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1. Introduction

In recent years, inverse problems for nonlocal partial differential equations (PDEs)
have been extensively studied in the literature. The first work in this field is
[GSU20GSU20], in which the authors considered the so-called Calderón problem for the
fractional Schrödinger equation

(1.1) ((−∆)s + q)u = 0 in Ω,

where Ω ⊂ Rn is a bounded domain. Here (−∆)s denotes the fractional Laplacian
for 0 < s < 1, and q ∈ L∞(Ω) is a bounded potential. In this problem, one asks
whether it is possible to uniquely recover the potential q from the Dirichlet-to-
Neumann (DN) map

(1.2) Λqf := (−∆)suf
∣∣
Ωe
,

where Ωe = Rn \ Ω denotes the exterior of Ω, f : Ωe → R is a given Dirichlet data,
and uf : Rn → R is the unique solution of (1.11.1) with uf |Ωe

= f . In [GSU20GSU20],
the authors found that the fractional Laplacian satisfies the unique continuation
principle (UCP) that asserts:

(UCP). Let s ∈ R+ \N, t ∈ R and V ⊂ Rn be an open set. If u ∈ Ht(Rn) satisfies

u = (−∆)su = 0 in V then u ≡ 0 in Rn.

In [GSU20GSU20] the UCP has been shown for the range 0 < s < 1 and via iteration
by the Laplacian the UCP extends to the range s ∈ R+ \ N. Furthermore, they
observe that the fractional Laplacian has, as a consequence of a duality argument
(Hahn–Banach theorem) and the UCP, the so-called Runge approximation property.
For any open set W ⊂ Ωe, this property can be phrased in two alternative ways:

(i) The Runge set

RW :=
{
uf

∣∣
Ω
; f ∈ C∞

c (W )
}

is dense in L2(Ω), where uf is the unique solution to (1.21.2) with exterior
value f ∈ C∞

c (W ) (cf. [GSU20GSU20]).
(ii) The Runge set

RW :=
{
uf − f ; f ∈ C∞

c (W )
}

is dense in H̃s(Ω) (cf. [RS20RS20]).

Together with a suitable integral identity, the result (i)(i) allowed the authors of
[GSU20GSU20] to uniquely recover bounded potentials, whereas the property (ii)(ii) was
used in [RS20RS20] to recover certain singular potentials.

The above strategy to establish uniqueness for Calderón-type inverse problems
of elliptic or parabolic nonlocal equations has lately been investigated in several
research articles, such as [GLX17GLX17, CLR20CLR20, CLL19CLL19, LL22LL22, LL23LL23, LZ23LZ23, KLZ24KLZ24,
KLW22KLW22, LRZ22LRZ22, LTZ24LTZ24, LLU23LLU23, CGRU23CGRU23, LLU23LLU23, RZ23RZ23, RZ24RZ24, CRTZ22CRTZ22, LZ24LZ24,
FGKU21FGKU21, Fei21Fei21, FKU24FKU24]. Some articles of this list consider the detection of linear
perturbations as in the above fractional Schrödinger equation (1.11.1), while others
allowed nonlinear perturbations, or even studied the identification of leading order
coefficients in the main nonlocal term in the considered PDE.

1.1. The mathematical model and main results. In this article, we study
Calderón type inverse problems for linear and nonlinear nonlocal wave equations
(NWEQs) formulated generically as

(1.3)


∂2t u+ (−∆)su+ f(x, u) = 0 in ΩT ,

u = φ in (Ωe)T ,

u(0) = ∂tu(0) = 0 in Ω,
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where f : Ω× R → R is a suitable nonlinearity. Here we use the notation

At := A× (0, t), for any A ⊂ Rn and t > 0.

Let us note that nonlocal wave equations such as (1.31.3) arise in a special case of
peridynamics — theory of studying dynamics of materials with discontinuities such
as fractures (see [Sil16Sil16]).

By [LTZ24LTZ24, Theorem 3.1 and 3.6] the equation (1.31.3) is well-posed for regular
exterior values φ : Ωe → R, when f(x, τ) = q(x)τ with q ∈ Lp(Ω), where 1 ≤ p ≤ ∞
satisfies

(1.4)


n/s ≤ p ≤ ∞, if 2s < n,

2 < p ≤ ∞, if 2s = n,

2 ≤ p ≤ ∞, if 2s ≥ n,

or f satisfies the following assumption:

Assumption 1. We say that a Carathéodory function f : Ω × R → R is a weak
nonlinearity if it satisfies the following conditions:

(i) f has partial derivative ∂τf , which is a Carathéodory function, and there
exists a ∈ Lp(Ω) such that

|∂τf(x, τ)| ≲ a(x) + |τ |r

for all τ ∈ R and a.e. x ∈ Ω. Here the exponents p and r satisfy the
restrictions (1.41.4) and

(1.5)

{
0 ≤ r <∞, if 2s ≥ n,

0 ≤ r ≤ 2s
n−2s , if 2s < n,

respectively. Moreover, f fulfills the integrability condition f(·, 0) ∈ L2(Ω).
(ii) There is a constant C1 > 0 such that the function F : Ω × R → R defined

via

F (x, τ) =

ˆ τ

0

f(x, ρ) dρ

satisfies F (x, τ) ≥ −C1 for all τ ∈ R and x ∈ Ω.

Observe that given a function 0 ≤ q ∈ L∞(Ω), an example of a nonlinearity f ,
which satisfies the conditions in Assumption 11, is a fractional power type nonlin-
earity f(x, τ) = q(x)|τ |rτ for r ≥ 0 with r satisfying (1.51.5). We refer readers to
[LTZ24LTZ24, Section 3] for more details.

Assuming the well-posedness of (1.31.3) for suitable nonlinearities f , as a general-
ization of the Calderón problem for the fractional Schrödinger equation, we aim to
determine the nonlinearity f(x, τ) from the DN map Λf related to (1.31.3), which can
be formally defined by

Λfφ := (−∆)suφ
∣∣
(Ωe)T

,

where uφ : Rn
T → R denotes the unique solution to (1.31.3) (cf. eq. (1.21.2)). Next, let us

make a few remarks on this inverse problem.

(a) Linear perturbations: In [KLW22KLW22], the uniqueness of this inverse problem
has been established in the case f(x, u) = q(x)u with q ∈ L∞(Ω). In
[LTZ24LTZ24, Corollary 1.4], it has been shown that uniqueness still holds if
0 ≤ q ∈ Lp(Ω) with p satisfying (1.41.4).

(b) Semilinear perturbations: In [LTZ24LTZ24, Theorem 1.1], we showed that unique-
ness holds even when
(A) f is a weak nonlinearity (see Assumption 11) with F, r satisfying

(A1) F ≥ 0,
(A2) 0 < r ≤ 1
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(B) and f is (r + 1)−homogeneous.

All of these results rely on a L2(ΩT ) Runge approximation property of linear non-
local wave equations (cf. (i)(i)):

Proposition 1.1 (Runge approximation, [LTZ24LTZ24, Proposition 4.1]). Let Ω ⊂ Rn

be a bounded Lipschitz domain, W ⊂ Ωe an arbitrary open set, s > 0 a non-integer
and T > 0. Suppose that q ∈ Lp(Ω) is nonnegative11, where p is given by (1.41.4).
Consider the Runge set

RW :=
{
uφ

∣∣
ΩT

; φ ∈ C∞
c (WT )

}
,

where uφ ∈ C([0, T ];Hs(Rn)) ∩ C1([0, T ];L2(Rn)) is the unique solution to

(1.6)


∂2t u+ (−∆)su+ qu = 0 in ΩT ,

u = φ in (Ωe)T ,

u(0) = ∂tu(0) = 0 in Ω.

Then RW is dense in L2(ΩT ).

A main contribution of this article is to settle a question raised in [Zim24Zim24, p. 3],
namely:

Question 1. Let us adopt all notation of Proposition 1.11.1. Is the Runge set

RW := {uφ − φ ; φ ∈ C∞
c (WT )}

dense in L2(0, T ; H̃s(Ω))?

By extending the theory of very weak solutions to linear nonlocal wave equations
in Section 33, we show in Section 44 the following Runge approximation.

Theorem 1.2 (Runge approximation). Let Ω ⊂ Rn be a bounded Lipschitz domain,
W ⊂ Ωe an arbitrary open set, s > 0 a non-integer, T > 0 and q ∈ Lp(Ω) with p
satisfying the restrictions (1.41.4). Consider the Runge set

RW := {uφ − φ ; φ ∈ C∞
c (WT )} ⊂ L2(0, T ; H̃s(Ω)),

where uφ ∈ C([0, T ];Hs(Rn)) ∩ C1([0, T ];L2(Rn)) is the unique solution to (1.61.6).

Then RW is dense in L2(0, T ; H̃s(Ω)).

With this Runge approximation and a suitable integral identity, similar to the
one demonstrated in [KLW22KLW22] or [Zim24Zim24], at hand, we can recover Lp-regular linear
perturbations, which are not necessarily nonnegative (cf. (a)(a)).

Theorem 1.3. Let Ω ⊂ Rn be a bounded Lipschitz domain, W ⊂ Ωe an nonempty
open set, s > 0 a non-integer, T > 0 and qj ∈ Lp(Ω) with p satisfying the restric-
tions (1.41.4) for j = 1, 2. Let Λqj be the DN maps of

∂2t u+ (−∆)su+ qju = 0 in ΩT ,

uj = φ in (Ωe)T ,

uj(0) = ∂tuj(0) = 0 in Ω,

for j = 1, 2, satisfying

(1.7) Λq1φ
∣∣
(W2)T

= Λq2φ
∣∣
(W2)T

, for any φ ∈ C∞
c ((W1)T ).

Then there holds q1 = q2 in Ω.

1This assumption is included for simplicity and the result remains true, for example, if one
assumes instead q ∈ L∞(Ω).
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Next, we present our main results on inverse problems for nonlinear nonlocal
wave equations. To this purpose, let us introduce two different types of nonlinear-
ities having a polyhomogeneous structure.

Definition 1.4 (Polyhomogeneous nonlinearities). Let Ω ⊂ Rn be a bounded do-
main. Suppose we are given a sequence r := (rk)

∞
k=1 ⊂ R satisfying 0 < rk < rk+1

for all k ∈ N and let f : Ω× R → R be a Carathéodory function.

(i) We call f serially r-polyhomogeneous, if

f(x, τ) =
∑
k≥1

fk(x, τ),

where each expansion coefficient fk : Ω×R → R is a Carathéodory function
satisfying

(1.8) |fk(x, τ)| ≤ bk|τ |rk+1

for some constants bk ≥ 0 and is (rk + 1)-homogeneous in the τ -variable.
(ii) We call f asymptotically r-polyhomogeneous, denoted as

f(x, τ) ∼
∑
k≥1

fk(x, τ),

if each expansion coefficient fk : Ω × R → R is a Carathéodory function
satisfying (1.81.8), is (rk + 1)-homogeneous in the τ -variable and for all N ∈
N≥2 there is a constant CN > 0 such that

(1.9)

∣∣∣∣f(x, τ)− N−1∑
k=1

fk(x, τ)

∣∣∣∣ ≤ CN |τ |rN+1, |τ | ≤ 1, x ∈ Ω.

With Assumption 11 and Definition 1.41.4 at hand, we can state our main results
for inverse problems of nonlinear nonlocal wave equations.

Theorem 1.5 (Recovery of expansion coefficients). Let Ω ⊂ Rn be a bounded
Lipschitz domain, T > 0 and s > 0 a non-integer. Let W1,W2 ⊂ Ωe be open
sets. Suppose the nonlinearities f (j) satisfy the conditions in Assumption 11 with
F (1), F (2) ≥ 0, a(1), a(2) ∈ L∞(Ω), r(1) = r(2) = r∞, and are serially or asymp-
totically r-polyhomogeneous such that the corresponding (strictly) monotonically in-
creasing sequence r := (rk)k∈N fulfills r ⊂ (0, r∞] (see Definition 1.41.4). Assume that
the DN maps Λf(j) of

∂2t u+ (−∆)su+ f (j)(x, u) = 0 in ΩT ,

u = φ in (Ωe)T ,

u(0) = ∂tu(0) = 0 in Ω,

for j = 1, 2, coincide;

(1.10) Λf(1)φ
∣∣
(W2)T

= Λf(2)φ
∣∣
(W2)T

for any φ ∈ C∞
c ((W1)T ).

(i) If f (j) are serially r-polyhomogeneous with

(1.11) Lj := lim sup
k→∞

b
(j)
k+1

b
(j)
k

< 1,

then f (1) = f (2).
(ii) If f (j) are asymptotically r-polyhomogeneous such that (1.91.9) holds for all

τ ∈ R in the cases 2s ≤ n, then f
(1)
k (x, τ) = f

(2)
k (x, τ) for all x ∈ Ω, τ ∈ R

and all k ∈ N.
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1.2. Comparison to inverse problems for local wave equations. The inverse
problem of recovering coefficient functions in linear wave equations is classical and
the first results in this direction were by Belishev and Kurylev using a boundary
control method [Bel87Bel87, BK92BK92], see also [KKL01KKL01]. Nowadays there are also results in
reconstructing Riemannian manifolds for linear wave and other equations from par-
tial data boundary measurements, such as in [AKK+04AKK+04, HLOS18HLOS18, IKL17IKL17, KKLO19KKLO19,
KKL08KKL08, KOP18KOP18, LO14LO14]. However, in the linear case these results are based on the
boundary control method, which requires the (lower order) coefficient functions to
be time-independent or real-analytic in time, see [Esk07Esk07]. Due to strong unique
continuation and Runge approximation properties, in the nonlocal case such re-
strictions are not needed, and one can consider much lower regularity coefficients,
such as in Theorem 1.51.5 (which also includes the linear case, see also [LTZ24LTZ24]).
Moreover, nonlocal wave equations often enjoy infinite speed of propagation of the
solution, and hence one can recover coefficients in larger domains than in the local
case, where causality forces restrictions on the possible domains of reconstruction.

Recently, inverse problems for nonlinear (local) wave equations have become
mainstream. Let us elaborate on several works in this research field. The nonlinear
(self-)interaction of waves will generate new waves, and this effect can be treated as
a benefit in solving related inverse problems in the hyperbolic and elliptic settings.
The seminal work [KLU18KLU18] demonstrated that local measurements can be utilized
to recover global topology and differentiable structure uniquely for a semilinear
wave equation with a quadratic nonlinearity. Furthermore, general semilinear wave
equations on Lorentzian manifolds and related inverse problems were studied for the
Einstein-Maxwell equation in [LUW18LUW18] and [LUW17LUW17], respectively. We also refer
readers to [dHUW18dHUW18, KLOU22KLOU22, LLL24LLL24, LLPMT22LLPMT22, LLPMT21LLPMT21, LLPMT24LLPMT24, WZ19WZ19]
and references therein for different inverse problems settings.

1.3. Organization of the paper. The remainder of this paper is arranged as
follows. In Section 22, we introduce several function spaces used in this paper. In
Section 33, we show that there exists a unique very weak solution to linear nonlocal
wave equations. In Section 44, we prove a stronger version of Runge approximation
and use it to solve an inverse problem for linear nonlocal wave equations. Finally,
we prove Theorem 1.51.5 in Section 55.

2. Preliminaries

In this section, we introduce some notation, which will be used throughout the
whole article, and use this occasion to recall several basic facts on fractional Sobolev
spaces as well as the fractional Laplacian.

Throughout this article, we use the following convention for the Fourier transform

Fu(ξ) := û(ξ) :=

ˆ
Rn

u(x)e−ix·ξ dx

for functions u : Rn → R for example in the Schwartz space S (Rn), where i is the
imaginary unit. By duality, the Fourier transform can be extended to the space of
tempered distributions S ′(Rn) = (S (Rn))∗, and we use the same notation for it.
We denote the inverse Fourier transform by F−1.

For any s ∈ R, we let Hs(Rn) stand for the fractional Sobolev space, which
consists of all tempered distributions u such that

∥u∥Hs(Rn) := ∥⟨D⟩su∥L2(Rn) <∞,

where ⟨D⟩s denotes the Bessel potential of order s with the Fourier symbol ⟨ξ⟩s :=(
1 + |ξ|2

)s/2
. We shall also need the following local versions of the fractional
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Sobolev spaces Hs(Rn):

Hs(Ω) := {u|Ω ; u ∈ Hs(Rn)} ,

H̃s(Ω) := closure of C∞
c (Ω) in Hs(Rn),

where Ω ⊂ Rn is an open set and Hs(Ω) naturally endowed with the quotient norm

∥u∥Hs(Ω) := inf
{
∥U∥Hs(Rn) ; U ∈ Hs(Rn) and U |Ω = u

}
.

Furthermore, we set

L̃2(Ω) := H̃0(Ω) and ∥ · ∥L̃2(Ω)
:= ∥ · ∥H̃0(Ω) = ∥ · ∥L2(Rn).

Let us also emphasize that if Ω is a Lipschitz domain then one has the following
identification

(H̃s(Ω))∗ = H−s(Ω).

The fractional Laplacian of order s > 0 is the homogeneous counterpart of the
Bessel potential and hence is the Fourier multiplier

(−∆)su = F−1
(
|ξ|2s û(ξ)

)
, for u ∈ S (Rn).

It is not difficult to see that an equivalent norm on Hs(Rn) is given by

(2.1) ∥u∥∗Hs(Rn) = ∥u∥L2(Rn) +
∥∥(−∆)s/2u

∥∥
L2(Rn)

,

and the fractional Laplacian is a bounded linear operator as a map (−∆)s : Ht(Rn) →
Ht−2s(Rn) for all s ≥ 0 and t ∈ R. In fact, one can also write (−∆)s = (−∆)k(−∆)α,
where s = k + α with k = ⌊s⌋ ∈ N ∪ {0} and α = s− k ∈ (0, 1).

Using the Hardy–Littlewood–Sobolev lemma and Hölder’s inequality, one can
easily see that the following Poincaré inequality holds:

Proposition 2.1 (Poincaré inequality (cf. [RZ23RZ23, Lemma 5.4])). Let Ω ⊂ Rn be a
bounded domain. For any s > 0, there exists C > 0 such that

∥u∥L2(Ω) ≤ C
∥∥(−∆)s/2u

∥∥
L2(Rn)

, for any u ∈ H̃s(Ω).

Taking into account that (2.12.1) is an equivalent norm on H̃s(Ω), the Poincaré
inequality (Propositions 2.12.1) ensures the following simple lemma, which will be
used throughout the whole article.

Lemma 2.2. Let Ω ⊂ Rn be a bounded domain and s ≥ 0. Then an equivalent

norm on H̃s(Ω) is given by

∥u∥H̃s(Ω) =
∥∥(−∆)s/2u

∥∥
L2(Rn)

,

which is induced by the inner product

⟨u, v⟩H̃s(Ω) =
〈
(−∆)s/2u, (−∆)s/2v

〉
L2(Rn)

.

Finally, let us mention that ifX is a Banach space, then we denote by Ck([a, b] ;X)
and Lp(a, b ;X) (k ∈ N, 1 ≤ p ≤ ∞) the space of k-times continuously differen-
tiable functions and the space of measurable functions u : (a, b) → X such that
t 7→ ∥u(t)∥X ∈ Lp([a, b]), respectively. These Banach spaces are endowed with the
norms

∥u∥Lp(a,b ;X) :=

(ˆ b

a

∥u(t)∥pX dt

)1/p

<∞,

∥u∥Ck([a,b];X) := sup
0≤ℓ≤k

∥∥∂ℓtu∥∥L∞(a,b;X)

(with the usual modification for p = ∞).
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3. Existence and uniqueness of very weak solutions to linear
nonlocal wave equations

The purpose of this section is to extend the well-established theory of very weak
solutions to linear wave equations in our nonlocal setting. In Section 3.13.1, we moti-
vate and present the rigorous definition of these solutions. Afterward, in Section 3.23.2
we formulate a spectral theoretic lemma, which we need later in Section 3.33.3 for the
construction of very weak solutions to NWEQs without a potential term. In Sec-
tion 3.43.4, we then establish via a fixed point argument the well-posedness theory of
very weak solutions to linear NWEQs with a nonzero potential. Finally, in Sec-
tion 3.53.5 we discuss some properties of very weak solutions. In particular, we show
that all weak solutions are very weak solutions, which in turn are distributional
solutions.

Throughout the whole section Ω ⊂ Rn denotes a fixed bounded Lipschitz domain

and s ∈ R+ \ N. As usual ⟨·, ·⟩ denotes the duality pairing between H̃s(Ω) and
H−s(Ω). These Hilbert spaces are endowed with the norms ∥ · ∥H̃s(Ω), introduced

in Lemma 2.22.2, and

∥G∥H−s(Ω) = sup
{
|⟨G, v⟩|; v ∈ H̃s(Ω), ∥v∥H̃s(Ω) = 1

}
.

3.1. Definition of very weak solutions. Next we introduce the notion of very
weak solutions to linear NWEQs with possibly a nonzero potential q.

Definition 3.1. Let F ∈ L2(0, T ;H−s(Ω)), u0 ∈ L̃2(Ω), u1 ∈ H−s(Ω) and q ∈
Lp(Ω), where the exponent p satisfies the restriction (1.41.4). A function u : Rn

T → R
is called a very weak solution of

(3.1)


∂2t u+ (−∆)su+ qu = F in ΩT ,

u = 0 in (Ωe)T ,

u(0) = u0, ∂tu(0) = u1 in Ω,

if u ∈ C([0, T ]; L̃2(Ω)) ∩ C1([0, T ];H−s(Ω)) satisfies

ˆ T

0

⟨u(t), G(t)⟩L2(Ω) dt =

ˆ T

0

⟨F (t), v(t)⟩L2(Ω) dt+ ⟨u1, v(0)⟩ − ⟨u0, ∂tv(0)⟩L2(Ω) ,

(3.2)

for all G ∈ L2(0, T ; L̃2(Ω)), where v ∈ C([0, T ]; H̃s(Ω)) ∩ C1([0, T ]; L̃2(Ω)) is the
unique (weak) solution of the backward equation

(3.3)


∂2t v + (−∆)sv + qv = G in ΩT ,

v = 0 in (Ωe)T ,

v(T ) = ∂tv(T ) = 0 in Ω

(see [LTZ24LTZ24, Theorem 3.1]).

Remark 3.2. We recall that if F ∈ L2(0, T ; L̃2(Ω)), u0 ∈ H̃s(Ω) and u1 ∈ L̃2(Ω),

then a weak solution of (3.13.1) is a function u ∈ C([0, T ]; H̃s(Ω))∩C1([0, T ]; L̃2(Ω))
such that

d

dt
⟨∂tu,w⟩L2(Ω) +

〈
(−∆)s/2u, (−∆)s/2w

〉
L2(Rn)

+ ⟨qu, w⟩L2(Ω) = ⟨F,w⟩L2(Ω),

for all w ∈ H̃s(Ω) in the sense of D ′((0, T )). Often, we refer to weak solutions
or very weak solutions simply as solutions, because the source term in the relevant
PDEs determines which notion of solutions we invoke. Moreover, weak solutions
are always very weak solutions as we will see later in Proposition 3.93.9.
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Remark 3.3. Let us emphasize that the restriction on the exponent p comes from
the observation that if q ∈ Lp(Ω) and u ∈ C([0, T ];L2(Ω)), then we have qu ∈
L2(0, T ;H−s(Ω)) (see (3.333.33) in the proof of Theorem 3.73.7).

Before proceeding, let us give a formal motivation for imposing the identity
(3.23.2). We test the equation ∂2t u + (−∆)su + qu = F in H−s(Ω) by the solution

v ∈ C([0, T ]; H̃s(Ω)) to (3.33.3) and integrate the resulting identity from t = 0 to
t = T . This gives

ˆ T

0

〈
∂2t u(t), v(t)

〉
dt

= −
ˆ T

0

⟨(−∆)su(t), v(t)⟩ dt−
ˆ T

0

⟨qu(t), v(t)⟩ dt+
ˆ T

0

⟨F (t), v(t)⟩ dt

= −
ˆ T

0

⟨(−∆)sv(t), u(t)⟩ dt−
ˆ T

0

⟨qv(t), u(t)⟩ dt+
ˆ T

0

⟨F (t), v(t)⟩ dt

=

ˆ T

0

〈
∂2t v(t), u(t)

〉
dt−

ˆ T

0

⟨G(t), u(t)⟩ dt+
ˆ T

0

⟨F (t), v(t)⟩ dt.

(3.4)

Using an integration by parts the term on the left-hand side and the first term on
the right-hand side can be rewritten as

ˆ T

0

〈
∂2t u(t), v(t)

〉
dt = −

ˆ T

0

⟨∂tu(t), ∂tv(t)⟩ dt+ ⟨∂tu(T ), v(T )⟩ − ⟨∂tu(0), v(0)⟩

= −
ˆ T

0

⟨∂tu(t), ∂tv(t)⟩ dt− ⟨u1, v(0)⟩ ,
ˆ T

0

〈
∂2t v(t), u(t)

〉
dt = −

ˆ T

0

⟨∂tv(t), ∂tu(t)⟩ dt+ ⟨∂tv(T ), u(T )⟩ − ⟨∂tv(0), u(0)⟩

= −
ˆ T

0

⟨∂tu(t), ∂tv(t)⟩ dt− ⟨∂tv(0), u0⟩ .

Inserting these identities into (3.43.4), we get (3.23.2).

Remark 3.4. Note that the above computations are only formal because the inte-
gration by parts identities require better regularity than ∂tu ∈ L2(0, T ;H−s(Ω)) for

the integral
´ T
0
⟨∂tu(t), ∂tv(t)⟩ dt to make sense.

3.2. A spectral theoretic lemma. For the construction of very weak solutions
to linear nonlocal wave equations, we will need the following elementary spectral
theoretic result. Even though the argument is standard, we offer the proof in
Appendix AA for readers’ convenience.

Lemma 3.5. Let Ω ⊂ Rn be a bounded Lipschitz domain and s ∈ R+ \ N. There
exists a sequence of (Dirichlet) eigenvalues of the fractional Laplacian (−∆)s sat-
isfying 0 < λ1 ≤ λ2 ≤ . . . with λk → ∞ as k → ∞ such that the corresponding

eigenfunctions (ϕk)k∈N ⊂ H̃s(Ω) have the following properties:

(i) (ϕk)k∈N is an orthonormal basis of L̃2(Ω),

(ii)
(
λ
−1/2
k ϕk

)
k∈N is an orthonormal basis of H̃s(Ω),

(iii)
(
λ
1/2
k ϕk

)
k∈N is an orthonormal basis of H−s(Ω).

3.3. Very weak solutions to linear nonlocal wave equations without po-
tential. The main purpose of this section is to prove the following well-posedness
result.
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Theorem 3.6 (Well-posedness of NWEQ with q = 0). Let F ∈ L2(0, T ;H−s(Ω)),

u0 ∈ L̃2(Ω) and u1 ∈ H−s(Ω). Then there exists a unique solution of

(3.5)


∂2t u+ (−∆)su = F in ΩT ,

u = 0 in (Ωe)T ,

u(0) = u0, ∂tu(0) = u1 in Ω.

Moreover, the following continuity estimate holds

∥u(t)∥L2(Ω) + ∥∂tu(t)∥H−s(Ω) ≤ C
(
∥u0∥L2(Ω) + ∥u1∥H−s(Ω) + ∥F∥L2(0,T ;H−s(Ω))

)
,

(3.6)

for some C > 0 and for all 0 ≤ t ≤ T .

Proof. We use the Fourier method to show the existence of a solution to (3.53.5), that
is we make the ansatz

(3.7) u(t) =

∞∑
k=1

ck(t)ϕk

and for later convenience we set

um(t) :=

m∑
k=1

ck(t)ϕk,

for any m ∈ N. For u to satisfy (3.53.5) in H−s(Ω), the coefficient ck, k ∈ N, needs to
solve the initial value problem

(3.8)

{
c′′k(t) + λkck(t) = Fk(t),

ck(0) = uk0 , c
′
k(0) = uk1

for 0 < t < T , where we set

uk0 = ⟨u0, ϕk⟩L2(Ω) , u
k
1 = ⟨u1, ϕk⟩ and Fk(t) = ⟨F (t), ϕk⟩ .

By Duhamel’s principle, for any k ∈ N, the coefficients ck are given by

ck(t) = uk0 cos
(
λ
1/2
k t

)
+ λ

−1/2
k uk1 sin

(
λ
1/2
k t

)
+ λ

−1/2
k

ˆ t

0

Fk(τ) sin
(
λ
1/2
k (t− τ)

)
dτ.

(3.9)

Step 1. We first show that for any t ∈ [0, T ], the series in (3.73.7) converges in

L̃2(Ω). By [Bre11Bre11, Corollary 5.10], we only need to ensure that ck(t) ∈ ℓ2. By
Jensen’s inequality, we may estimate

|ck(t)|2 ≤ 3

(
|uk0 |2 + λ−1

k |uk1 |2 + λ−1
k

∣∣∣∣ˆ t

0

Fk(τ) sin
(
λ
1/2
k (t− τ)

)
dτ

∣∣∣∣2 )
≤ 3

(
|uk0 |2 + λ−1

k |uk1 |2 + tλ−1
k

ˆ t

0

|Fk(τ)|2 dτ
)
,

(3.10)

for any k ∈ N. As u0 ∈ L̃2(Ω) and (ϕk)k∈N is an orthonormal basis in L̃2(Ω),
[Bre11Bre11, Corollary 5.10] implies (uk0)k∈N ∈ ℓ2 with

(3.11) ∥u0∥2L2(Ω) =

∞∑
k=1

|uk0 |2.

Similarly, we know by (A.12A.12) that (λ
−1/2
k uk1)k∈N ∈ ℓ2 with

(3.12) ∥u1∥2H−s(Ω) =

∞∑
k=1

λ−1
k |uk1 |2.
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On the other hand, the formula (A.12A.12) shows that if G ∈ L2(0, T ;H−s(Ω)), then
(λ−1

k Gk)k∈N ∈ L2(0, T ; ℓ2). Additionally, by Tonelli’s theorem, the integral and
sum can be exchanged so that

(3.13) ∥G∥2L2(0,T ;H−s(Ω)) = ∥λ−1/2
k Gk∥2L2(0,T ;ℓ2) =

∞∑
k=1

λ−1
k

ˆ T

0

|Gk(t)|2 dt.

This estimate can be applied to F ∈ L2(0, T ;H−s(Ω)). Hence, to sum up, we have

∥ck(t)∥2ℓ2 ≤ 3
(
∥u0∥2L2(Ω) + ∥u1∥2H−s(Ω) + T∥F∥2L2(0,T ;H−s(Ω))

)
.

Now, again invoking [Bre11Bre11, Corollary 5.10] and Lemma 3.53.5, we deduce (3.73.7) con-

verges in L̃2(Ω) for any t ∈ [0, T ] and

(3.14) ∥u(t)∥2L2(Ω) = ∥ck(t)∥2ℓ2 ≤ 3
(
∥u0∥2L2(Ω)+∥u1∥2H−s(Ω)+T∥F∥

2
L2(0,T ;H−s(Ω))

)
.

Step 2. We first show that u ∈ C([0, T ]; L̃2(Ω)). To see this, it is enough to show

that um ∈ C([0, T ]; L̃2(Ω)) for m ∈ N and um → u in L̃2(Ω) as m → ∞ uniformly
in 0 ≤ t ≤ T . Note that we have

∥um(t)− um(t′)∥L2(Ω) ≤
m∑

k=1

|ck(t)− ck(t
′)| ,

for t, t′ ∈ [0, T ] and so um ∈ C([0, T ]; L̃2(Ω)) as long as ck ∈ C([0, T ]). The first
two terms of ck (see (3.93.9)) are continuous, hence it only remains to show that

(3.15) dk(t) := λ
−1/2
k

ˆ t

0

Fk(τ) sin
(
λ
1/2
k (t− τ)

)
dτ ∈ C([0, T ]).

Let us suppose that t ≥ t′. Then we may calculate

|dk(t)− dk(t
′)|

= λ
−1/2
k

∣∣∣∣∣
ˆ t

0

Fk(τ) sin
(
λ
1/2
k (t− τ)

)
dτ −

ˆ t′

0

Fk(τ) sin
(
λ
1/2
k (t′ − τ)

)
dτ

∣∣∣∣∣
≤ λ

−1/2
k

ˆ t

t′
|Fk(τ)|

∣∣ sin (λ1/2k (t− τ)
)∣∣ dτ

+ λ
−1/2
k

ˆ t′

0

|Fk(τ)|
∣∣ sin (λ1/2k (t′ − τ)

)
− sin

(
λ
1/2
k (t− τ)

)∣∣ dτ
≤ λ

−1/2
k

ˆ t

t′
|Fk(τ)| dτ

+ λ
−1/2
k

ˆ t′

0

|Fk(τ)|
∣∣ sin (λ1/2k (t′ − τ)

)
− sin

(
λ
1/2
k (t− τ)

)∣∣ dτ
≤ |t− t′|1/2

(ˆ t

t′
λ−1
k |Fk(τ)|2 dτ

)1/2

+

(ˆ t′

0

λ−1
k |Fk(τ)|2 dτ

)1/2(ˆ t′

0

∣∣ sin (λ1/2k (t′ − τ)
)
− sin

(
λ
1/2
k (t− τ)

)∣∣2 dτ)1/2

≤ |t− t′|1/2∥F∥L2(0,T ;H−s(Ω))

+ ∥F∥L2(0,T ;H−s(Ω))

(ˆ t′

0

| sin(λ1/2k (t′ − τ))− sin(λ
1/2
k (t− τ))|2 dτ

)1/2

.

(3.16)

In the first inequality, we wrote

sin
(
λ
1/2
k (t′ − τ)

)
=

(
sin

(
λ
1/2
k (t′ − τ)

)
− sin

(
λ
1/2
k (t− τ)

))
+ sin

(
λ
1/2
k (t′ − τ)

)



12 Y.-H. LIN, T. TYNI, AND P. ZIMMERMANN

and in the fourth inequality used (3.133.13). Now, let ϵ > 0 and choose first ρ > 0 such
that ρ1/2∥F∥L2(0,T ;H−s(Ω)) < ϵ/2. Then choose δ > 0 such that

∥F∥L2(0,T ;H−s(Ω))T
1/2δ < ϵ/2.

By uniform continuity of the sine function, we can find η > 0 such that | sinx −
sin y| < δ, whenever |x− y| < η. Now, we set

µ := min(ρ, η/λ
1/2
k ).

The above choices show that if |t− t′| < µ and t ≥ t′, then

|dk(t)− dk(t
′)| ≤ ρ1/2∥F∥L2(0,T ;H−s(Ω)) + ∥F∥L2(0,T ;H−s(Ω))δ(t

′)1/2

< ϵ/2 + ∥F∥L2(0,T ;H−s(Ω))δT
1/2

< ϵ.

Interchanging the roles of t and t′ shows that dk is uniformly continuous because
the constant does not depend on the particular point t or t′ (but choice of µ depends

on k). Hence, we have shown that um ∈ C([0, T ]; L̃2(Ω)).

Next, we prove that um converges uniformly to u in L̃2(Ω) on [0, T ] as m→ ∞.
Let ℓ ≥ m, then by (3.103.10) we deduce that

∥uℓ(t)− um(t)∥2L2(Ω) =

∥∥∥∥ ℓ∑
k=m+1

ck(t)ϕk

∥∥∥∥2
L2(Ω)

=

ℓ∑
k=m+1

|ck(t)|2

≤ C

ℓ∑
k=m+1

( ∣∣uk0∣∣2 + λ−1
k

∣∣uk1∣∣2 + Tλ−1
k

ˆ T

0

|Fk(τ)|2 dτ
)
,

for some constant C > 0. Passing to the limit ℓ→ ∞ gives

∥u(t)− um(t)∥2L2(Ω) ≤ C

∞∑
k=m+1

( ∣∣uk0∣∣2 + λ−1
k

∣∣uk1∣∣2 + Tλ−1
k

ˆ T

0

|Fk(τ)|2 dτ
)

for any m ∈ N. The right-hand side is independent of t ∈ [0, T ] and by summability
of the right-hand side (see (3.113.11), (3.123.12) and (3.133.13)) it needs to go to zero as m

tends to infinity. Thus, the convergence um → u in L̃2(Ω) as m→ ∞ is uniform in
t ∈ [0, T ].

Step 3. Let us show that u ∈ C1([0, T ];H−s(Ω)). We first establish that um ∈
C1([0, T ];H−s(Ω)) for anym ∈ N. Formally, by differentiating ck, one may compute

c′k(t) = −λ1/2k uk0 sin
(
λ
1/2
k t

)
+ uk1 cos

(
λ
1/2
k t

)
+

ˆ t

0

Fk(τ) cos
(
λ
1/2
k (t− τ)

)
dτ,

(3.17)

for any k ∈ N. Taking derivatives for the first two terms does not cause any
difficulty, but for the integral term, we need to justify it. Using the definition of dk
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from (3.153.15), for any t ∈ [0, T ] and h > 0 such that t+ h ∈ [0, T ], one can compute∣∣∣∣dk(t+ h)− dk(t)

h
−
ˆ t

0

Fk(τ) cos
(
λ
1/2
k (t− τ)

)
dτ

∣∣∣∣
=

∣∣∣∣ ˆ t+h

t

λ
−1/2
k Fk(τ)

sin
(
λ
1/2
k (t+ h− τ)

)
h

dτ

+

ˆ t

0

λ
−1/2
k Fk(τ)

·
(
sin

(
λ
1/2
k (t+ h− τ)

)
− sin

(
λ
1/2
k (t− τ)

)
h

− λ
1/2
k cos

(
λ
1/2
k (t− τ)

))
dτ

∣∣∣∣
≤
ˆ t+h

t

λ
−1/2
k |Fk(τ)|

∣∣∣∣ sin
(
λ
1/2
k (t+ h− τ)

)
h

∣∣∣∣ dτ
+

ˆ t

0

λ
−1/2
k |Fk(τ)|

·
∣∣∣∣ sin

(
λ
1/2
k (t+ h− τ)

)
− sin

(
λ
1/2
k (t− τ)

)
h

− λ
1/2
k cos

(
λ
1/2
k (t− τ)

)∣∣∣∣ dτ
=: Ih + IIh.

Next, we show that both expressions Ih and IIh vanish as h→ 0.
For Ih, by the triangle inequality, we have

Ih ≤
ˆ t+h

t

λ
−1/2
k |Fk(τ)|

∣∣∣∣ sin
(
λ
1/2
k (t+ h− τ)

)
− sin

(
λ
1/2
k (t− τ)

)
h

∣∣∣∣ dτ
+

ˆ t+h

t

λ
−1/2
k |Fk(τ)|

∣∣∣∣ sin
(
λ
1/2
k (t− τ)

)
h

∣∣∣∣dτ︸ ︷︷ ︸
= 1

h

´ t+h
t

λ
−1/2
k |Fk(τ)|| sin(λ1/2

k (t−τ))|dτ

=

ˆ t+h

t

λ
−1/2
k |Fk(τ)|

∣∣∣∣ sin
(
λ
1/2
k (t+ h− τ)

)
− sin

(
λ
1/2
k (t− τ)

)
h

∣∣∣∣ dτ + o(1)

=

ˆ t+h

t

|Fk(τ)|
∣∣ cos (λ1/2k (η − τ)

)∣∣dτ + o(1)

≤
ˆ t+h

t

|Fk(τ)| dτ + o(1)

= o(1)

as h → 0. In the first equality we used that Fk ∈ L2((0, T )) and Lebesgue’s
differentiation theorem implies

1

h

ˆ t+h

t

λ
−1/2
k |Fk(τ)|

∣∣ sin(λ1/2k (t− τ))
∣∣dτ → 0 as h→ 0.

In the second equality we applied the mean value theorem, where η ∈ (t, t+h), and
in the last equality the absolute continuity of the Lebesgue integral.

On the other hand, the fact that IIh → 0 as h → 0 is a simple application
of Lebesgue’s dominated convergence theorem. The same argument works out for
h < 0 and hence the dk is differentiable with the derivative

(3.18) d′k(t) =

ˆ t

0

Fk(τ) cos
(
λ
1/2
k (t− τ)

)
dτ.

Hence, we have proved the formula (3.173.17).
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It remains to show that u′m ∈ C([0, T ];H−s(Ω)), but by the same argument as
above it is enough to establish c′k ∈ C([0, T ]). The first two terms in c′k are clearly
continuous and hence we only need to show the continuity of d′k given by the formula
(3.183.18). Let t ≥ t′. By the same computation as in (3.163.16) up to replacing sin by cos

and forgetting the prefactor λ
−1/2
k , we have

|d′k(t)− d′k(t
′)| ≤

ˆ t

t′
|Fk(τ)| dτ

+

ˆ t′

0

|Fk(τ)|
∣∣ cos (λ1/2k (t′ − τ)

)
− cos

(
λ
1/2
k (t− τ)

)∣∣dτ.
Now, let ϵ > 0. As Fk ∈ L2((0, T )), by the absolute continuity of the Lebesgue
integral, we can find δ > 0 such that the first term is smaller than ϵ/2, whenever
|t− t′| < δ. On the other hand, we can find a ρ > 0 such that there holds

| cosx− cos y| < ϵ/2∥Fk∥L1((0,T ))

whenever |x− y| < ρ. Let

µ = min(δ, ρ/λ
1/2
k ).

Hence, if |t− t′| < µ, then we have∣∣λ1/2k (t′ − τ)− λ
1/2
k (t− τ)

∣∣ = λ
1/2
k |t− t′| < ρ

and hence

|d′k(t)− d′k(t
′)| < ϵ/2 +

ϵ

2∥Fk∥L1((0,T ))

ˆ t′

0

|Fk(τ)| dτ < ϵ.

The very same argument holds when t ≤ t′ and as all parameters δ, ρ, µ are in-
dependent of t and t′, we have shown that d′k are uniformly continuous on [0, T ].
Hence, we have um ∈ C1([0, T ];H−s(Ω)) for all m ∈ N.

Now, by Lemma 3.53.5 and the same arguments as in (3.103.10), we get

∥u′m(t)∥2H−s(Ω) =

∥∥∥∥ m∑
k=1

c′k(t)ϕk

∥∥∥∥2
H−s(Ω)

=

∥∥∥∥ m∑
k=1

λ
−1/2
k c′k(t)(λ

1/2
k ϕk)

∥∥∥∥2
H−s(Ω)

=

m∑
k=1

λ−1
k |c′k(t)|2

≤ 3

m∑
k=1

λ−1
k

(
λk|uk0 |2 + |uk1 |2 +

(ˆ t

0

|Fk(τ)| dτ
)2)

≤ 3

m∑
k=1

(
|uk0 |2 + λ−1

k |uk1 |2 + Tλ−1
k

ˆ T

0

|Fk(τ)|2 dτ
)
.

(3.19)

Using (3.113.11), (3.123.12) and (3.133.13), this implies

(3.20) ∥u′m(t)∥2H−s(Ω) ≤ 3
(
∥u0∥2L2(Ω) + ∥u1∥2H−s(Ω) + T∥F∥2L2(0,T ;H−s(Ω)

)
.

Furthermore, we have

∥u′ℓ(t)− u′m(t)∥2H−s(Ω) =

ℓ∑
k=m+1

λ−1
k |c′k(t)|2 ≤

∞∑
k=m+1

λ−1
k |c′k(t)|2(3.21)

for all ℓ ≥ m. Observing that the right-hand side goes to zero as m → ∞, we
see that (um(t))m∈N ⊂ H−s(Ω) is a Cauchy sequence in H−s(Ω) and therefore
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converges to some unique limit w(t) ∈ H−s(Ω). Passing to the limit ℓ → ∞ in
(3.213.21) and using the estimates from (3.193.19), we get

∥w(t)− u′m(t)∥2H−s(Ω) ≤ 3

∞∑
k=m+1

(
|uk0 |2 + λ−1

k |uk1 |2 + Tλ−1
k

ˆ T

0

|Fk(τ)|2 dτ
)

for any m ∈ N. The sum on the right-hand side is independent of t and hence the
convergence u′m → w in H−s(Ω) asm→ ∞ is uniform in t ∈ [0, T ]. It is well-known
that this implies u ∈ C1([0, T ];H−s(Ω)) with u′ = w. Furthermore, by (3.203.20) there
holds

∥u′∥L∞(0,T ;H−s(Ω)) ≤ C
(
∥u0∥L2(Ω) + ∥u1∥H−s(Ω) + ∥F∥L2(0,T ;H−s(Ω)

)
,

for some C > 0. Notice that this estimate together with (3.143.14) establishes (3.63.6).

Step 4. In this step we show that u is in fact a solution of (3.53.5). First let us note
that by formally applying the Leibniz rule and (3.93.9), one has

c′′k(t) = −λkuk0 cos
(
λ
1/2
k t

)
− λ

1/2
k uk1 sin

(
λ
1/2
k t

)
+ Fk(t)

− λ
1/2
k

ˆ t

0

Fk(τ) sin
(
λ
1/2
k (t− τ)

)
dτ

= −λkck(t) + Fk(t).

(3.22)

Thus, ck indeed solves (3.83.8). To see that the first equality sign in formula (3.223.22)
holds, it is enough to show that d′k is differentiable with derivative

(3.23) d′′k(t) = Fk(t)− λ
1/2
k

ˆ t

0

Fk(τ) sin
(
λ
1/2
k (t− τ)

)
dτ.

We can repeat the same computation as for the first derivative. This time we have∣∣∣∣d′k(t+ h)− d′k(t)

h
− Fk(t) + λ

1/2
k

ˆ t

0

Fk(τ) sin
(
λ
1/2
k (t− τ)

)
dτ

∣∣∣∣
≤
ˆ t+h

t

∣∣∣∣Fk(τ) cos
(
λ
1/2
k (t+ h− τ)

)
− Fk(t)

h

∣∣∣∣ dτ
+

ˆ t

0

|Fk(τ)|
∣∣∣∣cos

(
λ
1/2
k (t+ h− τ)

)
− cos

(
λ
1/2
k (t− τ)

)
h

− λ
1/2
k sin

(
λ
1/2
k (t− τ)

)∣∣∣∣ dτ
=: IIIh + IVh.

The second term IVh again goes to zero by Lebesgue’s dominated convergence
theorem. For the first term IIIh, we proceed similarly as for I above. This gives

IIIh ≤
ˆ t+h

t

|Fk(τ)|
∣∣∣∣cos

(
λ
1/2
k (t+ h− τ)

)
− cos

(
λ
1/2
k (t− τ)

)
h

∣∣∣∣ dτ
+

ˆ t+h

t

∣∣∣∣Fk(τ) cos
(
λ
1/2
k (t− τ)

)
− Fk(t)

h

∣∣∣∣ dτ.
The second term goes to zero as h → 0 by Lebesgue’s differentiation theorem and
for the first term, one can use the mean value theorem and the absolute continuity
of the integral to find IIIh → 0 as h → 0. This proves (3.233.23) and hence (3.223.22).
From the differential equation for ck we get c′′k ∈ L2((0, T )). Note that as F is
not (in general) continuous, we generally do not have ck ∈ C2([0, T ]). But in fact
c′k ∈ H1((0, T )) and the fundamental theorem of calculus imply ck ∈ C1,1/2([0, T ]).

Now, we wish to show that u is a solution in the sense of Definition 3.13.1. To

this end, let us assume that G ∈ L2(0, T ; L̃2(Ω)) and v ∈ C([0, T ]; H̃s(Ω)) ∩
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C1([0, T ]; L̃2(Ω)) is the unique solution to

(3.24)


∂2t v + (−∆)sv = G in ΩT ,

v = 0 in (Ωe)T ,

v(T ) = ∂tv(T ) = 0 in Ω.

Note that from this equation we also have ∂2t v ∈ L2(0, T ;H−s(Ω)). By Lemma 3.53.5
we can write

v(t) =

∞∑
k=1

αk(t)ϕk,

where αk = ⟨v(t), ϕk⟩L2(Ω). Furthermore, note that by our choice of ϕk and the

inner product on H−s(Ω) (see (A.16A.16)), there holds

αk = λ
−1/2
k

〈
v(t), λ

−1/2
k ϕk

〉
H̃s(Ω)

= λ
1/2
k

〈
v(t), λ

1/2
k ϕk

〉
H−s(Ω)

.

The last equality is shown in (A.17A.17). For later convenience, we let vm be defined
via

vm(t) =

m∑
k=1

αk(t)ϕk.

Moreover, we know that:

(a) For any t ∈ [0, T ] one has vm(t) → v(t) in H̃s(Ω) as m→ ∞.
(b) There holds αk ∈ C1([0, T ]) ∩H2((0, T )) for any k ∈ N.
(c) For any k ∈ N the functions αk solve{

α′′
k(t) + λkαk(t) = Gk(t)

αk(T ) = α′
k(T ) = 0,

for 0 < t < T , where Gk(t) = ⟨G(t), ϕk⟩L2(Ω).

In fact, (a)(a) follows from Lemma 3.53.5 and the regularity of v. The regularity αk ∈
C1([0, T ]) in (b)(b) follows from v ∈ C1([0, T ]; L̃2(Ω)). The claim that αk ∈ H2((0, T ))
can be seen as follows. First of all, v′′ ∈ L2(0, T ;H−s(Ω)) implies

−
ˆ T

0

v′(t)η′(t) dt =

ˆ T

0

v′′(t)η(t) dt in H−s(Ω)

for all η ∈ C∞
c ((0, T )). Acting on this identity by w 7→ λ

1/2
k ⟨w, λ1/2k ϕk⟩H−s(Ω) ∈

(H−s(Ω))∗ gives

−
ˆ T

0

λ
1/2
k ⟨v′(t), λ1/2k ϕk⟩H−s(Ω)η

′(t) dt =

ˆ T

0

λ
1/2
k ⟨v′′(t), λ1/2k ϕk⟩H−s(Ω)η(t) dt.

Now, the first factor on the left-hand side is nothing else than α′
k, and thus

α′′
k(t) = λ

1/2
k ⟨v′′(t), λ1/2k ϕk⟩H−s(Ω) ∈ L2((0, T )).

This shows that αk ∈ H2((0, T )) for k ∈ N. The endpoint conditions in (c)(c) follow
from v(T ) = v′(T ) = 0. From the previous calculation, (A.16A.16) and (3.243.24), we can
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compute

α′′
k(t) = λ

1/2
k

〈
v′′(t), λ

1/2
k ϕk

〉
H−s(Ω)

= λ
1/2
k

〈
v′′(t)−G(t), λ

1/2
k ϕk

〉
H−s(Ω)

+ λ
1/2
k

〈
G(t), λ

1/2
k ϕk

〉
H−s(Ω)

=
〈
S(v′′(t)−G(t)), S(λkϕk)

〉
H̃s(Ω)

+ ⟨S(G(t)), S(λkϕk)⟩H̃s(Ω)

= −
〈
v(t), ϕk

〉
H̃s(Ω)

+ ⟨S(G(t)), ϕk⟩H̃s(Ω)

= −λk⟨v(t), ϕk⟩L2(Ω) + ⟨G(t), ϕk⟩L2(Ω)

= −λkαk(t) +Gk(t),

where S : H−s(Ω) → H̃s(Ω) is the source-to-solution map for the Dirichlet problem
of the fractional Laplacian (−∆)s (see Appendix AA for more details). This verifies
that αk satisfies (c)(c) . By ck ∈ C1([0, T ]) ∩ H2((0, T )), (3.83.8), (b)(b) and (c)(c) we may
calculate ˆ T

0

c′′kαk dt = −
ˆ T

0

c′kα
′
k dt+ c′k(T )αk(T )− c′k(0)αk(0)

= −
ˆ T

0

c′kα
′
k dt− uk1αk(0)

(3.25)

and ˆ T

0

ckα
′′
k dt = −

ˆ T

0

c′kα
′
k dt+ ck(T )α

′
k(T )− ck(0)α

′
k(0)

= −
ˆ T

0

c′kα
′
k dt− uk0α

′
k(0).

(3.26)

Inserting (3.263.26) into (3.253.25) yields

ˆ T

0

c′′kαk dt =

ˆ T

0

ckα
′′
k dt+ uk0α

′
k(0)− uk1αk(0).

Hence by (3.83.8) and (c)(c), we get

(3.27)

ˆ T

0

(−λkck + Fk)αk dt =

ˆ T

0

ck(−λkαk +Gk) dt+ uk0α
′
k(0)− uk1αk(0),

or equivalently

(3.28)

ˆ T

0

Fkαk dt =

ˆ T

0

ckGk dt+ uk0α
′
k(0)− uk1αk(0).

Summing this identity from k = 1 to k = N gives

ˆ T

0

〈
F (N), vN

〉
dt =

ˆ T

0

〈
uN , G

(N)
〉
L2(Ω)

dt

+
〈
u
(N)
0 , v′N (0)

〉
L2(Ω)

−
〈
u
(N)
1 , vN (0)

〉
,

(3.29)

where we set

F (N) =

N∑
k=1

Fkϕk, G(N) =

N∑
k=1

Gkϕk, u
(N)
j =

N∑
k=1

ukjϕk

for j = 0, 1. That (3.283.28) and (3.293.29) are equivalent can be seen by Lemm 3.53.5. Next,

note that G ∈ L2(0, T ; L̃2(Ω)) and Lebesgue’s dominated convergence theorem
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together with Parseval’s identity ensure∥∥G(N)(t)
∥∥2
L2(Ω)

=

N∑
k=1

∣∣⟨G,ϕk⟩L2(Ω)

∣∣2
≤

∞∑
k=1

∣∣⟨G,ϕk⟩L2(Ω)

∣∣2 = ∥G(t)∥2L2(Ω),

which gives

G(N) → G in L2(0, T ; L̃2(Ω))

as N → ∞. To see that F (N) → F in L2(0, T ;H−s(Ω)), let us first observe that

Fkϕk = ⟨F, ϕk⟩ϕk
= ⟨SF, ϕk⟩H̃s(Ω)ϕk

= ⟨SF, S(λkϕk)⟩H̃s(Ω)ϕk

= ⟨F, λkϕk⟩H−s(Ω) ϕk

=
〈
F, λ

1/2
k ϕk

〉
H−s(Ω)

λ
1/2
k ϕk.

(3.30)

As
(
λ
1/2
k ϕk

)
k∈N is an orthonormal basis in H−s(Ω), we deduce from (3.303.30) that

there holds
F (N)(t) → F (t) in H−s(Ω)

as N → ∞. Thus using Lebesgue’s dominated convergence theorem and Parseval’s
identity for G, we get

F (N) → F in L2(0, T ;H−s(Ω))

as N → ∞. So, we can finally pass to the limit in (3.293.29) to obtainˆ T

0

⟨F (t), v(t)⟩ dt =
ˆ T

0

⟨u(t), G(t)⟩L2(Ω) dt+ ⟨u0, v′(0)⟩L2(Ω) − ⟨u1, v(0)⟩ .

This establishes that u is a solution to (3.53.5).

Step 5. In this final step, we show that the constructed solution u is unique.
Suppose that ũ is another solution, then U = u− ũ is a solution to

∂2tU + (−∆)sU = 0 in ΩT ,

U = 0 in (Ωe)T ,

U(0) = ∂tU(0) = 0 in Ω.

By Definition 3.13.1 this meansˆ T

0

⟨U(t), G(t)⟩L2(Ω) dt = 0

for all G ∈ L2(ΩT ), but this clearly implies U = 0 and hence u = ũ. □

3.4. Very weak solutions to linear nonlocal wave equations with potential.
The purpose of this section is to extend the well-posedness theory of equation (3.53.5)
to linear NWEQs with a nonzero potential.

Theorem 3.7 (Well-posedness nonlocal wave equation with potential). Let F ∈
L2(0, T ;H−s(Ω)), u0 ∈ L̃2(Ω) and u1 ∈ H−s(Ω). Furthermore, assume that q ∈
Lp(Ω) with p satisfying the restriction (1.41.4). Then the problem

(3.31)


∂2t u+ (−∆)su+ qu = F in ΩT ,

u = 0 in (Ωe)T ,

u(0) = u0, ∂tu(0) = u1 in Ω
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has a unique very weak solution u ∈ C([0, T ]; L̃2(Ω)) ∩ C1([0, T ];H−s(Ω)).

Proof. Let us first note that qu ∈ H−s(Ω) for any u ∈ L2(Ω) as∣∣∣∣ˆ
Ω

quv dx

∣∣∣∣ ≤ ∥qv∥L2(Ω)∥u∥L2(Ω)

≤ ∥q∥Ln/s(Ω)∥v∥
L

2n
n−2s (Ω)

∥u∥L2(Ω)

≤ C∥q∥Ln/s(Ω)∥v∥H̃s(Ω)∥u∥L2(Ω)

≤ C∥q∥Lp(Ω) ∥v∥H̃s(Ω) ∥u∥L2(Ω)

(3.32)

for all v ∈ H̃s(Ω). The case p = ∞ is clear. In the case n
s ≤ p <∞ with 2s < n we

used Hölder’s inequality with

1

2
=
n− 2s

2n
+
s

n
,

Lr2(Ω) ↪→ Lr1(Ω) for r1 ≤ r2 as Ω ⊂ Rn is bounded, and Sobolev’s inequal-
ity. In the case 2s > n one can use the embedding Hs(Rn) ↪→ L∞(Rn) and the
boundedness of Ω to see that the estimate (3.323.32) holds. In the case n = 2s one

can use the boundedness of the embedding H̃s(Ω) ↪→ Lp̄(Ω) for all 2 ≤ p̄ < ∞,
Hölder’s inequality and the boundedness of Ω to get the final estimate (3.323.32). The
aforementioned embedding in the critical case follows by [Oza95Oza95] and the Poincaré

inequality. The above clearly implies that for any u ∈ C([0, T ]; L̃2(Ω)), we have
qu ∈ L2(0, T ;H−s(Ω)) with

(3.33) ∥qu∥L2(0,T ;H−s(Ω)) ≤ C∥q∥Lp(Ω)∥u∥L2(ΩT ).

Now, we wish to use a fixed point argument to construct the solution to (3.53.5).
Via Theorem 3.63.6, we can define

S : C([0, T ]; L̃2(Ω)) → C([0, T ]; L̃2(Ω)) ∩ C1([0, T ];H−s(Ω)), v 7→ u,

where u is the solution of
∂2t u+ (−∆)su = F − qv in ΩT ,

u = 0 in (Ωe)T ,

u(0) = u0, ∂tu(0) = u1 in Ω.

Assume that v1, v2 ∈ C([0, T ]; L̃2(Ω)). Since the function u = S(v1)− S(v2) solves
∂2t u+ (−∆)su = −q(v1 − v2) in ΩT ,

u = 0 in (Ωe)T ,

u(0) = ∂tu(0) = 0 in Ω,

the energy estimate (3.63.6) (applied for the case T = t) yields

∥u(t)∥L2(Ω) + ∥∂tu(t)∥H−s(Ω) ≤ C
∥∥q(v1 − v2)

∥∥
L2(0,t;H−s(Ω))

,

for a.e. t ∈ [0, T ]. Hence, by (3.333.33) we obtain

(3.34) ∥u(t)∥L2(Ω) ≤ C∥q∥Lp(Ω)

∥∥v1 − v2
∥∥
L2(Ωt)

,

for t ∈ [0, T ]. Next, introduce for θ > 0 the equivalent norm

∥w∥θ := sup
0≤t≤T

e−θt∥w(t)∥L2(Ω)
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on C([0, T ]; L̃2(Ω)). Then from equation (3.343.34) we deduce that

∥u(t)∥L2(Ω) ≤ C∥q∥Lp(Ω)

∥∥v1 − v2
∥∥
θ

(ˆ t

0

e2θτ dτ

)1/2

=
C

(2θ)1/2
(e2θt − 1)1/2∥q∥Lp(Ω)

∥∥v1 − v2
∥∥
θ

≤ C

(2θ)1/2
eθt∥q∥Lp(Ω)

∥∥v1 − v2
∥∥
θ

for t ∈ [0, T ]. Dividing by eθt and taking the supremum over [0, T ], this implies

∥u∥θ ≤ C

(2θ)1/2
∥q∥Lp(Ω)

∥∥v1 − v2
∥∥
θ
.

Remembering that u = S(v1)− S(v2) and choosing θ > 0 such that

C0 :=
C

(2θ)1/2
∥q∥Lp(Ω) < 1,

we get

∥S(v1)− S(v2)∥θ ≤ C0∥v1 − v2∥θ
and thus S is a contraction on the complete metric space (C([0, T ]; L̃2(Ω)), ∥ · ∥θ).
Therefore, we can apply the Banach fixed point theorem to deduce that S has a

unique fixed point u ∈ C([0, T ]; L̃2(Ω))∩C1([0, T ];H−s(Ω)). Hence, we have shown
the existence of a unique very weak solution and we can conclude the proof. □

3.5. Properties of very weak solutions. In this section, we establish some rela-
tions between various definitions of solutions to linear NWEQs, which can be seen
as a consistency test of the introduced notions. In Proposition 3.83.8 and 3.93.9, we show
that

weak solution ⇒ very weak solution ⇒ distributional solution

and in Corollary 3.103.10 that

regular very weak solution = weak solution.

Proposition 3.8 (Distributional solutions). Let F ∈ L2(0, T ;H−s(Ω)), u0 ∈
L̃2(Ω), u1 ∈ H−s(Ω) and q ∈ Lp(Ω) with p satisfying the restrictions (1.41.4). The
unique very weak solution of (3.313.31) is a distributional solution, that is there holds
(3.35)ˆ

ΩT

u
(
∂2t φ+ (−∆)sφ+ qφ

)
dt =

ˆ T

0

⟨F,φ⟩ dt+ ⟨u0, ∂tφ(0)⟩L2(Ω) − ⟨u1, φ(0)⟩,

for all φ ∈ C∞
c ([0, T )× Ω).

Proof. Let us note that it is enough to prove the result for q = 0 as the general
case follows by replacing F with F − qu.

We use the same notation as in the proof of Theorem 3.63.6, but this time the αk

are the coefficients in the expansion of φ in the orthonormal basis (ϕk)k∈N, that is
αk = ⟨φ, ϕk⟩L2(Ω). We start with the identity

ˆ T

0

c′′kαk dt =

ˆ T

0

ckα
′′
k dt+ uk0α

′
k(0)− uk1αk(0)

(see (3.273.27)). Now, using the relation (3.83.8) we deduce the equality
ˆ T

0

(−λkck + Fk)αk dt =

ˆ T

0

ckα
′′
k dt+ uk0α

′
k(0)− uk1αk(0).
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This is equivalent to

(3.36)

ˆ T

0

ck (α
′′
k + λkαk) dt =

ˆ T

0

Fkαk dt+ uk1αk(0)− uk0α
′
k(0).

Next note that

⟨(−∆)sφ(t), ϕk⟩L2(Ω) = ⟨(−∆)sφ(t), ϕk⟩L2(Rn)

= ⟨(−∆)s/2φ(t), (−∆)s/2ϕk⟩L2(Rn)

= λk⟨φ(t), ϕk⟩L2(Ω)

= λkαk(t)

for all 0 ≤ t ≤ T . Using ⟨ϕk, ϕℓ⟩L2(Ω) = δkℓ, we may write〈 m∑
k=1

ckϕk,

m∑
ℓ=1

⟨(−∆)sφ, ϕℓ⟩L2(Ω)ϕℓ

〉
L2(Ω)

=

m∑
k=1

λkckαk.

Since u, χΩ(−∆)sφ ∈ L2(0, T ; L̃2(Ω)), where χΩ is the characteristic function of
Ω, the time integral of the left hand side converges to ⟨u, (−∆)sφ⟩L2(ΩT ). We also
haveˆ T

0

〈 m∑
k=1

ckϕk,

m∑
ℓ=1

⟨∂2t φ, ϕℓ⟩L2(Ω)ϕℓ

〉
L2(Ω)

dt =

ˆ T

0

m∑
k=1

ckα
′′
k dt→

ˆ
ΩT

u∂2t φdxdt

as m→ ∞. Thus, summing the identity (3.363.36) from k = 1 to m and passing to the
limit m→ ∞ yieldsˆ

ΩT

u(∂2t φ+ (−∆)sφ) dxdt =

ˆ T

0

⟨F,φ⟩ dt+ ⟨u0, ∂tφ(0)⟩L2(Ω) − ⟨u1, φ(0)⟩.

For the convergence of the term involving F we refer to Step 4 in the proof of
Theorem 3.63.6. Hence, we can conclude the proof. □

Proposition 3.9 (Weak solutions are very weak solutions). Suppose that F ∈
L2(0, T ; L̃2(Ω)), u0 ∈ H̃s(Ω), u1 ∈ L̃2(Ω), q ∈ Lp(Ω) with p satisfying the restric-

tions (1.41.4) and u ∈ C([0, T ]; H̃s(Ω))∩C1([0, T ]; L̃2(Ω)) is a weak solution of (3.313.31).
Then u is a very weak solution of (3.313.31).

Proof. Let us prove the result only in the case q = 0 as the same proof applies
in the general case q ̸= 0. For the necessary modifications, we refer the reader to
[LTZ24LTZ24, Proof of Proposition 4.1].

Let G ∈ L2(0, T ; L̃2(Ω)) and suppose w ∈ C([0, T ]; H̃s(Ω))∩C1([0, T ]; L̃2(Ω)) is
the unique solution to

(3.37)


∂2tw + (−∆)sw = G in ΩT ,

w = 0 in (Ωe)T ,

w(T ) = 0, ∂tw(T ) = 0 in Ω.

We follow now the proof of [LTZ24LTZ24, Claim 4.2], that is we consider the parabolic
regularized problems

∂2t u+ ε(−∆)s∂tu+ (−∆)su = F in ΩT ,

u = 0 in (Ωe)T ,

u(0) = u0, ∂tu(0) = u1 in Ω

and 
∂2tw − ε(−∆)s∂tw + (−∆)sw = G in ΩT ,

w = 0 in (Ωe)T ,

w(T ) = ∂tw(T ) = 0 in Ω
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for ε > 0. By [Zim24Zim24, Theorem 3.1] or [LM12LM12, Chapter 3, Theorem 8.3], these
regularized problems have a unique (weak) solution

uε ∈ C([0, T ]; H̃s(Ω)) with

{
∂tuε ∈ L2(0, T ; H̃s(Ω)) ∩ C([0, T ]; L̃2(Ω))

∂2t uε ∈ L2(0, T ;H−s(Ω))

wε ∈ C([0, T ]; H̃s(Ω)) with

{
∂twε ∈ L2(0, T ; H̃s(Ω)) ∩ C([0, T ]; L̃2(Ω))

∂2twε ∈ L2(0, T ;H−s(Ω))

and as ε→ 0, one has

uε → u in C([0, T ]; H̃s(Ω)),

∂tuε → ∂tu in C([0, T ]; L̃2(Ω)),

∂2t uε ⇀ ∂2t u in L2(0, T ;H−s(Ω))

(3.38)

(cf. [LM12LM12, Chapter 3, eq. (8.74)]). This ensures that

∂2t uε
∗
⇀ ∂2t u in L2(0, T ;H−s(Ω)) as ε→ 0.

The convergence results in (3.383.38) hold for the functions wε and w as well. Now,
using twice integration by parts, which is allowed by the regularity of the first time
derivative of uε and wε, we obtain

ˆ T

0

〈
∂2t uε, wε

〉
dt =

ˆ T

0

〈
∂2twε, uε

〉
dt− ⟨u1, wε(0)⟩L2(Ω) + ⟨u0, ∂twε(0)⟩H̃s(Ω)

for any ε > 0 (cf. [Zim24Zim24, eq. (4.1)]). In this computation, we used the final and
initial time conditions for wε and uε, respectively. Now, passing to the limit ε→ 0
gives

ˆ T

0

〈
∂2t u,w

〉
dt =

ˆ T

0

〈
∂2tw, u

〉
dt− ⟨u1, w(0)⟩L2(Ω) + ⟨u0, ∂tw(0)⟩L2(Ω).

By (3.313.31) and (3.373.37) this is equivalent to

ˆ T

0

⟨F,w⟩ dt =
ˆ T

0

⟨G, u⟩ dt− ⟨u1, w(0)⟩L2(Ω) + ⟨u0, ∂tw(0)⟩L2(Ω).

Hence, we can conclude the proof. □

Corollary 3.10 (Regular very weak solutions = weak solutions). Suppose that F ∈
L2(0, T ; L̃2(Ω)), u0 ∈ H̃s(Ω), u1 ∈ L̃2(Ω), q ∈ Lp(Ω) with p satisfying the restric-

tions (1.41.4) and u is a very weak solution to (3.313.31) such that u ∈ C([0, T ]; H̃s(Ω))∩
C1([0, T ]; L̃2(Ω)). Then u is a weak solution of (3.313.31).

Proof. By the usual well-posedness result the problem (3.313.31) has a unique weak
solution v. Using Proposition 3.93.9, one sees that v is a very weak solution to the
same problem. By uniqueness of very weak solutions it follows that u = v, which
in turn implies the assertion. □

4. Runge approximation and inverse problem for linear NWEQs

As we mentioned in Section 11, a key ingredient to studying nonlocal inverse
problems is based on the Runge approximation. In this section, we establish the
proof of Theorem 1.21.2.
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4.1. Runge approximation.

Proof of Theorem 1.21.2. As usual, we show the Runge approximation property by a
Hahn–Banach argument. Hence, we need to show that given F ∈ L2(0, T ;H−s(Ω))
vanishing on RW , it follows that F = 0. First observe that if u solves (1.61.6), then
v = u− φ is the unique solution to

∂2t v + (−∆)sv + qv = −(−∆)sφ in ΩT ,

v = 0 in (Ωe)T ,

v(0) = ∂tv(0) = 0 in Ω.

Now, by Theorem 3.73.7 there is a unique solution w of
∂2tw + (−∆)sw + qw = F in ΩT ,

w = 0 in (Ωe)T ,

w(T ) = ∂tw(T ) = 0 in Ω.

As χΩ(−∆)sφ ∈ L2(0, T ; L̃2(Ω)), we can use v as a test function for the equation
of w to obtain

−
ˆ T

0

⟨w(t), (−∆)sφ(t)⟩L2(Ω) dt =

ˆ T

0

⟨F (t), v(t)⟩ dt

(see (3.23.2)). By assumption, the right-hand side vanishes and henceˆ T

0

⟨w(t), (−∆)sφ(t)⟩L2(Ω) dt = 0.

By taking φ(x, t) = η(t)ψ(x) with η ∈ C∞
c ((0, T )) and ψ ∈ C∞

c (W ), this implies

(−∆)sw(t) = 0 for x ∈W and a.e. t ∈ [0, T ].

As w ∈ L2(0, T ; L̃2(Ω)) we know that w = 0 in Ωe and hence the unique continu-
ation principle ensures w = 0 in Rn. Now according to Proposition 3.83.8 very weak
solutions are distributional solutions and thus we deduce thatˆ T

0

⟨F,Φ⟩ dt = 0

for all Φ ∈ C∞
c ([0, T ) × Ω) (see (3.353.35)). This in particular shows that F = 0 as

C∞
c (ΩT ) is dense in L2(0, T ; H̃s(Ω)) and (L2(0, T ; H̃s(Ω)))∗ = L2(0, T ;H−s(Ω)).

This proves the assertion. □

4.2. DN maps for NWEQs. Let us next recall the rigorous definition of the DN
map related to NWEQs.

Definition 4.1 (DN map). Let Ω ⊂ Rn be a bounded Lipschitz domain, s > 0 a
non-integer, T > 0 and q ∈ Lp(Ω) with p satisfying the restrictions (1.41.4). Then we
define the DN map Λq related to

(4.1)


∂2t u+ (−∆)su+ qu = 0 in ΩT ,

u = φ in (Ωe)T ,

u(0) = ∂tu(0) = 0 in Ω

by

⟨Λqφ,ψ⟩ :=
ˆ
Rn

T

(−∆)s/2u (−∆)s/2ψ dxdt,(4.2)

for all φ,ψ ∈ C∞
c ((Ωe)T ), where u ∈ C([0, T ];Hs(Rn)) ∩ C1([0, T ];L2(Rn)) is the

unique solution of (4.14.1) (see [LTZ24LTZ24, Theorem 3.1 & Remark 3.2]).
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Remark 4.2. Let us mention for our later study of nonlinear NWEQs that if
qu is replaced by a nonlinear function f(x, u) such that f : Ω × R → R satisfies
Assumption 11, then we can still define the DN map Λf by (4.24.2) for all φ,ψ ∈
C∞

c ((Ωe)T ), where this time u ∈ C([0, T ];Hs(Rn))∩C1([0, T ];L2(Rn)) is the unique
solution of DN map Λf related to (1.31.3) (see [LTZ24LTZ24, Proposition 3.7]).

4.3. Proof of Theorem 1.31.3. Before giving the proof of Theorem 1.31.3, let us in-
troduce the following notation

u⋆(x, t) = u(x, T − t)

for the time reversal of the function u : Rn
T → R. We first derive a suitable integral

identity (cf. e.g. [KLW22KLW22, Lemma 2.4] or [Zim24Zim24, Lemm 4.3]) and use our improved
Runge approximation (Theorem 1.21.2) to conclude the desired result.

Lemma 4.3 (Integral identity). For any φ1, φ2 ∈ C∞
c ((W1)T ), there holds that

(4.3) ⟨(Λq1 − Λq2)φ1, φ
⋆
2⟩ =

ˆ
ΩT

(q1 − q2) (u1 − φ1) (u2 − φ2)
⋆
dxdt,

where uj is the unique solution of
(
∂2t + (−∆)s + qj

)
u = 0 in ΩT

u = φj in (Ωe)T ,

u(0) = ∂tu(0) = 0 in Ω

for j = 1, 2.

Proof. Let us start by observing that the function (u2−φ2)
⋆ is the unique solution

of 
(
∂2t + (−∆)s + q2

)
u = −(−∆)sφ⋆

2 in ΩT

u = 0 in (Ωe)T ,

u(T ) = ∂tu(T ) = 0 in Ω

and thus by [LTZ24LTZ24, Claim 4.2] we know that there holds

(4.4)

ˆ T

0

〈
∂2t (u1 − φ1), (u2 − φ2)

⋆
〉
dt =

ˆ T

0

〈
∂2t (u2 − φ2)

⋆, (u1 − φ1)
〉
dt.

Thus, using the PDEs for u1 − φ1 and (u2 − φ2)
⋆, (4.44.4) and the symmetry of the

fractional Laplacian, we may calculateˆ
ΩT

(q1 − q2)(u1 − φ1)(u2 − φ2)
⋆ dxdt

= −
ˆ T

0

〈
(∂2

t + (−∆)s)(u1 − φ1), (u2 − φ2)
⋆〉 dt

+

ˆ T

0

〈
(∂2

t + (−∆)s)(u2 − φ2)
⋆, u1 − φ1

〉
dt

−
ˆ T

0

⟨(−∆)sφ1, (u2 − φ2)
⋆⟩ dt+

ˆ T

0

⟨(−∆)sφ⋆
2, u1 − φ1⟩ dt

= −
ˆ T

0

⟨(−∆)s(u1 − φ1), (u2 − φ2)
⋆⟩ dt+

ˆ T

0

⟨(−∆)s(u2 − φ2)
⋆, u1 − φ1⟩ dt

−
ˆ T

0

⟨(−∆)sφ1, (u2 − φ2)
⋆⟩ dt+

ˆ T

0

⟨(−∆)sφ⋆
2, u1 − φ1⟩ dt

= −
ˆ T

0

⟨(−∆)su2, φ
⋆
1⟩ dt+

ˆ T

0

⟨(−∆)su1, φ
⋆
2⟩ dt.
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By definition of the DN map, we deduce that

⟨Λq1φ1, φ
⋆
2⟩ − ⟨Λq2φ2, φ

⋆
1⟩ =

ˆ
ΩT

(q1 − q2)(u1 − φ1)(u2 − φ2)
⋆ dxdt,

which completes the proof. □

Proof of Theorem 1.31.3. We prove Theorem 1.31.3 by using the Runge argument. Using

Theorem 1.21.2, we can approximate any Ψj ∈ C∞
c (Ω), j = 1, 2, in L2(0, T ; H̃s(Ω))

by sequences in the Runge sets RW1
and RW2

, respectively. Since qj ∈ Lp(Ω)
satisfies the estimate (3.323.32), we may pass in (4.34.3) to the limit and hence taking the
condition (1.71.7) into account, we arrive atˆ

ΩT

(q1 − q2)Ψ1Ψ
⋆
2 dxdt = 0

for all Ψ1,Ψ2 ∈ C∞
c (ΩT ). This ensures that q1 = q2 in Ω as we wanted to show. □

5. Well-posedness and inverse problems for nonlinear NWEQs

In this section, we study the inverse problems for NWEQs with polyhomoge-
neous nonlinearities. We start in Section 5.15.1 by showing that for any asymptoti-
cally polyhomogeneous nonlinearity the expansion is unique. Then, in Section 5.25.2,
by using similar techniques as in [LTZ24LTZ24] and our stronger Runge approximation
(Theorem 1.21.2), we demonstrate Theorem 1.51.5. Let us note that in the case of
asymptotically polyhomogeneous nonlinearities, Theorem 1.51.5 only shows that the
expansion coefficients coincide and not the nonlinearities themselves. This could
be improved to f (1) = f (2) in the range 2s > n by imposing a suitable decay of the

constants CN ,
∑N−1

k=1 bk as N → ∞, appearing in Definition 1.41.4, (ii)(ii), but we do not
investigate this further in this article.

5.1. Uniqueness of asymptotic expansion. Before discussing the proof of The-
orem 1.51.5, let us make the following observation.

Lemma 5.1. Let Ω ⊂ Rn be a bounded domain. Assume that we have given a
sequence (rk)

∞
k=1 ⊂ R satisfying 0 < rk < rk+1 for all k ∈ N. Let f : Ω×R → R be

a Carathéodory function and suppose there holds

f ∼
∑
k≥1

fk and f ∼
∑
k≥1

f̃k,

for two sequences (fk)k∈N, (f̃k)k∈N satisfying the assumptions in Definition 1.41.4, (ii)(ii)

for the same sequence (rk)k∈N but with possibly different constants CN and C̃N for

N ∈ N≥2. Then we have fk = f̃k for all k ∈ N.

Proof. By assumption we may compute∣∣f1(x, 1)− f̃1(x, 1)
∣∣ = τ r1+1τ−r1−1

∣∣f1(x, 1)− f̃1(x, 1)
∣∣

= τ−r1−1
∣∣f1(x, τ)− f̃1(x, τ)

∣∣
≤ τ−r1−1

(
|f(x, τ)− f̃1(x, τ)|+ |f(x, τ)− f̃1(x, τ)|

)
≤

(
C2 + C̃2

)
τ r2−r1

for x ∈ Ω and |τ | ≤ 1. Thus by passing to the limit τ → 0, we deduce that f1(x, 1) =

f̃1(x, 1) for all x ∈ Ω and by homogeneity f1 = f̃1. Continuing inductively we obtain

that fk = f̃k for all k ≥ 1. □
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5.2. Recovery of coefficients of polyhomogeneous nonlinearities. Let us
start by recalling the following continuity result on Nemytskii operators.

Lemma 5.2 (Continuity of Nemytskii operators, [AP95AP95, Theorem 2.2] and [Zim24Zim24,
Lemma 3.6]). Let Ω ⊂ Rn be a bounded domain, T > 0, and 1 ≤ q, p <∞. Assume
that f : Ω× R → R is a Carathéodory function satisfying

|f(x, τ)| ≤ a+ b|τ |α

for some constants a, b ≥ 0 and 0 < α ≤ min(p, q). Then the Nemytskii operator
f , defined by

(5.1) f(u)(x, t) := f(x, u(x, t))

for all measurable functions u : ΩT → R, maps continuously Lp(Ω) to Lp/α(Ω) and
Lq(0, T ;Lp(Ω)) into Lq/α(0, T ;Lp/α(Ω)).

From now on we will use the notation (5.15.1) introduced in the previous lemma.

Proof of Theorem 1.51.5. Our goal is to show in the first step that the equality of the
DN maps for two nonlinearities f (1) and f (2) implies f (1)(x, v) = f (2)(x, v) for any
solution to a linear wave equation (see (5.35.3)). Then in a second step, we use the

Runge approximation property of the solutions v in L2(0, T ; H̃s(Ω)) to deduce that

all expansion coefficients f
(1)
k , f

(2)
k for k ∈ N agree. In the following we will often

abbreviate f(x, u) =: f(u).
Let ε > 0. We start by observing that for j = 1, 2 the unique (weak) solution

u
(j)
ε of

(5.2)


∂2t u+ (−∆)su+ f (j)(u) = 0 in ΩT ,

u = εφ in (Ωe)T ,

u(0) = ∂tu(0) = 0 in Ω,

can be expanded as u
(j)
ε = εv +R

(j)
ε , where v and R

(j)
ε solve

(5.3)


∂2t v + (−∆)sv = 0 in ΩT ,

v = φ in (Ωe)T ,

v(0) = ∂tv(0) = 0 in Ω

and 
∂2tR+ (−∆)sR = −f (j)

(
u
(j)
ε

)
in ΩT ,

R = 0 in (Ωe)T ,

R(0) = ∂tR(0) = 0 in Ω,

respectively. By (1.101.10), the UCP for the fractional Laplacian and (5.25.2) guarantee

(5.4) uε := u(1)ε = u(2)ε , Rε := R(1)
ε = R(2)

ε and f (1)(uε) = f (2)(uε).

Furthermore, as shown in [LTZ24LTZ24, Proof of Theorem 1.1], there holds:

(i)
∥∥f (j)(·, uε)∥∥L2(ΩT )

≲ ∥uε∥r∞+1
L∞(0,T ;Hs(Rn)),

(ii) ∥Rε∥L∞(0,T ;H̃s(Ω)) + ∥∂tRε∥L∞(0,T ;L2(Ω)) ≲ ∥uε∥r∞+1
L∞(0,T ;Hs(Rn))

(iii) ∥uε∥L∞(0,T ;Hs(Rn)) + ∥∂tuε∥L∞(0,T ;L2(Rn)) ≲ ε

In (i)(i) and (ii)(ii) we used the fact that f (j)(x, 0) = 0. For serially polyhomogeneous
nonlinearities this is clear and for asymptotically polyhomogeneous nonlinearities

f (j) this follows from (1.91.9) and the homogeneity of the coefficients f
(j)
k for k ∈ N.

Therefore, we obtain

∥Rε∥L∞(0,T ;H̃s(Ω)) + ∥∂tRε∥L∞(0,T ;L2(Ω)) ≲ εr∞+1.(5.5)
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Now, (5.45.4) implies

(5.6) f (1)(εv +Rε) = f (2)(εv +Rε).

Our next goal is to inductively recover the terms in the series of expressions∑
k≥1

f
(j)
k (τ), j = 1, 2,

of f (j) starting from the term f
(j)
1 . We distinguish two cases 2s < n and 2s ≥ n as

follows:

Case 2s < n.

As r∞ satisfies 0 < r∞ ≤ 2s
n−2s , we have

(5.7) 1 < 1 + r∞ ≤ n

n− 2s
<

2n

n− 2s
=: p.

Using (5.55.5) and the Sobolev embedding, we see that

(5.8) ε−1Rε → 0 in Lq(0, T ;Lp(Ω))

as ε→ 0 for any 1 ≤ q ≤ ∞. Recall the assumption that∣∣f (j)(x, τ)∣∣ ≤ A(j) +B(j)|τ |r∞+1,∣∣f (j)k (x, τ)
∣∣ ≤ b

(j)
k |τ |rk+1

for some constants A(j), B(j) ≥ 0 (see Assumption 11), which by Lemma 5.25.2 and
(5.75.7) directly yield that

f (j) : Lq(0, T ;Lp(Ω)) → L
q

r∞+1 (0, T ;L
p

r∞+1 (Ω)),

f
(j)
k : Lq(0, T ;Lp(Ω)) → L

q
rk+1 (0, T ;L

p
rk+1 (Ω)), k ∈ N,

are continuous as long as q is chosen such that q ≥ r∞ + 1 and q ≥ rk + 1,
respectively. Here rk < rℓ, when k < ℓ ≤ ∞, so there holds

L
q

rk+1 (0, T ;L
p

rk+1 (Ω)) ⊂ L
q

rℓ+1 (0, T ;L
p

rℓ+1 (Ω))

and thus

(5.9) f
(j)
k : Lq(0, T ;Lp(Ω)) → L

q
rℓ+1 (0, T ;L

p
rℓ+1 (Ω)), k ∈ N, k ≤ ℓ ≤ ∞

is continuous.

Serially polyhomogeneous nonlinearity for k = 1: Multiplying (5.65.6) by ε−r1−1

and using the homogeneity of f
(j)
k , we have pointwise the identity

ε−r1−1f (j)(uε) =

∞∑
k=1

f
(j)
k (ε

− r1+1
rk+1uε), j = 1, 2,

where

(5.10)

{
− r1+1

rk+1 = −1, if k = 1,

− r1+1
rk+1 > −1, if k ≥ 2.

Next, let us denote by CS > 0 the optimal Sobolev constant for the embedding
Hs(Rn) ↪→ Lp(Rn) and by D > 0 the constant in the estimate (iii)(iii). Furthermore,
recall that we have

(5.11)
∣∣f (j)k (x, τ)

∣∣ ≤ b
(j)
k |τ |rk+1, rk < rk+1 ≤ r∞
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for j = 1, 2. Also note that if q ≥ 1 is sufficiently large, then

1 ≤ p

r∞ − rk
<∞, 1 ≤ q

r∞ − rk
<∞

satisfy

r∞ + 1

p
=
rk + 1

p
+
r∞ − rk

p
and

r∞ + 1

q
=
rk + 1

q
+
r∞ − rk

q
.

Thus, for 0 < ε ≤ 1, we may compute

∥∥f (j)k

(
ε
− r1+1

rk+1uε
)∥∥

L
q

r∞+1 L
p

r∞+1

= ε−(r1+1)
∥∥f (j)k (uε)

∥∥
L

q
r∞+1 L

p
r∞+1

≤ ε−(r1+1)|Ω|
r∞−rk

p T
r∞−rk

q ∥f (j)k (uε)∥
L

q
rk+1 L

p
rk+1

(by Hölder’s inequality)

≤ ε−(r1+1)|Ω|
r∞−rk

p T
r∞−rk

q b
(j)
k ∥uε∥rk+1

LqLp (by (5.115.11))

≤ ε−(r1+1)|Ω|
r∞−rk

p T
r∞+1

q b
(j)
k ∥uε∥rk+1

L∞Lp

≤ ε−(r1+1)Crk+1
s |Ω|

r∞−rk
p T

r∞+1
q b

(j)
k ∥uε∥rk+1

L∞Hs (by Sobolev’s inequality)

≤ εrk−r1(CsD)rk+1|Ω|
r∞−rk

p T
r∞+1

q b
(j)
k (by (iii)(iii))

≤ εrk−r1(max(1, CsD))rk+1(max(1, |Ω|))
r∞−rk

p T
r∞+1

q b
(j)
k

≤ (max(1, CsD))r∞+1(max(1, |Ω|))
r∞
p T

r∞+1
q b

(j)
k (by (5.115.11) and ε ≤ 1)

=:M
(j)
k ,

(5.12)

where we abbreviated Lα(0, T ;X(U)) as LαX for any Banach space X(U) over a

spatial domain U ⊂ Rn and 1 ≤ α ≤ ∞. Since the constants in M
(j)
k in front of

b
(j)
k are independent of k, then (1.111.11) and the ratio test imply∑

k≥1

M
(j)
k <∞.

Next, by (5.105.10) and (iii)(iii), we see that for k ≥ 2 and sufficiently large q ≥ 1 there
holds

ε
− r1+1

rk+1uε → 0 in Lq(0, T ;Lp(Ω))

as ε→ 0. Hence, (5.95.9) and f
(j)
k (0) = 0 assure that

(5.13) f
(j)
k

(
ε
− r1+1

rk+1uε
)
→ 0 in L

q
r∞+1 (0, T ;L

p
r∞+1 (Ω))

as ε→ 0. On the other hand for k = 1 we have

ε−1uε → v in Lq(0, T ;Lp(Ω))

as ε→ 0 (see (5.85.8)), which guarantees by (5.95.9) that

(5.14) f
(j)
1 (ε−1uε) → f(v) in L

q
r∞+1 (0, T ;L

p
r∞+1 (Ω))

as ε → 0. Now, using (5.125.12), (5.135.13) and (5.145.14), we can apply the dominated
convergence theorem to deduce that

lim
ε→0

ε−r1−1f (j)(uε) =
∑
k≥1

lim
ε→0

f
(j)
k

(
ε
− r1+1

rk+1uε
)
= f

(j)
1 (v)

in L
q

r∞+1 (0, T ;L
p

r∞+1 (Ω)), which finally implies

(5.15) f
(1)
1 (v) = f

(2)
1 (v)
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in L
q

r∞+1 (0, T ;L
p

r∞+1 (Ω)).

Asymptotically polyhomogeneous nonlinearity for k = 1: In this case, using
Definition 1.41.4 (ii)(ii), we get for N = 2 that∣∣f (j)(uε)− f

(j)
1 (uε)

∣∣ ≤ C2 |uε|r2+1
.

Multiplying the above inequality by ε−r1−1, recalling r2 > r1, and using (iii)(iii) we

get in the L
q

r2+1L
p

r2+1 -norm∥∥ε−r1−1f (j)(uε)− f
(j)
1 (ε−1uε)

∥∥
L

q
r2+1 L

p
r2+1

≲ εr2−r1 → 0(5.16)

as ε → 0. Therefore, first using the continuity of Nemytskii operators (see (5.95.9))
and then (5.165.16) we obtain

f
(j)
1 (v) = lim

ε→0
f
(j)
1 (ε−1uε) = lim

ε→0
ε−r1−1f (j)(uε)

in L
q

r2+1 (0, T ;L
p

r2+1 (Ω)). This implies

(5.17) f
(1)
1 (v) = f

(2)
1 (v)

in L
q

r2+1 (0, T ;L
p

r2+1 (Ω)).

Next, let Ψ ∈ C∞
c (ΩT ). By Theorem 1.21.2, there exist a sequence (ψk)k∈N ⊂

C∞
c ((W1)T ) such that the unique solutions (vk)k∈N of

∂2t vk + (−∆)svk = 0 in ΩT ,

vk = ψk in (Ωe)T ,

vk(0) = ∂tvk(0) = 0 in Ω

satisfy vk−ψk → Ψ in L2(0, T ; H̃s(Ω)) as k → ∞. Up to extracting a subsequence,
we have by Sobolev’s embedding theorem that there holds

vk(t) → Ψ(t) in Lp(Ω)

for a.e. t ∈ [0, T ]. Hence, by Lemma 5.25.2, Hölder’s inequality, and (5.155.15) or (5.175.17),
we get

f
(1)
1 (Ψ(t)) = lim

k→∞
f
(1)
1 (vk(t)) = lim

k→∞
f
(2)
1 (vk(t)) = f

(2)
1 (Ψ(t))

in L
p

r∞+1 (Ω) (or L
p

r2+1 (Ω)) for a.e. t ∈ [0, T ]. As f
(j)
1 are Carathéodory functions

this needs to hold for all t ∈ [0, T ] and hence

f
(1)
1 (x,Ψ(x, t)) = f

(2)
1 (x,Ψ(x, t))

for all (x, t) ∈ ΩT . Now, let us fix t0 ∈ (0, T ) and x0 ∈ Ω. Then we choose
Ψ(x, t) = η(t)Φ(x) with η ∈ C∞

c ((0, T )) and Φ ∈ C∞
c (Ω), where η,Φ satisfy η(t) = 1

in a neighborhood of t0 and Φ(x) = 1 in a neighborhood of x0. Therefore, evaluating
the previous relation at t = t0 we obtain

f
(1)
1 (x,Φ(x)) = f

(2)
1 (x,Φ(x))

for a.e. x ∈ Ω. This gives f
(1)
1 (x0, 1) = f

(2)
1 (x0, 1). Now, the homogeneity assump-

tions on f
(j)
k ensures that f

(1)
1 (x, ρ) = f

(2)
1 (x, ρ) for all x ∈ Ω and ρ ∈ R.

Using a similar approach, one can inductively recover the higher-order terms. In
fact, one can argue as follows.

Serially polyhomogeneous nonlinearity for k ≥ 2: First, we define

f (j),2 :=
∑
k≥2

f
(j)
k
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and then by f
(1)
1 = f

(2)
1 as well as (5.45.4), we deduce that

f (1),2(uε) = f (2),2(uε).

Repeating the same proof above, but this time multiplying with ε−r2−1, we deduce

f
(1)
2 = f

(2)
2 . Thus, iteratively, we get f

(1)
k = f

(2)
k for any k ∈ N.

Asymptotically polyhomogeneous nonlinearity for k ≥ 2: Using f
(1)
1 = f

(2)
1

and (1.91.9) for N = 3, we get

∥(ε−r2−1f (1)(uε)− f
(1)
2 (ε−1uε))− (ε−r2−1f (2)(uε)− f

(2)
2 (ε−1uε))∥

L
q

r3+1 L
p

r3+1

≤
∑
j=1,2

∥ε−r2−1(f (j)(uε)− f
(j)
1 (uε)− f

(j)
2 (uε))∥

L
q

r3+1 L
p

r3+1

≲ εr3−r2 → 0

as ε→ 0. Taking into account (5.95.9), this guarantees

f
(1)
2 (v)− f

(2)
2 (v) = lim

ε→0
(f

(1)
2 (ε−1uε)− f

(2)
2 (ε−1uε))

= lim
ε→0

ε−r2−1(f (1)(uε)− f (2)(uε)) = 0

in L
q

r3+1L
p

r3+1 . Now, one can repeat the above argument to find that f
(1)
2 = f

(2)
2 .

Therefore, we iteratively get f
(1)
k = f

(2)
k for all k ∈ N.

Case 2s ≥ n.

The proof is almost the same as the Sobolev embedding guarantees that we have
Hs(Rn) ↪→ Lp(Rn) for any 2 ≤ p < ∞ (see [Oza95Oza95] for the critical case 2s = n).
Moreover, let us note that in the supercritical case 2s > n, we only need (1.91.9) for
|τ | ≤ 1 by the Sobolev embedding Hs(Rn) ↪→ L∞(Rn) and the estimate (iii)(iii).

Hence, we have shown that the expansion coefficients of the nonlinearities f (j),
j = 1, 2, coincide in both cases and we can conclude the proof. □

Appendix A. Proof of Lemma 3.53.5

In this appendix, we provide the proof of the spectral theoretic lemma, Lemma 3.53.5.

We again denote by ⟨·, ·⟩ the duality pairing between H̃s(Ω) and H−s(Ω), where

the spaces H̃s(Ω), H−s(Ω) are endowed with the norms ∥ · ∥H̃s(Ω) and ∥·∥H−s(Ω) as

before.

Proof of Lemma 3.53.5. We start by constructing the sequence of eigenvalues (λk)k∈N.

Let L : L̃2(Ω) → L̃2(Ω) be the compact self-adjoint operator given by L = K ◦S,
where

S : L̃2(Ω) → H̃s(Ω), F 7→ u

is the source-to-solution map of the problem{
(−∆)su = F in Ω,

u = 0 in Ωe

and K : H̃s(Ω) → L̃2(Ω) denotes the usual inclusion, which is compact by the
Rellich–Kondrachov theorem. Note that the solution map S is well-defined and
continuous by the Lax–Milgram theorem. Hence, it is clear that L is compact.
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The operator L is also self-adjoint, because the related bilinear form to (−∆)s is

symmetric. Furthermore, if F ∈ L̃2(Ω) and u = LF , then we have

⟨LF,F ⟩L2(Ω) = ⟨u, F ⟩L2(Ω) =
〈
(−∆)s/2u, (−∆)s/2u

〉
L2(Rn)

= ∥u∥2
H̃s(Ω)

≥ 0.

If F ̸= 0, then we have ⟨LF,F ⟩L2(Ω) > 0 as otherwise u would vanish and hence
F = 0. Therefore, L is positive definite with kerL = {0}. By the spectral theory
for compact self-adjoint operators we deduce that σ(L) = σp(L) ⊂ R+ is at most
countable with accumulation point µ = 0. Here, σp(L) denotes the point spec-
trum of L, that is the set of eigenvalues. Moreover, for any µ ∈ σp(L) its related
eigenspace ker(L − µ) is finite dimensional. Next, observe that µ > 0 is an eigen-

value of L if and only if λ = 1/µ is an eigenvalue for (−∆)s and F ∈ L̃2(Ω) is an

eigenfunction of L with eigenvalue µ > 0 if and only if u := SF ∈ H̃s(Ω) is an
eigenfunction of (−∆)s with eigenvalue λ = 1/µ. Therefore, we may conclude that
σp((−∆)s) is an unbounded countable sequence and the corresponding eigenspaces
are finite-dimensional.

Step 1. The first eigenvalue.

Let us define

λ1 = inf
{
∥u∥2

H̃s(Ω)
; u ∈ H̃s(Ω), ∥u∥L2(Ω) = 1

}
.

We assert that λ1 > 0 is the smallest eigenvalue associated to (−∆)s. To see this,

let (uk)k∈N ⊂ H̃s(Ω) be a minimizing sequence, that is

∥uk∥L2(Ω) = 1 and lim
k→∞

∥uk∥2H̃s(Ω) = λ1.

In particular, this implies that (uk)k∈N ⊂ H̃s(Ω) is uniformly bounded and hence

up to extracting a subsequence there exists ϕ1 ∈ H̃s(Ω) such that uk ⇀ ϕ1 in

H̃s(Ω) as k → ∞. Up to extraction of a further subsequence, we can assume by the

Rellich–Kondrachov theorem that uk → ϕ1 in L̃2(Ω) as k → ∞ (we still denote the
subsequence by (uk)k∈N). The latter condition guarantees ∥ϕ1∥L2(Ω) = 1. Addi-

tionally, the lower semicontinuity of weak convergence ensures that ∥ϕ1∥2H̃s(Ω)
= λ1.

Thus, ϕ1 ∈ H̃s(Ω) is a minimizer of the convex functional u 7→ ∥u∥2
H̃s(Ω)

, whose

Euler–Lagrange equation is〈
(−∆)s/2ϕ1, (−∆)s/2v

〉
L2(Rn)

= λ1 ⟨ϕ1, v⟩L2(Rn)

for all v ∈ H̃s(Ω) (see [KRZ23KRZ23, Theorem 2.1]). This is nothing else than that λ1 > 0

is an eigenvalue and ϕ1 ∈ H̃s(Ω) is a related eigenfunction. That is, ϕ1 solves{
(−∆)su = λ1u in Ω,

u = 0 in Ωe.

Next, we show that λ1 > 0 is the smallest eigenvalue. For this purpose, assume

that λ > 0 is any eigenvalue with normalized eigenfunction ψ ∈ H̃s(Ω). Then we
have

∥ψ∥L2(Ω) = 1 and ∥ψ∥2
H̃s(Ω)

= λ.

By the definition of λ1, we get λ ≥ λ1.

Step 2. The k-th eigenvalue.
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Let k ≥ 2. Then we define

λk = inf
{
∥u∥2

H̃s(Ω)
; u ∈ H̃s(Ω), ∥u∥L2(Ω) = 1,

⟨u, ϕℓ⟩L2(Ω) = 0 for 1 ≤ ℓ ≤ k − 1
}
,

(A.1)

where ϕ1, . . . , ϕk−1 are the normalized eigenfunctions corresponding to the eigen-
values λ1, . . . , λk−1 and for all 1 ≤ ℓ ≤ k − 1 we have

⟨ϕℓ, ϕm⟩L2(Ω) = 0 for 1 ≤ m ≤ ℓ− 1.

Let us assume that that statement holds for k − 1 and we aim to prove that it
holds for k. As above we take a minimizing sequence (uℓ)ℓ∈N of (A.1A.1) and up to
subtracting a subsequence, we can assume that

uℓ ⇀ ϕk in H̃s(Ω) and uℓ → ϕk in L̃2(Ω)

as ℓ→ ∞ for some ϕk ∈ H̃s(Ω). Furthermore, one can easily see that there holds

(A.2) ∥ϕk∥L2(Ω) = 1, ⟨ϕk, ϕℓ⟩L2(Ω) = 0 for 1 ≤ ℓ ≤ k − 1 and λk = ∥ϕk∥2H̃s(Ω) .

Thus, ϕk is a minimizer with ∥ϕk∥2H̃s(Ω) = λk. Next, let us define

wt := ϕk + tv −
k−1∑
ℓ=1

⟨ϕk + tv, ϕℓ⟩L2(Ω) ϕℓ = ϕk + t

(
v −

k−1∑
ℓ=1

⟨v, ϕℓ⟩L2(Ω) ϕℓ

)
for t ∈ R and v ∈ H̃s(Ω) \ {0}. Thus, we may estimate

∥wt∥L2(Ω) ≥ ∥ϕk∥L2(Ω) − |t|
∥∥∥∥v − k−1∑

ℓ=1

⟨v, ϕℓ⟩L2(Ω) ϕℓ

∥∥∥∥
L2(Ω)

≥ 1− |t|
(
∥v∥L2(Ω) +

k−1∑
ℓ=1

∣∣ ⟨v, ϕℓ⟩L2(Ω)

∣∣∥ϕℓ∥L2(Ω)

)
≥ 1− k|t|∥v∥L2(Ω) > 0

as long as |t| < 1
k∥v∥L2(Ω), where we used that ∥ϕℓ∥L2(Ω) = 1 for 1 ≤ ℓ ≤ k.

Therefore, we can define

w̃t =
wt

∥wt∥L2(Ω)

for |t| < 1
k∥v∥L2(Ω). Using (A.2A.2) and setting ṽ = v −

∑k−1
ℓ=1 ⟨v, ϕℓ⟩L2(Ω) ϕℓ, we

deduce that there holds

d

dt

∣∣∣∣
t=0

∥wt∥2L2(Ω) = 2⟨ϕk, ṽ⟩L2(Ω) = 2 ⟨ϕk, v⟩L2(Ω) ,

and

0 =
d

dt

∣∣∣∣
t=0

∥w̃t∥2H̃s(Ω)

=
d

dt

∣∣∣∣
t=0

∥wt∥2H̃s(Ω)

∥wt∥2L2(Ω)

=
d

dt

∣∣∣∣
t=0

∥wt∥2H̃s(Ω) − λk
d

dt

∣∣∣∣
t=0

∥wt∥2L2(Ω)

= 2
(〈
(−∆)s/2ϕk, (−∆)s/2ṽ

〉
L2(Rn)

− λk ⟨ϕk, v⟩L2(Ω)

)
= 2

(〈
(−∆)s/2ϕk, (−∆)s/2v

〉
L2(Rn)

− λk ⟨ϕk, v⟩L2(Ω)

)
.



THE CALDERÓN PROBLEM FOR NONLOCAL WAVE EQUATIONS 33

In the last equality, we used that ϕℓ for 1 ≤ ℓ ≤ k−1 are eigenfunctions of the frac-

tional Laplacian and in L̃2(Ω) orthogonal to ϕk by (A.2A.2). The above computation
shows that λk is an eigenvalue and ϕk a corresponding eigenfunction.

Next, we assert that λk → ∞ as k → ∞. Suppose for the sake of contradic-

tion that λk is uniformly bounded, so that also (ϕk)k∈N ⊂ H̃s(Ω) is uniformly

bounded. Thus, up to extracting a subsequence, (ϕk)k∈N converges in L̃2(Ω) and
in particular is a Cauchy sequence. But then by the above construction, we have
∥ϕk − ϕm∥2L2(Ω) = ∥ϕk∥2L2(Ω) + ∥ϕm∥2L2(Ω) + 2 ⟨ϕk, ϕm⟩L2(Ω) = 2, for k ̸= m and

thus (ϕk)k∈N cannot be Cauchy, a contradiction. Therefore, we necessarily have
λk → ∞ as k → ∞.

Step 3. Proof of (i)(i).

We already know that (ϕk)k∈N is an orthonormal system in L̃2(Ω). So, we only

need to establish that the linear span of (ϕk)k∈N is dense in L̃2(Ω). As H̃s(Ω) is

dense in L̃2(Ω) and (ϕk)k∈N ⊂ H̃s(Ω), it is enough to show that every function

in H̃s(Ω) can be approximated by elements in the linear span of (ϕk)k∈N. So, let

v ∈ H̃s(Ω) be any fixed function and define

(A.3) vk = v −
k−1∑
ℓ=1

⟨v, ϕℓ⟩L2(Ω) ϕℓ = v −
k−1∑
ℓ=1

λ−1
ℓ ⟨v, ϕℓ⟩H̃s(Ω) ϕℓ

for any k ≥ 2. By orthonormality of (ϕk)k∈N in L̃2(Ω), we get ⟨vk, ϕℓ⟩L2(Ω) =

0 for any 1 ≤ ℓ ≤ k − 1. By formula (A.1A.1) this yields

(A.4) ∥vk∥2H̃s(Ω) ≥ λk ∥vk∥2L2(Ω) .

Now, using the orthonormality of (ϕℓ)1≤ℓ≤k−1, we may compute

∥v∥2
H̃s(Ω)

=

∥∥∥∥vk +

k−1∑
ℓ=1

λ−1
ℓ ⟨v, ϕℓ⟩H̃s(Ω)ϕℓ

∥∥∥∥2
H̃s(Ω)

= ∥vk∥2H̃s(Ω) + 2

k−1∑
ℓ=1

λ−1
ℓ ⟨v, ϕℓ⟩H̃s(Ω) ⟨vk, ϕℓ⟩H̃s(Ω)

+

k−1∑
ℓ=1

k−1∑
ℓ′=1

λ−1
ℓ λ−1

ℓ′ ⟨v, ϕℓ⟩H̃s(Ω) ⟨v, ϕℓ′⟩H̃s(Ω) ⟨ϕℓ, ϕℓ′⟩H̃s(Ω)

= ∥vk∥2H̃s(Ω) +

k−1∑
ℓ=1

λ−1
ℓ

∣∣ ⟨v, ϕℓ⟩H̃s(Ω)

∣∣2
≥ ∥vk∥2H̃s(Ω) .

(A.5)

Thus, by (A.4A.4) we obtain

∥vk∥2L2(Ω) ≤ λ−1
k ∥vk∥2H̃s(Ω) ≤ λ−1

k ∥v∥2
H̃s(Ω)

.

Passing to the limit, this implies vk → 0 in L̃2(Ω). Hence, we have

v =

∞∑
ℓ=1

⟨v, ϕℓ⟩L2(Ω) ϕℓ =

∞∑
ℓ=1

〈
v, λ

−1/2
ℓ ϕℓ

〉
H̃s(Ω)

(
λ
−1/2
ℓ ϕℓ

)
in L̃2(Ω).
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Step 4. Proof of (ii)(ii).

First note that
(
λ
−1/2
k ϕk

)
k∈N ⊂ H̃s(Ω) is orthonormal. This is a direct consequence

of the above construction. It remains to show the density of the linear span of(
λ
−1/2
k ϕk

)
k∈N in H̃s(Ω). Let us fix v ∈ H̃s(Ω) and suppose that the sequence

(vk)k≥2 is defined as in (A.3A.3). From the estimate (A.5A.5) we know that (vk)k≥2

is uniformly bounded in H̃s(Ω) and thus up to extracting a subsequence, we get

vk ⇀ w in H̃s(Ω) for some w ∈ H̃s(Ω). The compact embedding H̃s(Ω) ↪→ L̃2(Ω)

now gives w = 0 as we already know from the previous step that vk → 0 in L̃2(Ω) as
k → ∞. As for any subsequence, there is a further subsequence with this property,

we know that the whole sequence weakly converges in H̃s(Ω) to this limit w = 0.
By Mazur’s lemma, there exists a sequence of convex linear combinations

wℓ =

ℓ∑
k=2

a
(ℓ)
k vk, 0 ≤ a

(ℓ)
k ≤ 1,

ℓ∑
k=2

a
(ℓ)
k = 1

such that wℓ → 0 in H̃s(Ω). Note that by (A.3A.3) we have

wℓ = v −
ℓ∑

k=2

k−1∑
m=1

a
(ℓ)
k

〈
v, λ−1/2

m ϕm
〉
H̃s(Ω)

(
λ−1/2
m ϕm

)
and thus

Wℓ =

ℓ∑
k=2

k−1∑
m=1

a
(ℓ)
k

〈
v, λ−1/2

m ϕm
〉
H̃s(Ω)

(
λ−1/2
m ϕm

)
→ v

in H̃s(Ω) as ℓ→ ∞. As the functionsWℓ clearly belong to the span of
(
λ
−1/2
k ϕk

)
k∈N,

we may conclude the proof.

Step 5. Proof of (iii)(iii).

Note that for any G ∈ H−s(Ω) and v ∈ H̃s(Ω) we have by (ii)(ii) the identity

⟨G, v⟩ =
∞∑
k=1

〈
v, λ

−1/2
k ϕk

〉
H̃s(Ω)

〈
G,λ

−1/2
k ϕk

〉
.

Using the Cauchy–Schwartz inequality, we get

|⟨G, v⟩| ≤
∞∑
k=1

∣∣〈v, λ−1/2
k ϕk

〉
H̃s(Ω)

∣∣λ−1/2
k

∣∣Gk

∣∣
≤

( ∞∑
k=1

∣∣〈v, λ−1/2
k ϕk

〉
H̃s(Ω)

∣∣2)1/2( ∞∑
k=1

λ−1
k |Gk|2

)1/2

= ∥v∥H̃s(Ω)

( ∞∑
k=1

λ−1
k |Gk|2

)1/2

,

where we have again put Gk = ⟨G,ϕk⟩ and used [Bre11Bre11, Corollary 5.10]. Hence,

(A.6) ∥G∥H−s(Ω) ≤
( ∞∑

k=1

λ−1
k |Gk|2

)1/2

.

Next, let v ∈ H̃s(Ω) be the unique solution to

(A.7)

{
(−∆)sv = G in Ω,

v = 0 in Ωe,



THE CALDERÓN PROBLEM FOR NONLOCAL WAVE EQUATIONS 35

which exists by the Lax–Milgram theorem, and satisfies

(A.8) ∥v∥H̃s(Ω) ≤ ∥G∥H−s(Ω).

By Plancherel’s theorem, the left-hand side can be written as

(A.9) ∥v∥2
H̃s(Ω)

=

∞∑
k=1

∣∣〈v, λ−1/2
k ϕk

〉
H̃s(Ω)

∣∣2.
As v solves (A.7A.7), we get〈

v, λ
−1/2
k ϕk

〉
H̃s(Ω)

= λ
−1/2
k

〈
(−∆)s/2v, (−∆)s/2ϕk

〉
L2(Rn)

= λ
−1/2
k ⟨G,ϕk⟩

= λ
−1/2
k Gk.

(A.10)

Taking into account (A.8A.8) and (A.9A.9), we get( ∞∑
k=1

λ−1
k |Gk|2

)1/2

=

( ∞∑
k=1

∣∣〈v, λ−1/2
k ϕk

〉
H̃s(Ω)

∣∣2)1/2

= ∥v∥H̃s(Ω)

≤ ∥G∥H−s(Ω).

(A.11)

Thus, we may conclude that for any G ∈ H−s(Ω), we have

(A.12) ∥G∥H−s(Ω) =

( ∞∑
k=1

λ−1
k |Gk|2

)1/2

.

Next, we assert that for any G ∈ H−s(Ω) we have

(A.13) G =

∞∑
k=1

Gkϕk in H−s(Ω),

where Gk = ⟨G,ϕk⟩, for k ∈ N. Again let v ∈ H̃s(Ω) be the unique solution of
(A.7A.7). Then from (A.6A.6) and (A.11A.11), we know that

(A.14) ∥v∥H̃s(Ω) = ∥G∥H−s(Ω).

Therefore the source-to-solution map S : H−s(Ω) → H̃s(Ω) related to (A.7A.7) is
an isometric isomorphism. In fact, surjectivity follows by using G = (−∆)sv ∈
H−s(Rn) ↪→ H−s(Ω) for given v ∈ H̃s(Ω) as a source. By (ii)(ii), we already know
that

v =

∞∑
k=1

〈
v, λ

−1/2
k ϕk

〉
H̃s(Ω)

λ
−1/2
k ϕk

in H̃s(Ω) for any v ∈ H̃s(Ω). As SG = v and S−1 is a bounded linear map by the
Banach isomorphism theorem, we deduce that

G = S−1v =

∞∑
k=1

λ
−1/2
k

〈
v, λ

−1/2
k ϕk

〉
H̃s(Ω)

S−1ϕk in H−s(Ω).

As S−1ϕk = λkϕk, we get by (A.10A.10) the identity

G =

∞∑
k=1

λ
1/2
k

〈
v, λ

−1/2
k ϕk

〉
H̃s(Ω)

ϕk

=

∞∑
k=1

Gkϕk in H−s(Ω).

(A.15)
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This verifies the assertion (A.13A.13). Observe that the bilinear form

(A.16) ⟨G,H⟩H−s(Ω) := ⟨SG, SH⟩H̃s(Ω)

for G,H ∈ H−s(Ω) defines an inner product on H−s(Ω) and the induced norm
coincides with the dual norm ∥ · ∥H−s(Ω) (see (A.14A.14)). Note that

⟨ϕk, ϕℓ⟩H−s(Ω) = ⟨Sϕk, Sϕℓ⟩H̃s(Ω) = λ−1
k λ−1

ℓ ⟨ϕk, ϕℓ⟩H̃s(Ω)

= λ−1
ℓ ⟨ϕk, ϕℓ⟩L2(Ω) = λ−1

k δk,ℓ

for any k, ℓ ∈ N. Hence,
(
λ
1/2
k ϕk

)
k∈N is orthonormal in H−s(Ω). By the definition

of the isomorphism S, Sϕk = λ−1
k ϕk and (A.16A.16), we get

Gk = ⟨G,ϕk⟩
= ⟨SG, ϕk⟩H̃s(Ω)

= ⟨SG, S(λkϕk)⟩H̃s(Ω)

= λk ⟨G,ϕk⟩H−s(Ω) .

(A.17)

Finally, by (A.15A.15) this implies

G =

∞∑
k=1

〈
G,λ

1/2
k ϕk

〉
H−s(Ω)

λ
1/2
k ϕk in H−s(Ω),

which in turn implies that
(
λ
1/2
k ϕk

)
k∈N is an orthonormal basis in H−s(Ω). □
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Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona,
Spain

Email address: philipp.zimmermann@ub.edu


	1. Introduction
	1.1. The mathematical model and main results
	1.2. Comparison to inverse problems for local wave equations
	1.3. Organization of the paper

	2. Preliminaries
	3. Existence and uniqueness of very weak solutions to linear nonlocal wave equations
	3.1. Definition of very weak solutions
	3.2. A spectral theoretic lemma
	3.3. Very weak solutions to linear nonlocal wave equations without potential
	3.4. Very weak solutions to linear nonlocal wave equations with potential
	3.5. Properties of very weak solutions

	4. Runge approximation and inverse problem for linear NWEQs
	4.1. Runge approximation
	4.2. DN maps for NWEQs
	4.3. Proof of Theorem 1.3

	5. Well-posedness and inverse problems for nonlinear NWEQs
	5.1. Uniqueness of asymptotic expansion
	5.2. Recovery of coefficients of polyhomogeneous nonlinearities

	Appendix A. Proof of Lemma 3.5
	References

