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Abstract. In this paper, we study several inverse problems associated with a

fractional differential equation of the following form:

(−∆)su(x) +

N∑
k=0

a(k)(x)[u(x)]k = 0, 0 < s < 1, N ∈ N ∪ {0} ∪ {∞},

which is given in a bounded domain Ω ⊂ Rn, n ≥ 1. For any finite N , we

show that a(k)(x), k = 0, 1, . . . , N , can be uniquely determined by N + 1

different pairs of Cauchy data in Ωe := Rn\Ω. If N = ∞, the uniqueness
result is established by using infinitely many pairs of Cauchy data. The results

are highly intriguing in that it generally does not hold true in the local case,

namely s = 1, even for the simplest case when N = 0, a fortiori N ≥ 1. The
nonlocality plays a key role in establishing the uniqueness result, and we do

not utilize any linearization techniques. We also establish several other unique

determination results by making use of a minimal number of measurements.
Moreover, in the process we derive a novel comparison principle for nonlinear

fractional differential equations as a significant byproduct.

1. Introduction.

1.1. Mathematical setup and statement of main results. Let Ω ⊂ Rn, n ≥ 1,
be bounded domain with a C1,1 boundary ∂Ω and Ωe := Rn\Ω. Let s ∈ (0, 1).
Consider the following fractional differential equation:{

(−∆)su+ a(x, u) = F in Ω,

u = f in Ωe,
(1.1)

where F ∈ L∞(Ω) and f ∈ C2,s(Ωe). The function a(x, u), (x, u) ∈ Ω × R, takes
the following form:

a(x, u) =

N∑
k=1

a(k)(x)uk, a(k)(x) ∈ Cs(Ω), N ∈ N ∪ {∞}. (1.2)

Here, two remarks are in order. First, when N = ∞, we need to require the
convergence of the infinite series in (1.2) in the Cs(Ω)-topology for u sufficiently
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small. It shall be made explicitly in what follows. Second, one can conveniently
write a(0)(x) := −F (x) and set

ã(x, u) :=

N∑
k=0

a(k)(x)uk = a(x, u)− F (x). (1.3)

In doing so, the fractional equation in (1.1) can be more compactly written as
(−∆)su + ã(x, u) = 0. Nevertheless, since the regularity assumptions on a(k)(x),
k ≥ 1 and a(0)(x) = F (x) are different and moreover, in the physical setup, F is
usually referred to as a source term and a(k)(x)’s are medium parameters, we stick
to the formulation in (1.1)-(1.2) in our subsequent study.

In (1.1), (−∆)s is the fractional Laplacian operator given by (cf. [9])

(−∆)su(x) := cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1.4)

where

cn,s =
Γ(n2 + s)

|Γ(−s)|
4s

πn/2

is a dimensional constant depending on n ∈ N, s ∈ (0, 1), and P.V. stands for the
principal value. Let W1 and W2 be two arbitrary nonempty open subsets in Ωe. It is
always assumed that supp(f) ⊂ W1, and moreover f |W1

∈ C2,s(W1). In Section 2,
we shall establish the well-posedness of the forward problem (1.1), especially the
unique existence of a solution u ∈ Cs(Rn) under general conditions. Assuming such
a well-posedness, we introduce the following exterior nonlocal partial Cauchy data
set:

CW1,W2

a,F (f) :=
(
u|W1

, (−∆)su|W2

)
=
(
f |W1

, (−∆)su|W2

)
⊂
(
C2,s

0 (W1) ∩ H̃s(W1)
)
× Cs(W2),

(1.5)

where u ∈ Cs(Rn) is the unique solution to (1.1). Here C2,s
0 and H̃s are the Hölder

space and fractional Sobolev space, which will be introduced in Section 2.

In what follows, we shall simply call CW1,W2

a,F (f) the pair of Cauchy data associated
with an external input f . For a particular case with f ≡ 0,

C0
a,F := CW1,W2

a,F (0) =
(
0|W1 , (−∆)su|W2

)
is purely generated by the source term F . In the physical setup, C0

a,F is referred

to as the passive measurement. In comparison, for a nontrivial input f , CW1,W2

a,F (f)
is referred to as an active measurement. In this article, we are concerned with the
following inverse problem:

Inverse Problem. Can one determine a(x, u) of the form (1.2), namely a(k)(x),

k ≥ 1, and F (x) by using the Cauchy data CW1,W2

a,F (f) associated with different
inputs f?

The first main result that we establish for the above inverse problem is the unique
determination of F (x) and a(k)(x), k = 1, 2, . . . , N , by using N +1 pairs of Cauchy

data CW1,W2

a,F (fk) associated with f0, f1, . . . , fN , where fk ≡\ fl, 0 ≤ k, l ≤ N and

k ̸= l. Here, by fk ≡\ fl we mean that there exists at least one point x ∈ W1 such
that fk(x) ̸= fl(x), and hence by the continuity, fk and fl take different values in
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an open subset of W1. This represents a minimal number of measurements in the
sense that the number of unknown functions equals to the number of the measured
Cauchy data pairs, being both N + 1. The unique determination result can be
stated as follows.

Theorem 1.1. Let Ω ⊂ Rn be a bounded domain with a C1,1 boundary ∂Ω, for
n ≥ 1, and s ∈ (0, 1). Let W1,W2 ⊂ Ωe be two arbitrary nonempty open subsets,
and consider {

(−∆)suj + aj(x, uj) = Fj in Ω,

uj = f in Ωe,
(1.6)

where aj = aj(x, u) is of the form (1.2) with coefficient functions a
(k)
j , for k =

1, 2, . . . , N , j = 1, 2 and a finite N ∈ N. Assuming the well-posedness of (1.6), if

CW1,W2

a1,F1
(fk) = CW1,W2

a2,F2
(fk), k = 0, 1, . . . , N, (1.7)

where fk ≡\ fl, 0 ≤ k, l ≤ N and k ̸= l, then one has

a
(k)
1 (x) = a

(k)
2 (x) in Ω, k = 1, 2, . . . , N, and F1 = F2 in Ω.

Remark 1.1. In Theorem 1.1, the well-posedness of the forward problem (1.6) is
assumed. This shall be proved in Section 2. It turns out that we need to impose
more restrictive assumptions including a(1) ≥ 0, x ∈ Ω, and additional smallness
conditions on f and F , especially when N ≥ 2. On the other hand, if N ≤ 1, i.e.
the forward problem (1.6) is linear, the regularity assumptions on ∂Ω, F, a(1) and
f can be much relaxed. This shall also be remarked in Section 2. It is emphasized
that those conditions are only needed for the forward problem and will not affect
the inverse problem study as long as the well-posedness of the forward problem is
guaranteed. This should be more clear in our subsequent analysis.

Next, we consider passing N to ∞ in Theorem 1.1. It is natural to conjecture
that one can establish the unique determination result by countably many exterior

measurements, namely CW1,W2

a,F (fj), j ∈ N. However, establishing such a uniqueness
result is fraught with significant difficulties. This is not unusual when one passes
from finite unknowns to infinite unknowns in the study of inverse problems due to
their ill-posed nature; see e.g. [2, 41, 25, 20]. Instead, we prove a unique determi-
nation result by using uncountably many measurements in the case N = ∞. This
corroborates the sharpness of our result in Theorem 1.1. We shall make more dis-
cussion about this point in the next subsection. Before that, we make more rigorous
about the convergence of the infinite series in (1.2) when N = ∞. In such a case,
we always assume that the infinite series is absolutely convergent in Cs(Ω)-topology
when |u| < ε for a sufficiently small ε ∈ R+. This in fact means that a(·, u) is real
analytic around u = 0 with values in Cs(Ω). Moreover, throughout this paper, we
shall always assume in such a case that

a(1)(x) = ∂ua(x, 0) ≥ 0 for x ∈ Ω, (1.8)

again for the sake of guaranteeing the well-posedness of the forward problem.

Theorem 1.2. Let Ω ⊂ Rn be a bounded domain with a C1,1 boundary ∂Ω, for
n ≥ 1, and s ∈ (0, 1). Let Xε and Yδ be two function spaces that will be introduced
by (2.2) and (2.3), respectively. Suppose that Fj ∈ Xε and f ∈ Yδ. Consider the
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following semilinear equation:{
(−∆)suj + aj(x, uj) = Fj in Ω,

uj = f in Ωe,
(1.9)

where aj = aj(x, u) is of the form (1.2) with N = ∞ and satisfying the assumptions
described above.

Let W1,W2 ⊂ Ωe be two arbitrary nonempty open subsets, and CW1,W2

aj ,Fj
be the

associated Cauchy data of (1.9), for j = 1, 2. If it holds that

CW1,W2

a1,F1
(f) = CW1,W2

a2,F2
(f), for any f ∈ Yδ, (1.10)

then one has

a1 = a2 in Ω× R, and F1 = F2 in Ω.

It is noted that in (1.10), we need to make use of the Cauchy data for all the
inputs from the function space Yδ. In fact, the inputs depend on an asymptotic
parameter δ, which means that we need to make use of uncountably many pairs
of Cauchy data in Theorem 1.2. It is noted that if F1 = F2 = 0, the unique
determination result has been proved in [30]. We shall follow a similar successive
linearization technique in deriving the uniqueness result. As mentioned earlier, we
present such a unique determination result mainly to corroborate the novelty and
significance of the result in Theorem 1.1 as well as its argument which make full
use of the finite dimensionality and nonlocality of the underlying problem.

Finally, it would be interesting to consider the same inverse problem in The-
orem 1.1, but with a reduced number of unknown functions. To illustrate, let us

consider a specific case by assuming that N = 2 in Theorem 1.1, but a
(1)
1 = a

(1)
2 = 0.

That is, for the inverse problem of recovering a and F by knowledge of CW1,W2

a,F , it

is sufficient to recover a(2) and F since a(1) = 0 is a-priori known. Clearly, by
Theorem 1.1, one can obtain the unique determination by using 3 different pairs of
Cauchy data. However, since the number of unknown functions is reduced to be 2, it
is natural to ask whether one can achieve the uniqueness result by 2 measurements,
namely 2 Cauchy pairs. We shall give an affirmative answer to such a specific case.

Theorem 1.3. Let Ω ⊂ Rn be a bounded domain with a C1,1 boundary ∂Ω, for
n ≥ 1, and s ∈ (0, 1). Let Xε and Yδ be the same function spaces in Theorem 1.2.

Let a
(2)
j ∈ Cs(Ω) be nonnegative functions and Fj ∈ Xε be nonpositive sources, for

j = 1, 2. Consider the following semilinear equation:{
(−∆)suj + a

(2)
j u2

j = Fj in Ω,

uj = f in Ωe,
(1.11)

for j = 1, 2. Let W1,W2 ⊂ Ωe be two arbitrarily nonempty open subsets, and CW1,W2

a
(2)
j ,Fj

be the Cauchy data of (1.11), for j = 1, 2. Let f ∈ Yδ \{0} be a nonpositive function
with supp (f) ⊂ W1. If it holds that

C0

a
(2)
1 ,F1

= C0

a
(2)
2 ,F2

and CW1,W2

a
(2)
1 ,F1

(f) = CW1,W2

a
(2)
2 ,F2

(f), (1.12)

then one has

a
(1)
1 = a

(2)
2 and F1 = F2 in Ω.
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As can be seen from Theorem 1.3, the number of the unknown functions and
the number of the Cauchy data pairs are equal to each other, being both 2. Hence,
if the number of unknown functions is reduced in Theorem 1.1, one in principle
should be able to reduce the number of measurements to be minimal. Nevertheless,
as can also be seen from Theorem 1.3, one needs to impose certain a-priori condi-
tions on the unknowns. In fact, even in such a specific case, we need to develop a
different argument from that for the proof of Theorem 1.1. This partly evidences
the significant challenge by deriving unique determination results using a minimal
number of measurements. In principle, one can extend the result in Theorem 1.3
by considering a general unknown function a(x, u) of the form (1.2) with some of
its coefficient functions a-priori known. The proof can follow a similar argument to
that for Theorem 1.3 in Section 4. However, presenting such a general result in-
volves rather lengthy and tedious explanations, especially on the a-priori conditions
imposed on the unknown coefficient functions. Hence, instead of being swamped
with nontechnical details, we choose to present Theorem 1.3 only to verify the point
that if the number of unknown functions is reduced, one may still be able to re-
duce the number of measurements to be minimal, under the situation that certain
a-priori conditions are imposed on the unknown functions.

1.2. Discussion and connection to existing studies. Inverse problems for frac-
tional PDEs (partial differential equations), namely differential equations involving
fractional PDOs (partial differential operators), have received considerable studies
in the literature recently. The fractional type Calderón problem was first investi-
gated in [17]. It turns out that one can solve several challenging inverse problems
that still remain unsolved in local cases, namely the fractional PDOs are replaced
by the corresponding non-fractional counterparts, by taking advantage of the non-
locality of the fractional PDEs. We refer to [1, 14, 5, 4, 6, 11, 19, 20, 16, 18, 15, 37,
30, 25, 49, 48] and the references cited therein for the existing developments in the
literature.

Most of the existing studies are concerned with inverse problems for linear frac-
tional PDEs by using infinitely (actually uncountably) many measurements. In [4],
fractional Schiffer’s problem was proved by using a single measurement. In [16],
uniqueness was derived by a single measurement in determining a potential term
associated with a fractional Schrödinger equation, which is actually a special case
of Theorem 1.1 with N = 1 and F ≡ 0. There are also related studies on inverse
problems associated with semilinear fractional PDEs [29, 37, 30], all making use of
uncountably many measurements.

On the other hand, inverse problems for nonlinear PDEs enjoys a similar hotness
as the fractional ones in the literature recently; see [13, 12, 21, 26, 27, 32, 31, 36,
30, 38, 39] and the references cited therein. A major tool is the so-called successive
linearization or higher order linearization technique, which attaches some asymp-
totic parameters to the measurement data and in nature requires uncountably many
measurements. It is noted that the aforementioned studies on inverse problems for
fractional semilinear PDEs made use of successive linearization technique as well.

Inverse problems with minimal/optimal measurement data have been a central
topic in the theory of inverse problems, which possesses both theoretical and practi-
cal significance. On the other hand, it is always highly challenging to achieve unique
determination results by using minimal/optimal measurement data. We mention
the so-called Schiffer’s problem [3, 43, 44, 40] and partial-data Calerón’s problem
[24, 23, 22, 46] as typical and classical examples in the local setting. Hence, our
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results in Theorems 1.1 and 1.3 are highly intriguing. First, they make use of a
minimal number of measurements as discussed before Theorem 1.1. Second, in de-
riving those inversion results, we do not make use of any linearization technique,
even dealing with nonlinear PDEs. The linearization is only employed for show-
ing the well-posedness of the forward problem. Instead, we explore the nonlocality
and make full use of it. Our study as well as the method developed in the present
article open up a new direction of research for fractional inverse problems with
minimal/optimal measurement data.

Finally, we would like to mention another interesting connection of our study. As
mentioned earlier, F in (1.1) signifies a source term, whereas a(k)’s in (1.2) usually
signify certain medium parameters in the physical scenario. Inverse problems of
simultaneously recovering an unknown source inside a body as well as the medium
parameters of the body by using both passive and active measurements have also
received considerable attentions in the literature. They usually possess strong back-
grounds of applications; see [42] in photo- and thermo-acoustic tomography, [7, 8]
in geomagnetic anomaly detection, [28, 38] in cosmological exploration, [33, 34] in
quantum scattering as well as [39] for more related ones. In particular, we would
like to mention that in [5] the authors consider the simultaneous recovery of an
unknown source and its surrounding medium parameter associated with a linear
fraction PDE by uncountably many measurements.

The rest of the paper is organized as follows. In Section 2, we review several
function spaces, which were be used in our study of inverse problems. Meanwhile,
we also study the well-posedness for both linear and nonlinear fractional elliptic
equations. We prove Theorems 1.1, when the function a(x, u) is linear with respect
to the u-variable in Section 3. In Section 4, we prove Theorem 1.1 without using
any linearization method, and show that Theorem 1.2 holds by using the higher
order linearization. Finally, we demonstrate a particular case of an inverse source
problem with reduced unknowns, and we can determine both coefficients and source
by using two measurements in Section 5.

2. Preliminaries. In this section, we prove the well-posedness of the Dirichlet
problem (1.1), under different settings of the function a = a(x, u). Before doing so,
let us review Hölder spaces and fractional Sobolev spaces.

2.1. Function spaces. Let us review definitions of several function spaces, which
will be used in the proofs of our results. Let U ⊂ Rn be an open set, k ∈ N ∪ {0}
and 0 < α < 1. The Hölder space Ck,α(U) is defined by

Ck,α(U) :=
{
f : U → R : ∥f∥Ck,α(U) < ∞

}
.

The norm ∥·∥Ck,α(U) is given by

∥f∥Ck,α(U) :=
∑
|β|≤k

∥∂βf∥L∞(U) +
∑
|β|=k

[∂βf ]Cα(U),

where

[∂βf ]Cα(U) := sup
x ̸=y,
x,y∈U

|∂βf(x)− ∂βf(y)|
|x− y|α

denotes the seminorm of C0,α(U), β = (β1, . . . , βn) is a multi-index with βi ∈ N∪{0}
and |β| = β1 + . . .+ βn. Furthermore, we also denote the space

Ck,α
0 (U) := closure of C∞

c (U) in Ck,α(U).
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Set Cα(U) ≡ C0,α(U) when k = 0.
We turn to recall the definition of fractional Sobolev spaces. Given γ ∈ R, the

L2-based fractional Sobolev space Hγ(Rn) := W γ,2(Rn) is defined via

∥u∥Hγ(Rn) =
(
∥u∥2L2(Rn) + ∥(−∆)γ/2u∥2L2(Rn)

)1/2

.

Furthermore, via the Parseval identity, the semi-norm ∥(−∆)β/2u∥L2(Rn) can be
rewritten as

∥(−∆)γ/2u∥L2(Rn) = ((−∆)γu, u)
1/2
Rn ,

where (−∆)γ is the fractional Laplacian, for γ ∈ R.
Given an open set U ⊂ Rn and γ ∈ R, then we denote the following Sobolev

spaces,

Hγ(U) := {u|U : u ∈ Hγ(Rn)} ,

H̃γ(U) := closure of C∞
c (U) in Hγ(Rn),

Hγ
0 (U) := closure of C∞

c (U) in Hγ(U),

and
Hγ

U
:=

{
u ∈ Hγ(Rn) : supp(u) ⊂ U

}
.

In addition, the fractional Sobolev space Hγ(U) is complete with respect to the
norm

∥u∥Hγ(U) := inf
{
∥v∥Hγ(Rn) : v ∈ Hγ(Rn) and v|U = u

}
.

Moreover, when U is a Lipschitz domain, the dual space of Hγ(U) can be written
as (

Hγ

U
(Rn)

)∗
= H−γ(U), and (Hγ(U))

∗
= H−γ

U
(Rn).

We also denote
(
H̃γ(U)

)∗
to be the dual space of H̃γ(U). For those readers who

are interested to know more properties for fractional Sobolev spaces, see [9, 45] for
more details.

2.2. Forward problems. Let us begin with the linear case, i.e.,

a(x, u) = a(1)(x)u

in (1.1) (as N = 1), where a(1) ∈ L∞(Ω), and the (global) well-posedness was shown
in [17, Lemma 2.3] by using the Lax-Milgram theorem. Consider the following
eigenvalue condition

0 is not a Dirichlet eigenvalue of (−∆)s + a(1) in Ω, (2.1)

then the well-posedness for linear fractional Schrödinger equation holds.

Proposition 2.1 (Well-posedness for the fractional Schrödinger equation). Let
Ω ⊂ Rn be a bounded open set, for n ≥ 1, and a(1) ∈ L∞(Ω). Let f ∈ Hs(Rn)

and F ∈
(
H̃s(Ω)

)∗
. Suppose that (2.1) holds, then there exists a unique solution

u ∈ Hs(Rn) of {(
(−∆)s + a(1)

)
u = F in Ω,

u = f in Ωe,

such that

∥u∥Hs(Rn) ≤ C
(
∥F∥(H̃s(Ω))

∗ + ∥f∥Hs(Rn)

)
,



8 YI-HSUAN LIN AND HONGYU LIU

for some constant C > 0 independent of u, f , and F .

For the semilinear counterparts, we can prove the (local) well-posedness of the
fractional elliptic equation (1.1), where a(x, u) is of the form (1.2), whenever the
Dirichlet data and sources are sufficiently small in appropriate function spaces.

Let us introduce the following function spaces

Xε :=
{
F ∈ L∞(Ω) : ∥F∥L∞(Ω) < ε

}
, (2.2)

Yδ := {f ∈ Y : ∥f∥Y < δ} , (2.3)

where
Y := C2,s

0 (Ωe) ∩ H̃s(Ωe)

and ∥·∥Y is given by

∥f∥Y := ∥f∥C2,s
0 (Ωe)

+ ∥f∥H̃s(Ωe)
.

Given s ∈ (0, 1), let a(x, u) satisfy (1.2), F ∈ Xε and f ∈ Yδ, we can prove that the
local well-posedness of {

(−∆)su+ a(x, u) = F in Ω,

u = f in Ωe,
(2.4)

for sufficiently small ε, δ > 0. Let us state the known well-posedness result for linear
fractional Schrödinger equation without the proof.

Theorem 2.1 (Local well-posedness for the fractional semilinear elliptic equation).
Let Ω ⊂ Rn be a bounded domain with C1,1 boundary ∂Ω. Let a(x, u) satisfy (1.2),
F ∈ Xϵ and f ∈ Yδ, for sufficiently small ε and δ. Consider the fractional semilinear
elliptic equation {

(−∆)su+ a(x, u) = F in Ω,

u = f in Ωe.
(2.5)

Then there exists a unique solution u ∈ Cs(Rn) of (2.5). In addition, the solution
u satisfies

∥u∥Cs(Rn) ≤ C
(
∥F∥L∞(Ω) + ∥f∥Y

)
,

for some constant C > 0 independent of u, f and F .

Proof. The proof is similar to the proof of [35, Proposition 2.1]. Let

V :=
{
u ∈ Hs(Rn) : (−∆)su ∈ L∞Ω, u|Ω ∈ Cs(Ω), u|Ωe ∈ C2,s(Ωe)

}
,

and
∥ϕ∥V := ∥ϕ∥Hs(Rn) + ∥(−∆)sϕ∥L∞(Ω) + ∥ϕ∥Cs(Ω) + ∥ϕ∥C2,s(Ωe),

then it is not hard to see that (V, ∥·∥V ) is a Banach space. Consider the map

Φ : V × L∞(Ω)× Y →L∞(Ω)× V,

(u, F, f) 7→ ((−∆)su+ a(x, u)− F, u|Ωe
− f) ,

then Φ(0, 0, 0) = (0, 0), where we utilized the condition (1.2) such that a(x, 0) = 0
in Ω. Similar to the proofs of (local) well-posedness in [26, 32, 30, 35], we can
show that the first linearization of Φ = Φ(u, F, f) at (0, 0, 0) with respect to the
u-variable is

∂uΦ(0, 0, 0) : V →L∞(Ω)× V,

v 7→ ((−∆)sv + ∂ya(x, 0)v, v|Ωe
) ,
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which is isomorphism via the (global) well-posedness for linear fractional Schrödinger
equation (c.f. Proposition 2.1).

Notice that (Y, ∥·∥Y ) is also a Banach space. Finally, by utilizing the implicit
function theorem for Banach spaces (see [47, Chapter 10] for example), there is
an open neighborhood Xε × Yδ of (0, 0) in L∞(Ω) × Y and a unique C∞-smooth
function h : Xε × Yδ → V such that

Φ(h(F, f), F, f) = (0, 0),

where (F, f) ∈ (Xε, Yδ), for sufficiently small ε, δ > 0. Since h is smooth, and
h(0, 0) = 0, the solution u = h(F, f) satisfies

∥u∥V ≤ C
(
∥F∥L∞(Ω) + ∥f∥Y

)
≤ C (ε+ δ) ,

for some constant C > 0 independent of u, F and f . Finally, indeed, it is not hard
to check the map Φ is a C∞ Fréchet differentiable map as we want (see [32] for
more detailed arguments). This prove the assertion.

In the end of this preliminary section, let us recall the global strong unique
continuation principle and the Runge approximation for fractional elliptic equations
(cf. [17, 16, 10]).

Proposition 2.2 (Global strong unique continuation property). Given s ∈ (0, 1),
n ∈ N, let u ∈ Hs(Rn) be a function satisfying (−∆)su = 0 in a nonempty open
subset O ⊂ Rn. If u = 0 on some positive measurable set E ⊂ O. Then u ≡ 0 in
Rn.

Proof. By [10, Theorem 1.4], it is known that u = 0 in O. Moreover, via [17,
Theorem 1.2], one can conclude that u = 0 in Rn as desired.

Proposition 2.3 (Runge approximation property). Let Ω ⊂ Rn be a bounded open
set and D ⊆ Rn be an arbitrarily open set such that Ω ⋐ D, for n ∈ N. Let
a(1) ∈ L∞(Ω) satisfies (2.1), then for any f ∈ L2(Ω), for any ϵ > 0, we can find a
function uϵ ∈ Hs(Rn) which solves(

(−∆)s + a(1)
)
uϵ = 0 in Ω and supp (uϵ) ⊆ D

and
∥uϵ − f∥L2(Ω) < ϵ.

3. Inverse problems for linear fractional elliptic equations. In this section,
let us prove Theorem 1.1 for the linear case, that is, consider the function

a(x, u) = a(1)(x)u, (3.1)

to be a linear function with respect to u ∈ R. In particular, if a(1) = 0 in Ω, we can
simply use the passive measurement to determine the source.

Theorem 3.1 (Unique determination by the passive measurement). Let Ω ⊂ Rn

be a bounded domain with Lipschitz boundary ∂Ω, for n ≥ 1, and s ∈ (0, 1). Given
an open subset W2 ⊂ Ωe, let C0

0,Fj
be the passive measurements{

(−∆)su
(0)
j = Fj in Ω,

u
(0)
j = 0 in Ωe,

(3.2)

for j = 1, 2. If

C0
0,F1

= C0
0,F2

in W2, (3.3)
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then F1 = F2 in Ω.

Proof. The proof is based on the global strong unique continuation property (Propo-

sition 2.2). Let u
(0)
j ∈ Hs(Rn) be the solution of (3.2), and the condition (3.3)

implies that (−∆)s
(
u
(0)
1 − u

(0)
2

)
= 0 in W2. Combining with u

(0)
1 −u

(0)
2 = 0 in W2,

and applying Proposition 2.2, one must have u
(0)
1 = u

(0)
2 in Rn, which guarantees

that
F1 = (−∆)su

(0)
1 = (−∆)su

(0)
2 = F2 in Ω

as desired. This proves the assertion.

Remark 3.1. It is worth mentioning that:

(a) It is known that without further assumptions for the source F , it is not possible
to determine the source uniquely for local differential equations. A simple
example can be considered by the Poisson equation{

−∆uj = Fj in Ω,

uj = f on ∂Ω,
(3.4)

for j = 1, 2. In fact, to find the obstruction for the unique determination
problem, let ϕ ∈ C2

c (Ω) be an arbitrary function, then one has ϕ = ∂νϕ = 0
on ∂Ω. Let (uj |∂Ω, ∂νuj |∂Ω) be the Cauchy data of (3.4), even if

(u1|∂Ω, ∂νu1|∂Ω) = (u2|∂Ω, ∂νu2|∂Ω) ,
but we can always write F2 = F1 −∆ϕ, and ∆ϕ can be arbitrary. Therefore,
the unique determination is not possible for the unknown sources in general.

(b) For the fractional case, we do not have an analogous counterexample similar
to the local case. The reason is that we cannot find any nontrivial function
ϕ such that the Dirichlet data and Neumann data are zero in the measured
domain in the fractional setup. If there exists a such function ϕ ∈ C2

c (Ω), with
the same Cauchy data, then we must have ϕ = (−∆)sϕ = 0 in some open
subset of Ωe. This implies that ϕ ≡ 0 in Rn (see Proposition 2.2). Hence, it is
possible to determine the unknown source uniquely via exterior measurements
for fractional inverse source problems.

We next study the linear fractional Schrödinger equation with source, and con-
sider the function (3.1) ((1.2) for N = 1). As a matter of fact, for the linear case,
we do not need to assume the coefficient a(1) ∈ Cs(Ω), but we assume a(1) ∈ C0(Ω),
which is a continuous function.

Theorem 3.2 (Unique determination by two measurements). Let Ω ⊂ Rn be a

bounded domain with Lipschitz boundary ∂Ω, for n ≥ 1, s ∈ (0, 1), and a
(1)
j ∈

C0(Ω). Consider the following fractional Schrödinger equation{(
(−∆)s + a

(1)
j

)
uj = Fj in Ω,

uj = f in Ωe,
(3.5)

for j = 1, 2. Given arbitrarily open subsets W1,W2 ⊂ Ωe, and an exterior data

f ∈ H̃s(W1) \ {0}, let CW1,W2

a
(1)
j ,Fj

(f) and C0

a
(1)
j ,Fj

be the Cauchy data and passive mea-

surement of (3.5), respectively. Then

C0

a
(1)
1 ,F1

= C0

a
(1)
2 ,F2

and CW1,W2

a
(1)
1 ,F1

(f) = CW1,W2

a
(1)
2 ,F2

(f) (3.6)
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implies that

a
(1)
1 = a

(1)
2 and F1 = F2 in Ω.

Proof. Given an exterior data f ∈ H̃s(W1) \ {0}, let uj and u
(0)
j be the solutions of

(3.5) and {(
(−∆)s + a

(1)
j

)
u
(0)
j = Fj in Ω,

u
(0)
j = 0 in Ωe,

respectively, for j = 1, 2. In addition, via the condition (3.6), one has

(−∆)s (u1 − u2) = (−∆)s
(
u
(0)
1 − u

(0)
2

)
= 0 in W2. (3.7)

By subtracting the above two equations, we obtain that{(
(−∆)s + a

(1)
j

)
vj = 0 in Ω,

vj = f in Ωe,
(3.8)

where vj := uj − u
(0)
j in Rn, for j = 1, 2. By the identity (3.7), we obtain

(−∆)s (v1 − v2) = 0 in W2. On the other hand, we have v1 − v2 = 0 in Ωe,

since a
(1)
j ∈ C0(Ω) for j = 1, 2, by applying [16, Theorem 1], one can determine

a
(1)
1 = a

(1)
2 in Ω

by using single measurement. Finally, similar to the proof of Theorem 1.1, it is not
hard to see that

F1 =
(
(−∆)s + a

(1)
1

)
u
(0)
1 =

(
(−∆)s + a

(1)
2

)
u
(0)
2 = F2 in Ω,

where we utilized u
(0)
1 = u

(0)
2 in Rn (by Proposition 2.2 again). This completes the

proof.

Remark 3.2. Note that Theorems 1.1 and 1.2 hold when the fractional Laplacian
(−∆)s can be replace by more general nonlocal variable elliptic operator

Ls = (−∇ · (σ∇))s, for 0 < s < 1,

where σ = (σij)1≤i,j≤n is a C∞-smooth, positive definite, symmetric matrix-valued

function. The key ingredient in the proof of Theorems 1.1 and 1.2 is based on
the strong unique continuation property, and such property also holds for Ls (see
[14, Theorem 1.2]). In addition, some inverse problems for this nonlocal variable
coefficients operator Ls have been studied by [4, 5, 14].

4. Inverse problems for semilinear fractional elliptic equations. We prove
Theorems 1.1 and 1.2 when a(x, u) are nonlinear with respect to u ∈ R, which is of
the form (1.2).

4.1. Minimal number of measurements. With the local well-posedness (The-
orem 2.1) at hand, we first prove Theorem 1.1 with (N + 1) measurements. Before
showing Theorem 1.1, let us study a special case as N = 2, i.e.,

a(x, u) = a(1)u+ a(2)u2,

in order to demonstrate the idea of the proof of Theorem 1.1.
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Proposition 4.1 (Three measurements). Let Ω ⊂ Rn be a bounded domain with
C1,1 boundary ∂Ω, for n ≥ 1, and s ∈ (0, 1). Let W1,W2 ⊂ Ωe be arbitrarily
nonempty open subsets, and consider{

(−∆)suj + a
(1)
j uj + a

(2)
j u2

j = Fj in Ω,

uj = f in Ωe,
(4.1)

where a
(ℓ)
j = a

(ℓ)
j (x) ∈ Cs(Ω), for j, ℓ = 1, 2. Assuming that Fj ∈ Xε, for sufficiently

small ε > 0, if

CW1,W2

a1,F1
(fℓ) = CW1,W2

a2,F2
(fℓ), (4.2)

for 3 different Dirichlet data fℓ ∈ Yδ with sufficiently small δ > 0, ℓ = 0, 1, 2, then

a
(1)
1 = a

(1)
2 , a

(2)
1 = a

(2)
2 and F1 = F2 in Ω.

Proof. Via Theorem 2.1, it is known that (4.1) is local well-posed, whenever ε, δ > 0
are sufficiently small. Let us choose f0 = 0, and different f1, f2 ∈ Yδ to be not

identically zero such that supp (f1), supp (f2) ⊂ W1. Meanwhile, let u
(0)
j , u

(1)
j and

u
(2)
j be the solutions of(−∆)su

(ℓ)
j + a

(1)
j u

(ℓ)
j + a

(2)
j

(
u
(ℓ)
j

)2

= Fj in Ω,

u
(ℓ)
j = fℓ in Ωe,

(4.3)

for ℓ = 0, 1, 2.
By using (4.2) and Proposition 2.2, it is known that

u(ℓ) := u
(ℓ)
1 = u

(ℓ)
2 in Rn, for ℓ = 0, 1, 2. (4.4)

On the other hand, by subtracting (4.3) between ℓ = 0, 1, 2, one has that{
(−∆)s

(
u(1) − u(0)

)
+ a

(1)
j

(
u(1) − u(0)

)
+ a

(2)
j

[(
u(1)

)2 − (
u(0)

)2]
= 0 in Ω,

u(1) − u(0) = f1 in Ωe,

(4.5)

and{
(−∆)s

(
u(2) − u(0)

)
+ a

(1)
j

(
u(2) − u(0)

)
+ a

(2)
j

[(
u(2)

)2 − (
u(0)

)2]
= 0 in Ω,

u(2) − u(0) = f2 in Ωe,

(4.6)

for j = 1, 2, where we used the uniqueness of solutions (4.4). Furthermore, sub-
tracting (4.5) between j = 1, 2, we have(

a
(1)
1 − a

(1)
2

)(
u(1) − u(0)

)
+
(
a
(2)
1 − a

(2)
2

)[(
u(1)

)2

−
(
u(0)

)2
]
= 0 in Ω. (4.7)

Similarly, subtracting (4.6) between j = 1, 2 yields that(
a
(1)
1 − a

(1)
2

)(
u(2) − u(0)

)
+
(
a
(2)
1 − a

(2)
2

)[(
u(2)

)2

−
(
u(0)

)2
]
= 0 in Ω. (4.8)
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Notice that both u(1)−u(0) and u(2)−u(0) are nonzero a.e. in Rn (by Proposition
2.2)1, so that (4.5) and (4.6) are equivalent to

(
a
(1)
1 − a

(1)
2

)
+
(
a
(2)
1 − a

(2)
2

) (
u(1) + u(0)

)
= 0 in Ω,(

a
(1)
1 − a

(1)
2

)
+
(
a
(2)
1 − a

(2)
2

) (
u(2) + u(0)

)
= 0 in Ω.

(4.9)

To proceed, let us subtract (4.9), then we have(
a
(2)
1 − a

(2)
2

)(
u(1) − u(2)

)
= 0 in Ω, (4.10)

and Proposition 2.2 yields that u(1) − u(2) ̸= 0 a.e. in Rn, since f1 ̸= f2. Hence,

(4.10) implies that a
(2)
1 − a

(2)
2 = 0 a.e. in Ω such that

a
(2)
1 − a

(2)
2 = 0 in Ω, (4.11)

due to a
(2)
j ∈ Cs(Ω), for j = 1, 2. Let us plug (4.11) into (4.9), we can conclude

that

a
(1)
1 = a

(1)
2 in Ω. (4.12)

as desired. Finally, inserting (4.4), (4.11) and (4.12) into (4.3), we obtain F1 = F2

in Ω. This completes the proof.

We have shown that when there are three unknown factors, then we can use three
different measurements to determine these unknowns. Let us next prove Theorem
1.1.

Proof of Theorem 1.1. We first express the function aj(x, y) of the form (1.2) as

aj(x, y) =

N∑
k=1

a
(k)
j (x)yk,

for j = 1, 2, then it remains to show that

a
(k)
1 = a

(k)
2 in Ω, for k = 1, 2, . . . , N. (4.13)

Let f0 = 0, f1, . . . , fN ∈ Yδ, which are mutually different, and consider u
(ℓ)
j to be

the solutions of {
(−∆)su

(ℓ)
j + aj(x, u

(ℓ)
j ) = Fj in Ω,

u
(ℓ)
j = fℓ in Ωe,

(4.14)

for ℓ = 0, 1, . . . , N and j = 1, 2.
Similar to the arguments in the proof of Proposition 4.1, with (1.7) at hand, it

is not hard to see that

u(ℓ) := u
(ℓ)
1 = u

(ℓ)
2 in Rn, for ℓ = 0, 1, . . . , N. (4.15)

Moreover, via (4.14) and (4.15), it is not hard to derive

N∑
k=1

a
(k)
j

[(
u(ℓ)

)k

−
(
u(0)

)k
]
= 0 in Ω,

1This can be seen via the Cs-Hölder continuity for solutions.
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for j = 1, 2, so that

N∑
k=1

(
a
(k)
1 − a

(k)
2

)[(
u(ℓ)

)k

−
(
u(0)

)k
]
= 0 in Ω, (4.16)

for all ℓ = 0, 1, . . . , N .
Let us rewrite (4.16) as

UA = 0 in Ω, (4.17)

where U is an N ×N matrix

U :=


u(1) − u(0)

(
u(1)

)2 − (
u(0)

)2
. . .

(
u(1)

)N −
(
u(0)

)N
u(2) − u(0)

(
u(2)

)2 − (
u(0)

)2
. . .

(
u(2)

)N −
(
u(0)

)N
...

...
. . .

...

u(N) − u(0)
(
u(N)

)2 − (
u(0)

)2
. . .

(
u(N)

)N −
(
u(0)

)N

 (4.18)

and A is an N -column vector

A :=


a
(1)
1 − a

(1)
2

a
(2)
1 − a

(2)
2

...

a
(N)
1 − a

(N)
2

 . (4.19)

In order to show (4.13), it suffices to show that the matrix U in (4.18) is non-singular
a.e. in Ω.

Via direct computations, we have

detU =det


u(1) − u(0)

(
u(1)

)2 − (
u(0)

)2
. . .

(
u(1)

)N −
(
u(0)

)N
u(2) − u(0)

(
u(2)

)2 − (
u(0)

)2
. . .

(
u(2)

)N −
(
u(0)

)N
...

...
. . .

...

u(N) − u(0)
(
u(N)

)2 − (
u(0)

)2
. . .

(
u(N)

)N −
(
u(0)

)N



=det



1 u(0)
(
u(0)

)2
. . .

(
u(0)

)N
0 u(1) − u(0)

(
u(1)

)2 − (
u(0)

)2
. . .

(
u(1)

)N −
(
u(0)

)N
0 u(2) − u(0)

(
u(2)

)2 − (
u(0)

)2
. . .

(
u(2)

)N −
(
u(0)

)N
...

...
...

. . .
...

0 u(N) − u(0)
(
u(N)

)2 − (
u(0)

)2
. . .

(
u(N)

)N −
(
u(0)

)N



=det



1 u(0)
(
u(0)

)2
. . .

(
u(0)

)N
1 u(1)

(
u(1)

)2
. . .

(
u(1)

)N
1 u(2)

(
u(2)

)2
. . .

(
u(2)

)N
...

...
...

. . .
...

1 u(N)
(
u(N)

)2
. . .

(
u(N)

)N


,

which is the Vandermonde matrix in the last identity. Moreover, via the structure
of the Vandermonde matrix, it is known that

detU =
∏

1≤ℓ<m≤N

(
u(m) − u(ℓ)

)
.
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Now, since u(m) = fm and u(ℓ) = fℓ in Ωe, with distinct exterior data, so we must
have u(m)−u(ℓ) cannot be zero a.e. in Ω, for all m ̸= ℓ ∈ {0, 1, . . . , N}, which shows
detU ̸= 0 a.e. in Ω, so that U is non-singular a.e. in Ω.

Therefore, one can conclude that the vector A in (4.19) must be zero a.e. in Ω.

Finally, since each a
(k)
j ∈ Cs(Ω), for j = 1, 2, k = 1, 2 . . . , N , the claim (4.13) must

hold. Finally, by using the equation (4.14), we can summarize that F1 = F2 in Ω
as well, which proves the assertion.

Remark 4.2. Notice that in the both proof of Proposition 4.1 and Theorem 1.1, we
do not use any integral identities, and one can determine unknowns by using finitely
many measurements. These are major differences between local and nonlocal inverse
problems.

4.2. Successive linearization and proof of Theorem 1.2. Inspired by [32, 31],
we want to adapt the higher order linearization method to show Theorem 1.2. let
us consider the Dirichlet data

f := f(x; ϵ) := ϵ1g1(x) + ϵ2g2(x) in Ωe, (4.20)

where gk ∈ C∞
c (W1), ϵ = (ϵ1, ϵ2), and ϵ1, ϵ2 are parameters such that every |ϵk| is

sufficiently small, for k = 1, 2.
Combining with (1.1) and (4.20) at hand, we can apply the higher order lin-

earization method to the semilinear elliptic equation{
(−∆)su+ a(x, u) = F in Ω,

u = ϵ1g1 + ϵ2g2 in Ωe.

Since ϵ = (ϵ1, ϵ2), then ϵ = 0 is equivalent to ϵ1 = ϵ2 = 0.

Proof of Theorem 1.2. By using the special Dirichlet data (4.20), let us denote uj

to be the solutions of {
(−∆)suj + aj(x, uj) = Fj in Ω,

uj = ϵ1g1 + ϵ2g2 in Ωe,
(4.21)

for j = 1, 2. Similar to the proof of Theorem 3.1, as ϵ = 0, let u
(0)
j be the solution

of {
(−∆)su

(0)
j + aj(x, u

(0)
j ) = Fj in Ω,

u
(0)
j = 0 in Ωe,

(4.22)

for j = 1, 2. With the well-posedness at hand, we can apply the higher order
linearization to show the unique determination result.

Let us first differentiate (4.21) with respect to ϵk around the function u
(0)
j , for

k = 1, 2, then we have{(
(−∆)s + ∂yaj(x, u

(0)
j )

)
v
(k)
j = 0 in Ω,

v
(k)
j = fk on ∂Ω,

(4.23)

where

v
(k)
j = ∂ϵk |ϵ=0 uj ,

where u
(0)
j is the solution of (4.22), for j, k = 1, 2. Due to the assumption of the

coefficients aj(x, y), one has that ∂yaj(x, u
(0)
j (x)) ∈ Cs(Ω). Hence, via [16, Theorem
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1] again, we are able to conclude that

A1(x) := ∂ya1(x, u
(0)
1 ) = ∂ya2(x, u

(0)
2 ), for x ∈ Ω.

Furthermore, via the uniqueness for the (linear) fractional Schrödinger equation
(4.23), we can also conclude that

v(k) := v
(k)
1 = v

(k)
2 in Rn,

for k = 1, 2. On the other hand, notice that v(k) ∈ Cs(Ω) due to the global Hölder
estimate for the fractional Schrödinger equation (4.23).

We next derive the second linearization of (4.21) around the function u
(0)
j . Via

straight forward computations, it is not hard to see that{
((−∆)s +A1)w

(2)
j + ∂2

yaj(x, u
(0)
j )

(
v(1)

)2
= 0 in Ω,

w
(2)
j = 0 on ∂Ω,

(4.24)

for j = 1, 2, where

w
(2)
j = ∂2

ϵ1

∣∣
ϵ=0

uj ,

and uj is the solution of (4.21). Via the condition (1.12), acting ∂2
ϵ1

∣∣
ϵ=0

on the

identity (−∆)su1 = (−∆)su2 in W2, one can get

(−∆)sw
(2)
1 = (−∆)sw

(2)
2 in W2.

We next multiply (4.24) by v(2), and integrate over Ω, then an integration by parts
formula implies that∫

Ω

(
∂2
ya1(x, u

(0)
1 )− ∂2

ya2(x, u
(0)
2 )

)(
v(1)

)2

v(2) dx = 0. (4.25)

Now, by the Runge approximation (Proposition 2.3), for any φ ∈ L2(Ω), there exists

a sequence of functions
{
f
(ℓ)
2

}∞

ℓ=1
such that v

(2)
ℓ → φ in L2(Ω) as ℓ → ∞, where v2ℓ

is the solution of {
((−∆)s +A1) v

(2)
ℓ = 0 in Ω,

v
(2)
ℓ = f

(ℓ)
2 in Ωe,

for ℓ ∈ N. Replace v(2) by v
(2)
ℓ in (4.25) and take ℓ → ∞, we then derive(

∂2
ya1(x, u

(0)
1 )− ∂2

ya2(x, u
(0)
2 )

)(
v(1)

)2

= 0 in Ω.

By choosing the exterior data f1 ≥ 0 in W1 but not identically zero, one can
summarize that

∂2
ya1(x, u

(0)
1 ) = ∂2

ya2(x, u
(0)
2 ) in Ω

as desired.
Meanwhile, by using the mathematical induction hypothesis, it is not hard to

show that

∂k
ya1(x, u

(0)
1 ) = ∂k

ya2(x, u
(0)
1 ) in Ω,

for all k ≥ 3. The rest of the proof is similar to the one for [30, Theorem 1.1].
Moreover, combining with the analytic assumption for the nonlinearity aj(x, y) for
j = 1, 2, one can conclude that

a1(x, y) = a2(x, y) in Ω× R.
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Finally, via the condition (1.12) again, we must have u1 ≡ u2 in Rn such that

F1 = (−∆)su1 + a1(x, u1) = (−∆)su2 + a2(x, u2) = F2 in Ω.

This proves the assertion.

Remark 4.3. It might be interesting to consider the nonlocal variable elliptic
operator Ls = (−∇ · (σ∇))s to replace the fractional Laplacian (−∆)s in Theorem
1.1 and 1.2, when a(x, u) is not linear with respect to u. However, due to the lack of
suitable Hölder estimates for the linear nonlocal elliptic equation

(
Ls + a(1)

)
u = F

in Ω, u = 0 in Ωe, we do not know how to prove the local well-posedness for
Lsu + a(x, u) = 0 in Ω. Hence, we are not able to use Ls to replace (−∆)s under
the nonlinear setting.

5. Unique determination with reduced unknowns. In this section, let us
show a unique determination result for a special case of (1.1), when

a(x, u) = a(2)u2, (5.1)

where a(2) ∈ Cs(Ω). That is, we give the proof of Theorem 1.3. When a(x, y) is of
the form (5.1), it automatically satisfies (1.2). We are interested to determine a(2)

and F for a fractional semilinear elliptic equation{
(−∆)su+ a(2)u2 = F in Ω,

u = f in Ωe.
(5.2)

By using preceding results, it is known that we can use three measurements to
determine both a(2) and F in (5.2). As a matter of fact, we are able to reduce
the number of measurements. Before doing so, let us state an interesting result,
which can be regarded as a comparison principle for fractional semilinear elliptic
equations. To our best knowledge, this result is new to the literature.

Proposition 5.1 (Comparison principle). Let Ω ⊂ Rn be a C1,1 domain, for n ≥ 1,
and s ∈ (0, 1). Let b(x, u) ≥ 0 be a bounded function, for (x, y) ∈ Ω × R. If
u ∈ Hs(Rn) is a weak solution of{

(−∆)su+ b(x, u) = F in Ω,

u = f in Ωe.
(5.3)

Suppose that F ≤ 0 in Ω and f ≤ 0 in Ωe are bounded functions. Then u ≤ 0 in Ω.

Note that the function b(x, u) may not need to satisfy the condition (1.2), but the
positivity of b(x, u) plays an essential role in the upcoming arguments. Recall that
a solution u is called a weak solution provided that it satisfies the weak formulation∫

Rn

(−∆)s/2u · (−∆)s/2φdx+

∫
Ω

b(x, u)φdx =

∫
Ω

Fφdx, (5.4)

for any φ ∈ H̃s(Ω).

Proof of Theorem 5.1. Since u is a weak solution of (5.3), one can write it in terms

of the weak formulation (5.4), for any φ ∈ H̃s(Ω). Notice that the first term in
(5.4) can be expressed as∫

Rn

(−∆)s/2u · (−∆)s/2φdx
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=

∫∫
R2n

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dydx

=

∫∫
R2n\(Ωe×Ωe)

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2s
dydx,

where we utilized φ ≡ 0 in Ωe. By writing u = u+ − u− ∈ Hs(Rn), where u+ =
max{u, 0} ∈ Hs(Rn) and u− = max{−u, 0} ∈ Hs(Rn). Taking the test function
φ = u+, one can see that φ ≡ 0 in Ωe directly. We further assume that u+ is not
identically zero, which will leads a contradiction via the following arguments.

First, by inserting φ = u+, we write∫∫
R2n\(Ωe×Ωe)

(u(x)− u(y)) (u+(x)− u+(y))

|x− y|n+2s
dydx = I + II,

where

I :=

∫∫
Ω×Ω

(u(x)− u(y)) (u+(x)− u+(y))

|x− y|n+2s
dydx,

II :=2

∫
Ω

∫
Ωe

(u(x)− u(y)) (u+(x)− u+(y))

|x− y|n+2s
dydx.

For I, we observe that (u−(x)− u−(y)) (u+(x)− u+(y)) ≤ 0, so

I ≥
∫∫

Ω×Ω

(u+(x)− u+(y))
2

|x− y|n+2s
dydx > 0. (5.5)

The last equality of (5.5) cannot hold since u+ cannot be a constant function. If
u+ is a constant, say u+ = α0 > 0 in Ω, via the definition (1.4) of the fractional
Laplacian, one has that

(−∆)su(x) =cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

=cn,s

∫
Ωe

α0 − f(y)

|x− y|n+2s
dy > 0,

for x ∈ Ω, where we used u|Ωe = f ≤ 0. Hence, via (5.3), we have

0 < (−∆)su+ b(x, u) = F ≤ 0 in Ω,

which contradicts to that u+ = α0 is a constant in Ω. Thus, u+ cannot be a constant
in Ω, so that (5.5) must hold.

Second, since f ≤ 0 in Ωe, and

u(x)u+(x) =
(
u+(x)− u−(x)

)
u+(x) ≥ 0 in Ω,

then II can be estimated by

II =2

∫
Ω

∫
Ωe

(u(x)− u(y)) (u+(x)− u+(y))

|x− y|n+2s
dydx

=2

∫
Ω

∫
Ωe

(u(x)− f(y))u+(x)

|x− y|n+2s
dydx

≥0.

Hence, ∫∫
R2n\(Ωe×Ωe)

(u(x)− u(y)) (u+(x)− u+(y))

|x− y|n+2s
dydx = I + II > 0.
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Moreover, it is not hard to check that
∫
Ω
b(x, u)u+ dx ≥ 0 since b(x, u) ≥ 0, and∫

Ω
Fu+ dx ≤ 0 since F ≤ 0. With these relations at hand, However, by (5.4), we

then conclude that

0 <

∫
Rn

(−∆)s/2u · (−∆)s/2φdx+

∫
Ω

b(x, u)φdx =

∫
Ω

Fφdx ≤ 0,

which leads to a contradiction. Therefore, u+ must be identically zero, and this
completes the proof.

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Similar as before, let us denote uj and u
(0)
j to be the solu-

tions of (1.11) and {
(−∆)su

(0)
j + a

(2)
j (u

(0)
j )2 = Fj in Ω,

u
(0)
j = 0 in Ωe,

(5.6)

for j = 1, 2. Via the condition (1.12), it is not hard to see that

u := u1 = u2 and u0 := u
(0)
1 = u

(0)
2 in Rn. (5.7)

Therefore, by subtracting (1.11) and (5.6), we have{
(−∆)s(u− u0) + a

(2)
1

(
u2 − (u0)

2
)
= 0 in Ω,

(−∆)s(u− u0) + a
(2)
2

(
u2 − (u0)

2
)
= 0 in Ω.

(5.8)

Subtracting the above two identities yield that(
a
(2)
1 − a

(2)
2

)
(u+ u0) (u− u0) = 0 in Ω, (5.9)

It remains to analyze (5.9).
We first claim that

u+ u0 ̸= 0 in Ω. (5.10)

Note that we have conditions that qj ≥ 0, Fj ≤ 0 in Ω, for j = 1, 2 and f ≤ 0 in

Ωe. By considering b(x, uj) in Theorem 5.1 as b(x, uj) = a
(2)
j u2

j ≥ 0, and apply
the conclusion of Theorem 5.1, then we have that the solutions u and u0 must be

nonpositive. Moreover, u and u0 are not identically zero, if a
(2)
j , Fj and f are not

identically zero. By u, u0 ≤ 0, the claim (5.10) holds.
We next claim

u− u0 ̸= 0 in Ω (5.11)

as well. If u− u0 = 0 in Ω, the equation (5.8) yields that (−∆)s(u− u0) = 0 in Ω,
then the strong unique continuation (Proposition 2.2) implies that u ≡ u0 in Rn.
However,

u|Ωe
= f ̸= 0 = u0|Ωe

,

which leads a contradiction. Thus, (5.11) holds.
Finally, with (5.10) and (5.11) at hand, combining with (5.9), we have q1−q2 = 0

or q1 = q2 in Ω. Therefore,

F1 = (−∆)su+ a
(2)
1 u2 = (−∆)su+ a

(2)
2 u2 = F2 in Ω,

which proves the theorem.
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[49] A. Rüland and M. Salo, The fractional Calderón problem: Low regularity and stability,

Nonlinear Analysis, 193 (2020), 111529.

Received February 2023; revised March 2023; early access March 2023.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3774704&return=pdf
http://dx.doi.org/10.1088/1361-6420/aaac5a
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4062981&return=pdf
http://dx.doi.org/10.1016/j.na.2019.05.010

	1. Introduction
	1.1. Mathematical setup and statement of main results
	1.2. Discussion and connection to existing studies

	2. Preliminaries
	2.1. Function spaces
	2.2. Forward problems

	3. Inverse problems for linear fractional elliptic equations
	4. Inverse problems for semilinear fractional elliptic equations
	4.1. Minimal number of measurements
	4.2. Successive linearization and proof of Theorem 1.2

	5. Unique determination with reduced unknowns
	Acknowledgments
	REFERENCES

