) we have that pg is a critical point of ¥i9345. By the
properties of ¢, the point py is also nondegenerate, see (3.2).

We multiply the right hand side of the integral identity of the fourth order
linearization (5.26) by 747'/2 and take the limit 7 — oco. In the case po is the
only point where all the geodesics v1, . .., ¥5 intersect, by stationary phase the limit
tends to

0=rc;Es (a(()l)agf)a(()?’)aM) 85))

/ e (g} (21, p0) — @ (1, o)) dan,
Po JR

(1234)

where Ej is the coefficient of w in Lemma, 5.2 and c; # 0 is given by a similar

formula as c4 in Section 5.3. Here we also used that a(l) . ,a(()5) are independent
of 1. By Lemma 5.2, the coefficient E;s # 0 for all small enough 0 > 0. Inverting,
the Fourier transformation in the variable x; shows that ¢}(x1,p0) = ¢5(w1,0).

Thus

q1(x1,p0) = g2(21, po)
for 1 € R. If there were several points where 71, . . ., 75 intersect, we argue similarly
as in Section 5.3 by using [ , Lemma 6.2]. Since py was arbitrary, this
completes the proof.

APPENDIX A. BOUNDARY DETERMINATION

We prove that the DN map of the semilinear elliptic equation
(—Ay+V)u+qu™ =0in M, wu=fondM

on a compact smooth Riemannian manifold with boundary determines the formal
Taylor series (the jet) of the coefficient ¢ (in the boundary normal coordinates) on
the boundary. Here, m > 2 is an integer, and V' and ¢ are smooth functions on M.
We assume also that zero is not a Dirichlet eigenvalue for the operator —A, + V/
on M.
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We expect this result to be well-known to experts on the field, but could not
find a reference on it, so we offer detailed presentation and its proof.

Proposition A.1 (Boundary determination). For m > 2, m € N, let (M, g) be a
compact Riemannian manifold with C°° boundary OM and consider the boundary
value problem

{(—A9+V)u+qu =0 inM, (A1)

u=f on OM,

where V, g € C>°(M). Assume that the DN map A4 of the equation (A.1) is known
for small boundary values. Then A, determines the formal Taylor series of q¢ on
the boundary OM .

In addition, if f € C*°(OM) is so small that (A.1) has a unique small solution,
the DN map determines the formal Taylor series of the solution v = uy at any
point on the boundary.

Proof. Determination of Taylor expansion of q:

We first investigate solutions of our semilinear elliptic equation could be C'*°-smooth
due to the following observations. Let f € C*°(9M). We consider boundary values
fo, f € C®(0M) and f; = fo + tf and assume that [ fol|c2e@n) and [t] are
sufficiently small so that the DN maps at f; and f; are both well-defined. We
denote by ug and u;, the unique solutions of (A.1) with boundary data fy and f;
on OM, respectively. In addition, since V- € C*°(M) and f, fo € C*(OM), by
elliptic regularity u; and ug are C°°(M) functions.
By linearizing the equation (A.1) at t = 0, we obtain

—Agv+ (V+mqul ")v=0 in M, (A.2)
v=f on OM,
where v = lim U — Yo and ug solves
t—0
(—Ag+V)up+qug' =0 in M, (A.3)
ug = fo on OM.
Moreover, v is the solution of
—Agv+qu=0 in M,
v=f on OM.
where
7:=V +mquy" in M. (A.4)

Note that g € C°°(M), since ug € C°(M) by elliptic regularity.

Since we know the DN map of the boundary value problem (A.1), we know the
DN map of the linearized problem (A.2). This is proven in | , Proposition
2.1], where it is shown that the DN map is C* in the Frechét sense. (See also
the similar result | , Theorem 2.1], which deals with local well-posedness and
linearizations of (A.1) at fy not identically 0.) It follows by [ , Theorem
8.4.] that we know the formal Taylor series of ¢ on M. In particular, by choosing

UQ:f0:€0>OOH8M,
for some sufficiently small constant €y > 0, and noting that

-V
q= 4 — on OM,
0

it follows that we know ¢ on the boundary 0M.
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Next we determine first order derivatives of ¢ on the boundary. Given a point
o € OM, let x = (x1,...,2,) € OM be boundary normal coordinates near x = xg
in M. Differentiating (A.4) yields

0z,,q =m0y, (ugn_l)q + m(axqu)u(T)n_l + 0.,V

m—2 m—1 (A5)
=m(m — 1)ug"™"(0r, u0)q + m(0z, QJug' ™~ + 0, V.

Since we have already determined the Taylor series of ¢ on the boundary and

Oz, w0 = Ag(fo),

we may determine 9, ¢ by solving it from (A.5). Since we also know the derivatives
of ¢ in tangential directions x, where k = 1,...,n — 1, we have determined all first
order derivatives of ¢ on the boundary.

To determine higher order derivatives of ¢ on the boundary, we follow an ar-
gument similar to [ , Lemma 3.4]. On a neighborhood of zy in M we may
write

Quo = (—Ag + V)ug + qui’ = =92 ug + Pu,
where P is a non-linear partial differential operator containing derivatives in =’ up

to order 2 and in x,, up to order 1. The coefficients of P depend on pointwise values
of ¢q. By expressing

9, =P-Q
we obtain
8§nu0 = Pug — Qug = Puy. (A.6)
Since we already know the quantities
ug, Oprtig, 0o, Or, U, OOy, U0, G, Oprq and Oy, q, (A7)

it follows from (A.6) that the second derivative 92 ug can be also determined. By
using this and differentiating (A.5), we may determine second order derivatives
of ¢ on the boundary. The higher order derivatives of g on the boundary can be
determined by differentiating (A.6) and using (A.5) in succession, and by using
induction.

Determination of Taylor expansions of solutions: Let then f € C°°(OM) be
small enough so that (A.1) has a unique small solution u = wuy. Since we have
determined the formal Taylor series of ¢ on the boundary, the formal Taylor series
of u on the boundary is determined by differentiating (A.6) with u in place of wug.

O

APPENDIX B. PROOF OF THE CARLEMAN ESTIMATE WITH BOUNDARY TERMS

In this section, we proceed to prove Lemma 4.6. Let (M,g) be a compact,
smooth, transversally anisotropic Riemannian manifold with a smooth boundary
and let V' € L (M). There exists constants 79 > 0 and C' > 0 depending only
on (M,g) and ||V g (ar) such that given any |7| > 79 and any v € C*(M), the
following Carleman estimate holds

—TX T 3 3
le™™ (=g + V(€™ )l L2any + |71 [0llw e on1) + |712 1 Ov ]l (o)
3
+ |72 [1820]| e oary = Clrl 0]l 2(arys  (B.1)
Proof of Lemma 4.6. We may assume without loss of generality that v is real-valued
and also that 7 > 0. The proof for the case 7 < 0 follows analogously. Throughout

this proof, we use the notation C to stand for a generic positive constant that is
independent of the parameter 7. We also write ¢ to stand for a C?-extension of
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the function v into a slightly larger manifold M € R x M, with smooth boundary,
such that v € C?(M) and that there holds

[9]ly2.00 iy ary < CUZ0 w200 a00) + [0 0ll w2 o) + [Vl w2 onry),  (B-2)

for some constant C' > 0, only depending on (M ,g). In order to prove the latter
estimate, let us consider the normal coordinate system (yi,...,y,) = (y1,%’) near
OM in R x My where we are assuming that OM is given by {y; = 0}, and the metric
g near OM is given in these coordinates via the expression

9="y)*+4d .y,
where ¢’ can be viewed as a family of smooth Riemannian metrics on M, smoothly
depending on y’ for all |y'| < ¢ sufficiently small. We make the convention that
y1 > 0on M\ M. Let us now define ¥ on M via
=v on M, (B.3)

and
2
i(y) = (v(O, y') + 11 0,v(0,9) + % 831)(0,3/)) n(y1), ye(0,6)xdM, (B.4)

where 7 is a smooth non-negative function such that n(t) = 1 for all [¢| < § and
n =0 for all [y;| > 6. It is straightforward to see that & € C2(M). The claimed
estimate (B.2) now follows from the definition (B.4).
We define

Pov=e T A (eT"0), (B.5)

and note that
Pv= 8517) + Agyv + 270, v + 0.

We claim that

/ PTvazlvdVg +CT2||U||‘2/V2)QO(8M)+OT2||ayv||%/‘/2,OO(aM)
M

+ 07'2”831]“12/[/2,00(6]\4) > 2T||at1]||2L2(M) (BG)
To show (B.6) we begin by writing

/Pfuazlvdvg :27/ |0, v[? AV,
M M

+ (“)ilvazlvdvg—i—/ Agov(“)xlvd%—&—/ 720 0y, v dV, .
M M M

I II II1

Note that M € R x My and dVy; = dxy dVy,. We can use integration by parts to
bound each of the terms I-III as follows. For I, we first note that

1
/ 92 00,,0dV, = 7/ Oy (104,0]?) dVyy = 0.
o 2 Jar

Together with the estimate (B.2), we obtain

1 = ’ /M\M & 60,64V,

<C (Hazvﬂ%vz-,oo(aM) + HauUH%V&oo(aM) + ”UH%/V?’OC(aM)) .
For II, since [0g,,A4] = 0 on (]\Zl',g)7 we may apply integration by parts again to
deduce that

Ay, 08y, 0dVy = 0.
M
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Thus, using (B.2), we can show analogously to term I that

1 <c (||3EU||%V2W(8M) + 10,0l a1y + ”U”%/V?’OO(aM)) :

Finally for the term III we first note that

2
72/ 00, 0dV, = — | 0, (8%)dV, = 0.
M 2 M

Thus, using (B.2), we have

1] < C2 (1020113 oty + 10u0l32. oy + 102 o)) -

Combining the previous three bounds yields the claimed estimate (B.6). Using
(B.6) and applying the Cauchy-Schwarz inequality

‘/ Pvoy,vdVy| <
M

1
EHPTUH%?(M) + T||811U||2L2(M)7

we deduce that
1202 ) + O 03 o) + O 10001 o
+ CT3O%0|fy200 o) = T2 N10 0l F2(0r)s (BLT)

We recall that by the standard Poincaré inequality on M, there exists C' > 0 such
that

10z, wll p2cipy = Cllwll oy Yw € Co (M).

Also, analogously to the proof of the estimate (B.2), given any r € C*(M), there
is a C''-extension of r into M such that # € C}(M) and there holds

1Pl wr.e (inary < CUGTllwroeoary + lI7llwioe aany), (B8)

for some constant C' > 0 only depending on (M ,g). Combining the latter two
bounds, we deduce that given any v € C*(M) there holds

102, 0l L2(ary = Crllvll2(ary — Callvllwroeoary = CsllOuvllwrconry, — (B9)

for all v € CY(M), where the positive constants C7, Co and C3 only depend on

(M, g).
Via the bounds (B.7)-(B.9), we deduce that

I(Pr — V)U||2L2(M) + CTBH“H%V%&(BM) + CTB||3WH%/V2,<X>(6M)
+ CTB||83UH%/V20°(6M) > T2||UH%2(M)' (B.10)

This proves the assertion. O

APPENDIX C. COMPUTATIONS OF Dy

In the end of this paper, we compute the values Dy, for different sub-indices
i,k €{1,2,3,4,5}. Recalling that

G =&, G2 = &2,

(3= <1+\/235> £, Q= <1+\/235> &4,
C5:\/2L_5(51 + &),
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and
G =[Giler +i¢1, (o = |Caler +iCa,
C3 = |¢sler +i¢s, ¢y = —|Caler + i,
Cs = —ICsler +1iGs,

where

61l =& =1, (&,&) =1-4,

1 1
&3 = g 6(51 +682), &a= *m(‘sfl + &2).
Via straightforward computations, we have
1+6—62 1
(€1,&) =1-10, (&,8) I (€1,84) =T 115
1 1+6—06° 1+6+62—6°
(52@3) = —17_’_57 <52,f4> ] T and <§3;§4> = W

By
Di; = <Z¢ + iji +Zj>a
for different 4, k € {1,2,3,4,5}, direct computations yield that

Dy =(|Ciler +1i¢1 + [Caler +1iC2) - (|Ci]er + ¢ + [Caler +1i¢2)
=2(|G]|C] = (¢1, &)
=2 (|61]|€2] — (€1, &2)) = 26,

D13 = (|C1ler +i¢1 + [Csler +1i3) - ([Ciler +1iCy + |C3ler +iC3)
=2 (|G1I¢s] — (¢1,¢3))

=2 <1 + 236> ([&1]1€] — (€1, €5))
=2 (1 + 2;) (2+25+0(5%),

Dus = (|Gler +iG = |Caler +1iCa) - (Ciler + ¢ — [Caler + 1)

_ <1 . \/E) (61 lIEal + (€1, 60))

:_2<1+ 2 >6+O(62)

2—6 1+6

Dys = (|Ciler + i — [Csler +iCs) - (|Ciler + ¢t — |Csler + i)
=—2 (|C1HC5| + <C1><5>)

=_ 2\/E(|§1|€1 + &+ (61,64 + &)

5
:78+§+(9(52),

(C.1)

(C.2)



37

Dos = (|Caler +iCa + |Gsler +iCs) - (ICaler + G2 + [Caler +iCs)

QQ+¢2y@M|@mm ©5)

w155 ) (BE9Y).

In order to compute Doy more carefully, let us recall the Taylor expansion of
Vi+o=1+ g - % + O(6%), then we have

Doy = ([Galer +iCz — [Galer +1¢a) - ([Galer +i¢2 — [Galer +i6a)
= — 2(|Ca||Cal + <<2,<4>)

=2 <1+ >(|£2||£4|+<€27§4>)

EEE

:_2<1+ > \/m (1+5—52)) (C.6)
_2(1+ o 5) (140-6>+0(") — (1+6—6%)
_Q(H,/ 25)?

Das = (IGales + i — IGslex +iGs) - ([Galer + Gz — [sler +iG5)
:—2(|C2HC5|+<C2><5>)
2
9 m( 4f25+276)
=—8+454 0(8?),

D3y = (|¢3ler +i¢3 — [Caler +1¢s) - (|¢sler + i3 — [Caler +iCa)
= —2(|¢3]|Ca| + (C3,¢a))

2
2<1+\/2T> (I€5][€a + (&3, €4)) (C.8)

2
B 2 1 3
- 2<1+ 25) e 2300,
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D35 = (|Csler +i¢s — |(sler +1i¢5) - (|¢sler +i¢s — |¢sler +1i5)
=—2(|GI¢s] + (C3,¢G5))

-2 <1+ 2;) %(M(1+5+0(52))—2—5+52)

2 - 2 2
1490 2§ 26
x(@—2+«X¥»ﬂ+6+0®%)-2-5+¥>
_ 1 2 2 )
= 15 (” 2_5> 55 0 +0)
(C.9)
and similarly,

Dys = (—[Caler +1iCs — |Csler +1iG5) - (—[Caler +iCs —
=2 (|CallCs5] — (C4,C5))

= <1+ 2,2_5> Vs Ualles + & = (60,61 + &)

- <1+ 2) 2 (VIS 25146+ O) + 245 - 57)

Cs

e1 +1i(s)

[\

146 2-§ 26

2 2 2 5 )
1+5<1+ 2—5) 2_5(4+25+0(5)).

(C.10)

Proof of Lemma 5.2. With (C.1)—(C.10) at hand, let us split the analysis into two
cases.

(1) By using (C.5), (C.6) and (C.8), we have that m
6 — 0. Similarly, (C.2), (C.3) and (C.8) imply that 5—5—5—
as 0 — 0. Similarly m is bounded as § — 0. On the other hand, by
(C.1), (C.3) and (C.6), we observe that = O(67'). Meanwhile, D73,

1
Di2+D1a+D2s
D, and D} are bounded as § — 0, but D3;' = O(671).

(2) Similarly, Dlm D134 =0, ﬁ;ﬂ = 0(673) and ﬁng =0(671).

is a bounded as
is also bounded

Therefore, combining the above, we conclude that

5 =|5; (5o 77 D5) * 1 (B 7D Dm0)
o D5 \ D23 4+ Dgs + D3y Dos \ D3+ D4+ D3y

1 1 1 1
o o
D35 <D12 +Dys+ D24> Dys (Dm +Di3 + D23>

PR R T
D12 D34 D13 D24 D14 D23
Co (1
2573 — (572 — CQ >0,

for all sufficiently small § > 0, where Cy, C7 and Cy are some positive constants
independent of 6. Hence, the coefficient Es = O(§73) # 0 for all sufficiently small
0> 0. O
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