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Abstract. We study boundary determination for an inverse problem associ-

ated to the time-harmonic Maxwell equations and another associated to the
isotropic elasticity system. We identify the electromagnetic parameters and the

Lamé moduli for these two systems from the corresponding boundary measure-

ments. In a first step we reconstruct Lipschitz magnetic permeability, electric
permittivity and conductivity on the surface from the ideal boundary mea-

surements. Then, we study inverse problems for Maxwell equations and the
isotropic elasticity system assuming that the data contains measurement errors.

For both systems, we provide explicit formulas to reconstruct the parameters

on the boundary as well as its rate of convergence formula.

1. Introduction. In this work we consider the inverse problem of determining
the material parameters, specifically electromagnetic parameters or elasticity pa-
rameters, at the boundary of a body from knowledge of certain boundary maps of
electromagnetic fields or elastic waves. Such boundary determination is usually the
preliminary step in solving the inverse problem of determining these parameters
inside the body. The prototypical study that inspired that of the electromagnetic
and elastic inverse problems is for electrostatics, known as the Calderón problem.
In the Calderón problem, one aims at determining the conductivity function σ from
the Dirichlet-to-Neumann (DN) map (also known as the voltage-to-current map)
associated to the diffusion conductivity equation ∇ · (σ∇u) = 0 for the electrical
potential. Extensive studies have been devoted to show the unique determination
of the conductivity inside the body, see [26, 21, 2, 9, 11] for example. The work
on internal unique determination of electromagnetic and elastic parameters can be
found in [22, 23, 10] and [19], respectively. An important direction of generalizing
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the uniqueness result is to obtain uniqueness for parameters with lower regular-
ity, such as Lipschitz conductivities discussed in [9, 11], Lipschitz electromagnetic
parameters discussed in [10, 24] and Lipschitz Lamé moduli in [19].

The boundary determination for the Calderón problem was first shown in [18]
for smooth conductivities, and later generalized in a series of papers [1, 3, 4, 5]. In
particular, the methods in [3, 5] are constructive. A fundamental insight obtained
in [27], is that the DN-map Λσ is a first order pseudo-differential operator whose
full symbol carries all information of the conductivity σ and its derivatives on the
boundary. In the case of systems, the available results in this context are due to
Joshi-McDowall [15, 20], and Salo-Tzou [25]. In [19], the boundary determination
of the Lamé parameters for an isotropic elasticity system has been investigated.

In this paper, we consider the boundary determination of parameters when the
boundary of the body is non-smooth, but Lipschitz. Under this assumption, the
principal symbol approach in [27, 15] does not directly apply. Instead, we follow
the scheme in [3] to show that the boundary values of the electromagnetic parame-
ters in the time-harmonic Maxwell’s equations can be uniquely determined by the
ideal (noiseless) boundary measurements of electromagnetic fields, formulated as
the admittance map for Maxwell’s equations.

The second goal of the paper is to provide theoretical analysis for reconstructing
the values of the parameters on the boundary assuming corrupted boundary mea-
surements. We consider both inverse problems for electromagnetics and elasticity.
The corruption of the data is usually a result of discretized approximation by real
data with errors. A formulation of such measurements was introduced in [7] for
the Dirichlet-to-Neumann map in solving the Calderón problem, where the random
white noise was modeled by a random perturbation in the energy bilinear form, that
depends on the intensity of the boundary potential and current. Other approaches
in handling noises in boundary measurements can be found in [16, 12, 13, 17]. Based
on our boundary reconstruction result with ideal data for Maxwell’s equations and
[19] for elasticity equation, we adopt the approach in [7] to show that the given type
of Gaussian noises can be filtered using highly concentrated and oscillatory wave-
packets, precisely those used in the ideal reconstruction scheme, when the noise
variance is small. The observation in [7] and our work here inspired another paper
[8] where the authors present a general framework and theory to solve the inverse
problem of recovering the symbol of a pseudo-differential operator from its bilinear
form, corrupted by Gaussian white noise that is modeled as a perturbation. More
detailed exposition of the idea and the insights of the method are summarized in
the following subsections for the two inverse problems individually.

1.1. Maxwell system. We first formulate the inverse problem for Maxwell’s equa-
tions. Let Ω ⊂ R3 be a bounded domain with a Lipschitz boundary ∂Ω. Consider
real-valued functions µ, ε, σ, first in the space L∞(Ω), representing the magnetic
permeability, electric permittivity and electric conductivity, respectively. Further-
more, they satisfy

µ(x) ≥ µ0 > 0, ε(x) ≥ ε0 > 0 and σ(x) ≥ 0, (1)

almost everywhere (a.e.) x ∈ Ω, for some positive constants µ0 and ε0. Suppose
that we have access to the boundary measurements of all electromagnetic waves
that are time-harmonic with angular frequency ω > 0. Then, let (E,H) be an



BOUNDARY DETERMINATION OF ELECTROMAGNETIC AND LAMÉ PARAMETERS 3

electromagnetic field satisfying time-harmonic Maxwell system, either
curl E − iωµH = 0 in Ω,

curl H + iωγE = 0 in Ω,

ν × E = f on ∂Ω,

(2)

or 
curl E − iωµH = 0 in Ω,

curl H + iωγE = 0 in Ω,

ν ×H = g on ∂Ω,

(3)

where γ := ε+iσ/ω. It is known that (2) and (3) are well-posed except at a discrete
set of frequencies. Note that for real parameters (i.e. σ = 0), one needs to consider
either the vacuum of eigenvalues for the Maxwell operator or replace the following
well-defined boundary maps by the Cauchy data set. For the complex parameters
(i.e. σ > 0), there are no real eigenvalues. Throughout this paper, we assume that
ω > 0 is not an eigenvalue of (2) and (3). Then the boundary admittance map ΛAµ,γ
can be defined by

ΛAµ,γ(f) = ν ×H|∂Ω,

where (E,H) ∈ H(curl; Ω) × H(curl; Ω) satisfies the boundary value problem (2).
Here ν ∈ (L∞(∂Ω))3 denotes the unit outer normal vector to ∂Ω and

H(curl; Ω) =
{
u ∈ (L2(Ω))3 | curl u ∈ (L2(Ω))3

}
.

Similarly, one can define the boundary impedance map ΛIµ,γ by

ΛIµ,γ(g) = ν × E|∂Ω,

where (E,H) ∈ H(curl; Ω) × H(curl; Ω) satisfies the boundary value problem (3).
In order to reconstruct γ and µ, we need to use the whole boundary information
ΛAµ,γ and ΛIµ,γ .

The main result for the ideal data case is the unique boundary identifiability of
Lip(Ω)-parameters µ, γ at frequency ω from boundary measurements

ΛAµ,γ ,Λ
I
µ,γ : H−1/2(Div ; ∂Ω)→ H−1/2(Div ; ∂Ω).

See (14) in Section 2 for the definition of H−1/2(Div ; ∂Ω).
The following result contains the boundary determination of the electromagnetic

parameters without noise.

Theorem 1.1 (Boundary identifiability of electromagnetic parameters). Let Ω be
a bounded domain in R3, where the boundary ∂Ω is locally described by the graphs
of Lipschitz functions, and ω > 0. Assume that two sets of parameters µj and γj
for j ∈ {1, 2} belong to Lip(Ω), then we have

(1) Unique determination.

ΛAµ1,γ1 = ΛAµ2,γ2 implies that γ1 = γ2 a.e. on ∂Ω

and

ΛIµ1,γ1 = ΛIµ2,γ2 implies that µ1 = µ2 a.e. on ∂Ω.

(2) Pointwise reconstruction. For almost every P ∈ ∂Ω, there exists an ex-
plicit sequence of localized boundary data {fN}∞N=1 supported around P such
that
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lim
N→∞

i

ω

ˆ
∂Ω

[
ΛAµ,γ(fN |∂Ω)× ν

]
· fN dS = γ(P ) (4)

and

lim
N→∞

i

ω

ˆ
∂Ω

[
ΛIµ,γ(fN |∂Ω)

]
· (fN × ν) dS = µ(P ). (5)

Remark 1. In Theorem 1.1, the conclusion (2) will imply (1) immediately. There-
fore, we only prove (2). Note that the boundary data {fN}∞N=1 stands for electric
and magnetic fields on ∂Ω in (4) and (5), respectively.

As mentioned above, since the boundary ∂Ω is Lipschitz, the principal symbol
approach in [15] does not directly apply. Therefore, we adopt the idea from [3].
However, one of the novelties and key ingredients in [3] is the use of Hardy’s in-
equality which seems not to have a clear counterpart in the problem for Maxwell’s
equations. Instead, we handle the issue by a new technique that involves a duality
argument. See the proof of Theorem 2.1.

Our next result provides the analysis for reconstructing the values of the param-
eters on the boundary assuming corrupted boundary measurements. To be more
specific about the modeling of the noise, we consider a complete probability space
(Π,H,P), and a countable family {Xα : α ∈ N2} of independent complex Gaussian
random variables Xα : $ ∈ Π 7→ Xα($) ∈ C such that

EXα = 0, E(XαXα) = 1, E(XαXα) = 0 ∀α ∈ N2, (6)

with standard expectation of a random variable defined by

EX =

ˆ
Π

XdP.

In [7], the noisy data for the Calderón problem is defined as

Nσ(f, g) =

ˆ
∂Ω

Λσfg dS +
∑
α∈N2

(f |eα1
)(g|eα2

)Xα f, g ∈ H1/2(∂Ω),

where α = (α1, α2) and {en : n ∈ N} is an orthonormal basis of L2(∂Ω) and (φ|ψ)
denotes the inner product in L2(∂Ω,C). Here Λσ denotes the Dirichlet-to-Neumann
map from H1/2(∂Ω) to H−1/2(∂Ω)

Λσ : f 7→ ν · σ∇u|∂Ω,

where u is the solution to ∇ · (σ∇u) = 0 and u|∂Ω = f , and ν is the unit outer
normal vector on ∂Ω. It is shown in [7] that at almost every point P ∈ ∂Ω, with
a single realization of Nσ at explicit oscillatory boundary inputs fN (such as the
traces of (23)) (N ∈ N), the boundary value of σ at the point P can be recovered
almost surely by

lim
N→∞

Nσ(fN , fN ) = σ(P ).

Note that the noise introduced in the energy form for the Dirichlet-to-Neumann
map above is modeled on L2(∂Ω). In the case of Maxwell’s equations, we will see
that similar type of noise could be introduced at two different levels: the H−1(∂Ω)-
level which guaranties decay of ‖fN‖(H−1(∂Ω))3 in Lipschitz domains, and L2(∂Ω)-
level where there is not decay of ‖fN‖(L2(∂Ω))3 and we need extra regularity for ∂Ω.
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Starting by defining the corrupted data at the H−1(∂Ω)-level:

NA
µ,γ(f, g) :=

ˆ
∂Ω

(ΛAµ,γ(f)× ν) · g dS +
∑
α∈N2

(f |eα1
)(g|eα2

)Xα

N I
µ,γ(f, g) :=

ˆ
∂Ω

ΛIµ,γ(f) · (g × ν) dS +
∑
α∈N2

(f |eα1
)(g|eα2

)Xα

(7)

for f, g ∈ H−1/2(Div ; ∂Ω) ⊂ (H−1(∂Ω))3, where {en : n ∈ N} is an orthonormal
basis of the Hilbert space (H−1(∂Ω))3 and (φ|ψ) here denotes the inner product in
(H−1(∂Ω))3. Then we have the following reconstruction formula for the Maxwell
system with corrupted data.

Theorem 1.2. Let Ω ⊂ R3 be a bounded Lipschitz domain and µ, ε, σ be Lipschitz
continuous functions satisfying (1). Let NA

µ,γ and N I
µ,γ be the quadratic form given

by (7), then for almost every P ∈ ∂Ω, one has

(1) Unique determination. There exists explicit boundary data {fN}∞N=1 in

the space H−1/2(Div ; ∂Ω) such that

lim
N→∞

NA
µ,γ(fN , fN ) = γ(P ), lim

N→∞
N I
µ,γ(fN , fN ) = µ(P )

almost surely.
(2) Rates of convergence. There exist positive constants Cγ (depending on ∂Ω

and bounds for γ) and Cµ (depending on ∂Ω and bounds for µ), such that, for
every 0 < θ < 1 and ε > 0, we have

P
{
|NA

µ,γ(fN , fN )− γ(P )| ≤ CγN−θ/2
}
≥ 1− ε for any N ≥ cε−

1
1−θ ,

where the constant c only depends on C∂Ω and θ. A similar estimate holds for
µ, that is,

P
{
|N I

µ,γ(fN , fN )− µ(P )| ≤ CµN−θ/2
}
≥ 1− ε for any N ≥ cε−

1
1−θ ,

where the constant c > 0 only depends on C∂Ω and θ.

Next we consider the problem with error modeled at the L2(∂Ω)-level. That is, in
the definition (7), we choose {en : n ∈ N} to be an orthonormal basis of (L2(∂Ω))3

with the inner product (φ|ψ) =
´
∂Ω
φ ·ψdS and f, g ∈ (L2(∂Ω))3. To make rigorous

sense of this definition, we will assume in this discussion that the boundary of the
domain is locally defined by the graph of C1,1 functions. In this case, the boundary
impedance and admittance maps are well-defined for f, g ∈ H1/2(Div , ∂Ω). Unlike
the previous case of (H−1(∂Ω))3 perturbations, the norm ‖fN‖(L2(∂Ω))3 does not
decay as N increases. We actually have ‖fN‖(L2(∂Ω))3 ≤ C∂Ω where C∂Ω is a
constant depending on the boundary. This is similar to the reconstruction of the
normal derivative of the conductivity with corrupted data in [7]; and similarly,
our family of solutions can filter out the noise when averaged with respect to the
parameter N1/2. We then obtain the following result.

Theorem 1.3. Let Ω ⊂ R3 be a bounded domain whose boundary can be defined by
the graphs of C1,1-functions, and µ, ε, σ be Lipschitz continuous functions satisfying
(1). Let NA

µ,γ and N I
µ,γ be the quadratic form given by (7) at the L2(∂Ω)-level. Then

for every P ∈ ∂Ω, there exists an explicit family {ft : t ≥ 1} in H1/2(Div , ∂Ω)
such that for N ∈ N\{0} and TN := N3+3θ/2 with θ ∈ (0, 1),
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(1) Unique determination.

lim
N→∞

1

TN

ˆ 2TN

TN

NA
µ,γ(ft2 , ft2) dt = γ(P ), lim

N→∞

1

TN

ˆ 2TN

TN

N I
µ,γ(ft2 , ft2) dt = µ(P )

almost surely.
(2) Rates of convergence. Set

Y AN =
1

TN

ˆ 2TN

TN

NA
µ,γ(ft2 , ft2) dt, Y IN =

1

TN

ˆ 2TN

TN

N I
µ,γ(ft2 , ft2) dt.

There exist positive constants Cγ > 0 (depending on ∂Ω and bounds for γ) and
Cµ > 0 (depending on ∂Ω and bounds for µ), such that, for every 0 < θ < 1
and ε > 0, we have

P
{
|Y AN − γ(P )| ≤ CγN−θ/2

}
≥ 1− ε for any N ≥ cγε−

1
1−θ ,

and

P
{
|Y IN − µ(P )| ≤ CµN−θ/2

}
≥ 1− ε for any N ≥ cµε−

1
1−θ ,

where the constants cγ and cµ depend on θ, ∂Ω, lower bounds for ε0 and µ0,
and upper bounds for ‖γ‖Lip(Ω) and ‖µ‖Lip(Ω), respectively.

Remark 2. The reconstruction in Theorem 1.2 can only be ensured for almost
every point at the boundary because of the regularity of the domain. However, the
reconstruction formula of Theorem 1.3 holds for every point since the domain is
assumed to have a C1,1 boundary.

If we compare Theorem 1.2 and Theorem 1.3 with the results in [7] for the
reconstruction of the conductivity and its normal derivative at the boundary, we can
see a couple of similarities. When modeled the noise at the H−1-level, no averaging
is required for the reconstruction, as it happened in [7] for the reconstruction of
the conductivity. In [7], this was a consequence of the rate of concentration of the
supports of the family {fN} around the point to be reconstructed. However, in
our Theorem 1.2 this is due to the regularizing effect of the covariance operator
associated to the noise in the H−1(∂Ω)-level. On the other hand, when modeling
the noise at the L2(∂Ω)-level, we require to perform an average in the parameter√
N (since the radius of the support of fN shrinks as 1/

√
N) to overcome the

lack of decay of ‖fN‖(L2(∂Ω))3 . This was exactly the same situation as in [7] for
the reconstruction of the normal derivative of the conductivity at the boundary. In
these situations, we have to analyze an oscillatory integral, and isolate appropriately
the stationary points. These are the contents of Lemma 3.5. Note that the decaying
rate in this lemma suggests that we might still obtain decays in average even if the
norms of fN are increasing as N grows. Consequently, errors modeled in spaces of
higher regularities might be potentially filtered.

1.2. Elasticity system. For the second system, we consider the boundary deter-
mination of the Lamé parameters for the isotropic elasticity equations. Let Ω ⊂ R3

be a bounded domain, λ(x) and µ(x) be the Lamé parameters satisfying the ellip-
ticity condition

µ(x) > 0 and 3λ(x) + 2µ(x) > 0 for all x ∈ Ω. (8)
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The boundary value problem for the isotropic elasticity system is given by{
(∇ · (C∇u))i =

∑3
j,k,l=1

∂
∂xj

(
Cijkl

∂
∂xl

uk

)
= 0 (i = 1, 2, 3) in Ω,

u = f on ∂Ω,
(9)

where u = (u1, u2, u3) is the displacement vector, C = (Cijkl)1≤i,j,k,l≤3 and

Cijkl = λδijδkl + µ(δikδjl + δilδjk) for 1 ≤ i, j, k, l ≤ 3 (10)

is the isotropic elastic four tensor with Kronecker delta δij . One can easily see that
Cijkl given by (10) satisfies the major and minor symmetries, i.e.,

Cijkl = Cklij = Cjikl, for 1 ≤ i, j, k, l ≤ 3.

The Dirichlet-to-Neumann (DN) map for the isotropic elasticity system is defined
by

ΛC : (H1/2(∂Ω))3 → (H−1/2(∂Ω))3 with (ΛCf)i =

3∑
j,k,l=1

νjCijkl
∂uk
∂xl

∣∣∣∣∣∣
∂Ω

(11)

for i = 1, 2, 3, where u ∈ (H1(Ω))3 is the solution to (9) and ν = (ν1, ν2, ν3) is the
unit outer normal on ∂Ω. The inverse problem is whether the elastic tensor C is
uniquely determined by ΛC, and to calculate C of ΛC if C is determined by ΛC.
Note that the global uniqueness for the isotropic elasticity system stays open for
the three-dimensional case and it was solved in [14] for the two-dimensional case.

The boundary determination of the zeroth order and higher order Lamé moduli
was studied by [28] and [19], respectively. In other words, given any P ∈ ∂Ω (when
∂Ω and the Lamé moduli are sufficiently smooth), one can derive reconstruction
formulas for the Lamé moduli λ and µ and their derivatives at P ∈ ∂Ω, from the
localized DN map. Now, our goal is to give a similar reconstruction algorithm for
the Lamé parameters with corrupted data.

Due to the existence of elliptic regularity theory for this system, the corrupted
data for the elastic system is similar to that of the scalar conductivity equation
discussed in [7], namely, the random noise is introduced at (L2(∂Ω))3 vector level
by introducing the bilinear form with corrupted data

NC(f, g) :=

ˆ
∂Ω

ΛCf · g dS +
∑
α∈N2

(f |eα1
)(g|eα2

)Xα,

for f, g ∈ (H1/2(∂Ω))3, where {en : n ∈ N} is an orthonormal basis of the Hilbert
space (L2(∂Ω))3 and (φ|ψ) here denotes the inner product in (L2(∂Ω))3. Then our
results for the elasticity system is as follows:

Theorem 1.4. Let Ω ⊂ R3 be a bounded Lipschitz domain. Let C be a Lipschitz
continuous elastic four tensor in Ω. Then for almost every P ∈ ∂Ω, one has

(1) Unique determination. There exists an explicit boundary data {fN}∞N=1

in (H1/2(∂Ω))3 such that

lim
N→∞

NC(fN , fN ) = Z(P )

almost surely, where Z(P ) = (Zij)1≤i,j≤3(P ) with Zij = Zji for 1 ≤ i, j ≤ 3,
and
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Zii =
µ

λ+ 3µ

(
2(λ+ 2µ)− (λ+ µ)ι2i

)
,

Zij =
µ

λ+ 3µ

(
− (λ+ µ)ιiιj +

√
−1(−1)k2µ ιk

)
, 1 ≤ i < j ≤ 3

(12)

with (ι1, ι2, ι3) = (ω2,−ω1, 0) and the index k ∈ N satisfies the condition
1 ≤ k ≤ 3, k 6= i, j.

(2) Rates of convergence. There exists a constant C > 0, independent of N ,
such that, for every 0 < θ < 1 and ε > 0, we have

P
{
|NC(fN , fN )− Z(P )| ≤ CN−θ/2

}
≥ 1− ε for any N ≥ cε−

1
1−θ , (13)

where the constant c > 0 depends only on C∂Ω and θ.

Theorem 1.4 shows that when the domain Ω is Lipschitz and C is Lipschitz
continuous, then one can reconstruct the Lamé moduli at almost every boundary
point P ∈ ∂Ω in a constructive way.

1.3. Outline. The rest of this paper is organized as follows. The reconstruction
formulas for Lipschitz parameters µ and γ in Maxwell’s equations on a Lipschitz
boundary ∂Ω are given in Section 2. In Section 3, we analyze the reconstruction with
corrupted data by random white noise for the Maxwell equations. The analysis for
the reconstruction of the Lipschitz Lamé moduli for the isotropic elasticity system
with corrupted data is given in Section 4.

2. Boundary determination of electromagnetic parameters. First, let us
define several function spaces and notations.

2.1. Preliminaries. Let us begin with some definitions of function spaces, where
the impedance map is well-defined. For a bounded Lipschitz domain Ω, we adopt
Tartar’s definition (see [29] or [6]) of the space

H−1/2(Div ; ∂Ω) :=
{
u ∈ (H−1/2(∂Ω))3 | ∃ η ∈ H−1/2(∂Ω), s.t.,ˆ
∂Ω

u · ∇φ dS =

ˆ
∂Ω

ηφ dS for φ ∈ H2(Ω)
}
,

(14)

where (H−1/2(∂Ω))3 is the dual space of (H1/2(∂Ω))3. This implies in a weak sense
that η = −Div u, where Div denotes the surface divergence, and that ν · u|∂Ω = 0,
based on the identity for u smooth

−
ˆ
∂Ω

(Div u)φ dS =

ˆ
∂Ω

u · ∇φ dS −
ˆ
∂Ω

(u · ν)(∇φ · ν) dS.

We will also define in the same spirit the space for the surface scalar curl

H−1/2(Curl ; ∂Ω) :=
{
u ∈ (H−1/2(∂Ω))3 | ∃ ξ ∈ H−1/2(∂Ω), s.t.,ˆ
∂Ω

(ν × u) · ∇φ dS =

ˆ
∂Ω

ξφ dS for φ ∈ H2(Ω)

and

ˆ
∂Ω

u · ∇ψ dS = 0 for ψ ∈ H2(Ω) ∩H1
0 (Ω)

}
.

(15)

Note that the first condition implies in the weak sense that ξ = −Curlu, where Curl
denotes the surface scalar curl, and the second condition in the definition implies
weakly the tangentiality ν · u|∂Ω = 0.
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Moreover, H−1/2(Curl ; ∂Ω) is the dual of H−1/2(Div ; ∂Ω). It is then shown in
[6, 29] that the tangential trace map

τt : H(curl ; Ω)→ H−1/2(Div ; ∂Ω)

u 7→ ν × u|∂Ω

and the projection map

πt : H(curl ; Ω)→ H−1/2(Curl ; ∂Ω)

u 7→ (ν × u|∂Ω)× ν

are both surjective.
In order to reconstruct the values of the parameters, we begin with the following

energy identity, which is obtained by integration by parts

i

ω

ˆ
∂Ω

(ν × (ν ×H)) · (ν × E) dS =

ˆ
Ω

γ|E|2 − µ|H|2 dx (16)

for the solution (E,H) ∈ H(curl ; Ω)×H(curl ; Ω) to the Maxwell’s equations. Here
the boundary integral is the parity of H−1/2(Div ; ∂Ω) and H−1/2(Curl ; ∂Ω).

In the following we use d to denote the dimension number so one can trace the
dependence of the convergence rate on d. In all cases considered in this paper
including Maxwell system and elasticity system, d = 3. We denote by B(x, r) the
ball centered at x of radius r > 0 and adopt the coordinate notation x = (x′, xd) ∈
Rd−1×R in d dimensions. Since we will use some results of Brown [3], we will follow
his notation.

Given a Lipschitz domain Ω ⊂ Rd, for each P := (p′, pd) ∈ ∂Ω, we consider a
change of variable that flattens the boundary near P

(z′, zd) = F (x′, xd) =
(
x′ + p′, xd + φ(x′ + p′)

)
, (17)

where φ : Rd−1 → R is Lipschitz such that

B(P, ρ) ∩ ∂Ω = B(P, ρ) ∩ {zd = φ(z′)}
B(P, ρ) ∩ Ω = B(P, ρ) ∩ {zd > φ(z′)}

for some ρ > 0. Let Ω̃ = F−1(Ω) ⊂ Rd and ∂Ω̃ be its boundary. There exists a
r > 0 such that

B(0, 2r) ∩ {xd = 0} ⊂ F−1
(
B(P, ρ) ∩ ∂Ω

)
⊂ ∂Ω̃.

Since we are interested in the coefficients at the point P , we focus on reconstructing
µ(F (0, 0)) = µ(p′, φ(p′)) and γ(F (0, 0)) = γ(p′, φ(p′)).

Denote

M(x) := DF−1(F (x)) =

(
dxi
dzj

)
i,j

(F (x)). (18)

By the change of coordinates (17), we have the right hand side of (16) to be

I :=

ˆ
Ω

γ|E|2 − µ|H|2 dz =

ˆ
Ω̃

(γ̃Ẽ) · Ẽ − (µ̃H̃) · H̃ dx, (19)

where

µ̃(x) := µ(F (x))M(x)M(x)t, γ̃(x) := γ(F (x))M(x)M(x)t,

and

Ẽ(x) := (M(x)t)−1E(F (x)), H̃(x) := (M(x)t)−1H(F (x)).
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Furthermore, the electromagnetic field (Ẽ, H̃) (defined as the pull-back of (E,H)

by F : Ω̃→ Ω) satisfies the Maxwell’s equations (in the weak sense)

curl Ẽ − iωµ̃H̃ = 0, curl H̃ + iωγ̃Ẽ = 0 in Ω̃. (20)

This last point can be justified by checking that curl Ẽ(x) = M(x)(curl E)(F (x)).
We now list a couple of properties of the parameters that are required to apply

some results of Brown [3]. First, let us note that µ, γ ∈ Lip(Ω) satisfy the hypothesis
(H1) in [3], that is,

|µ(F (x′, xd))− µ(F (x′, 0))|+ |γ(F (x′, xd))− γ(F (x′, 0))| . |xd| (21)

for all |x′| < 2r. Regarding the hypothesis H2 in [3], note that

s1−d
ˆ
|y′|<s

|γ̃(0, 0)− γ̃(y′, 0)|2 dy′ + s1−d
ˆ
|y′|<s

|µ̃(0, 0)− µ̃(y′, 0)|2 dy′

. s2 + s1−d
ˆ
|y′|<s

|∇′φ(y′ + p′)−∇′φ(p′)|2 dy′,

where the limit of the last term on the right-hand side vanishes, when s goes to
zero, for almost every p′ by the Lebesgue differentiation theorem. Here we denote
∇′φ := (∂1φ, ∂2φ)t.

Our reconstruction method only will work for points P ∈ ∂Ω so that

lim
s→0

s1−d
ˆ
|y′|<s

|∇′φ(y′ + p′)−∇′φ(p′)|2 dy′ = 0 (22)

for the corresponding φ and p′. As pointed out before, for almost every point in
P ∈ ∂Ω its corresponding limit in (22) vanishes.

2.2. Reconstruction of γ. We first give an explicit reconstruction formula of γ
in an admissible point P ∈ ∂Ω from the knowledge of the admittance map ΛAµ,γ .
Recall in [3], a family of functions with special decaying property is constructed
as the input of the Dirichlet-to-Neumann map for ∇ · σ∇ to reconstruct σ. More
specifically, this family was given by

vN (y) = η(N1/2|y′|)η(N1/2yd)e
N(iα−~ed)·y, (23)

where ~ed = (0, · · · , 0, 1) ∈ Rd and η : R → [0, 1] is a smooth cutoff function which
takes value 1 in B(0, 1/2) and 0 outside B(0, 1), the vector α ∈ Rd can be chosen
such that

|M(0)tα| = |M(0)t~ed|,
α ·M(0)M(0)t~ed = 0.

(24)

An explicit choice of α is given in (37).
We will make an essential use of the gradient fields {∇vN}N . More particularly

we will choose (E,H) so that their pull-back (Ẽ, H̃) = (∇vN +w1, w2) with w1 and
w2 solving 

curlw1 − iωµ̃w2 = 0 in Ω̃,

curlw2 + iωγ̃w1 = −iωγ̃∇vN in Ω̃,

ν × w1 = 0 on ∂Ω̃.

(25)

Note that Ω̃ is not necessarily locally described by the graph of Lipschitz functions,
so in principle, the theory of well-posedness for (25) should be revisited. In our

particular case, the situation is simpler since Ω̃ is the pull-back of a domain whose
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boundary is locally described by the graph of a Lipschitz function. Therefore, it is

enough to use the map F to obtain (w1, w2) in Ω̃ from the corresponding fields in

Ω. We will be solving in Ω̃ in the rest of the paper, and it will always be justified
through the map F .

The corresponding energy (19) for (Ẽ, H̃) is then given by

I =

ˆ
Ω̃

γ(F (y))∇vN ·MM t∇vN dy

+

ˆ
Ω̃

γ(F (y))
[
2Re(∇vN ·MM tw1) + w1 ·MM tw1

]
dy

+

ˆ
Ω̃

µ(F (y))w2 ·MM tw2 dy.

(26)

On the other hand, the tangential boundary condition of the electric field is
transformed according to

ν × E(F (x)) = DF (x)ν̃ × Ẽ(x),

where ν̃(x) = DF (x)tν(F (x)). For N−1/2 < 2r the support of ∇vN is contained on
{xd = 0} ∩B(0, 2r), and the tangential boundary condition there becomes

ν × E(F (x′, 0)) = DF (x′, 0)
[
~ed ×∇vN (x′, 0)

]
. (27)

Since H1 and H2 in [3, Lemma 1] are satisfied, the first term of I satisfies´
Ω̃
γ(F (y))∇vN ·MM t∇vN dy

N
3−d
2

→ γ(p′, φ(p′))(1 + |∇′φ(p′)|2)

ˆ
Rd−1

η(|x′|)2 dx′, (28)

as N →∞.
It turns out that this first term dominates, hence provides the reconstruction of

γ(F (0)) knowing φ and η.

Theorem 2.1. Suppose Ω ⊂ Rd (d = 3) is a bounded Lipschitz domain. Let
µ, ε, σ ∈ Lip(Ω) satisfy (1). Let P ∈ ∂Ω be an admissible point with F as in (17).
We define

fN (z) := c
−1/2
0 (M(y))t(ν(y)×∇vN (y))|y=F−1(z), (29)

where

c0 = (1 + |∇′φ(p′)|2)

ˆ
Rd−1

η(|x′|)2 dx′,

and M and vN are given by (18) and (23), respectively. Then

I(fN |∂Ω) :=
i

ω

ˆ
∂Ω

[
ΛAµ,γ(fN |∂Ω)× ν

]
· fN dS → γ(P )

as N →∞.

Proof. To show that the last two terms in (26) are lower order terms, it suffices to

show that the (L2(Ω̃))3-norms of w1 and w2 are o(1).
First, we need to consider the dual of the standard regularity estimate for the

Maxwell’s equations, targeting the L2-norm of the solution.
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Notice that the elliptic condition for the parameters is preserved in the following

dual problem: Given (G1, G2) ∈ (L2(Ω̃))6, except for a discrete set of frequencies,

there exists a unique solution (u1, u2) ∈ H(curl ; Ω̃)×H(curl ; Ω̃) to
curlu1 + iωµ̃u2 = G1 in Ω̃,

curlu2 − iωγ̃u1 = G2 in Ω̃,

ν × u1 = 0 on ∂Ω̃.

(30)

Furthermore, we have

‖u1‖H(curl ;Ω̃) + ‖u2‖H(curl ;Ω̃) . ‖G1‖(L2(Ω̃))3 + ‖G2‖(L2(Ω̃))3 . (31)

Then by integration by parts (duality), we have∣∣∣∣ˆ
Ω̃

w1 ·G2 + w2 ·G1 dy

∣∣∣∣ =

∣∣∣∣ˆ
Ω̃

(−iωγ̃∇vN ) · u1 dy

∣∣∣∣. (32)

It then suffices to show that the right hand side is bounded by o(1)‖u1‖H(curl ;Ω̃)

since this would imply, using (31),

‖w1‖(L2(Ω̃))3 + ‖w2‖(L2(Ω̃))3 ≤ o(1).

It is worth noticing that in [3], Brown used Hardy’s inequality to show a similar
estimate

‖∇ · γ̃∇vN‖H−1(Ω̃) = o(1).

The main novelty in our approach is to replace the use of Hardy’s inequality by a
duality argument involving the possibility of writing γ̃(0)∇eN as the curl of certain
vector field LN .

Start by writing vN := ψNeN with

ψN (y) := η(N1/2|y′|)η(N1/2yd), eN (y) = eN(iα−~ed)·y.

We will estimate the three terms of

γ̃∇vN (y) = γ̃(y)∇ψNeN +
(
γ̃(y)− γ̃(0)

)
ψN∇eN + γ̃(0)ψN∇eN . (33)

For the first two terms, we only need to control their L2-norms by duality. Then
we have

‖γ̃∇ψNeN‖2(L2(Ω̃))3

. ‖∇ψNeN‖2(L2(Ω̃))3

= N
2−d
2

ˆ
Rd
e−2N1/2yd(η′(|y′|)2η(yd)

2 + η(|y′|)2η′(yd)
2) dy

. N
2−d
2

ˆ 1

0

e−2N1/2yd + e−2N1/2ydη′(yd)
2 dyd

. N
2−d
2

(
N−1/2 +O(e−N

1/2

)
)

= O(N
1−d
2 ) = O(N−1).

(34)

Similarly, we consider the square of L2-norm of the second term

N2

ˆ
Ω̃

|(γ̃(y)− γ̃(0)) (iα− ~ed)|2 ψ2
Ne
−2Nyd dy

. N2

ˆ
B(0,N−1/2)×R+

|γ̃(y)− γ̃(0)|2 e−2Nyd dy,
(35)
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where B(0, N−1/2) denotes the ball in Rd−1 centered at 0 and radius N−1/2. It is
convenient to write,

γ̃(y)− γ̃(0)

=
(
γ(F (y))− γ(F (0))

)
M(y)M(y)t + γ(F (0))

(
M(y)M(y)t −M(0)M(0)t

)
.

Thus, the right-had side of (35) can be bounded by

N2

ˆ
B(0,N−1/2)×R+

|y′|2e−2Nyd dy

+N2

ˆ
B(0,N−1/2)×R+

|∇′φ(y′ + p′)−∇′φ(p′)|2e−2Nyd dy.

(36)

By the (22), we have that the previous sum is o(1). It remains to prove∣∣∣∣ˆ
Ω̃

−iωγ̃(0)ψN∇eN · u1 dx

∣∣∣∣ ≤ o(1)‖u1‖H(curl ;Ω̃).

The idea will be to write γ̃(0)∇eN as the curl of certain vector field LN . First, we
state the explicit expression of the matrices M and MM t at 0:

M(0) =

(
Id−1 0

−∇′φ(p′)t 1

)
, M(0)M t(0) =

(
Id−1 −∇′φ(p′)

−(∇′φ(p′))t 1 + |∇′φ(p′)|2
)
.

Since α is chosen such that β = M(0)t(iα − ~ed) satisfies β · β = 0, we have that
γ̃(0)∇eN is divergence free, namely,

∇ · (γ̃(0)∇eN (y)) = 0.

Therefore, there must exist a vector field LN = LN (y) such that

∇× LN = γ̃(0)∇eN = Nγ̃(0)(iα− ~ed)eN .

Next, look for such an LN . We write an ansatz

LN = γ(F (0))(a+ ib)eN

and find a, b ∈ Rd satisfying the following algebraic equations

~ed × a+ α× b = M(0)M(0)t~ed,

α× a− ~ed × b = M(0)M(0)tα.

It can be verified that in R3, the choice

a = α =


1 + |∇′φ|2

|∇′φ|
∇′φ

|∇′φ|

 (p′), b =


− 1

|∇′φ|
∂2φ

1

|∇′φ|
∂1φ

1

 (p′), (37)

where ∇′φ := (∂1φ, ∂2φ)t, qualifies and satisfies η ·η = 0 and η ·η = 2(1+|∇′φ(p′)|2).
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Finally, ˆ
Ω̃

(ψN γ̃(0)∇eN ) · u1 dy

=

ˆ
Ω̃

ψN (∇× LN ) · u1 dy

=

ˆ
Ω̃

LN · (ψN∇× u1 +∇ψN × u1) dy

.
(
‖ψNLN‖(L2(Ω̃))3 + ‖∇ψN · LN‖L2(Ω̃))

)
‖u‖H(curl ;Ω̃),

(38)

where we have used that ν × u1 = 0 on ∂Ω̃. It is then easy to verify, similar to that
for (34), ‖∇ψN · LN‖L2(Ω̃) = o(1). For the other term,

‖ψNLN‖2(L2(Ω̃))3
.
ˆ

Ω̃

η(N1/2|y′|)2η(N1/2yd)
2e−2Nyd dy

= N−
d
2

ˆ
Rd
η(|y′|)2η(yd)

2e−2N1/2yd dy

= O(N
−1−d

2 ) = O(N−2).

This completes the proof.

2.3. Reconstruction of µ. In order to reconstruct µ, the idea is to let the magnetic
energy, namely

´
Ω
µ|H|2 dz, dominate. By symmetry of the equations, H should be

chosen roughly ∇vN , for example, by equating them at the boundary. From now
on, we utilize the impedance map, that is, the map

ΛIµ,γ : ν ×H|∂Ω 7→ ν × E|∂Ω,

then similarly to the previous section, we define our indicator functional being

J(fN |∂Ω) :=
i

ω

ˆ
∂Ω

[
ΛIµ,γ(fN |∂Ω)

]
· (fN × ν) dS, (39)

where fN = ν ×∇vN as before. This implies

J(fN |∂Ω)

=

ˆ
Ω

µ|H|2 − γ|E|2 dx

=

ˆ
Ω̃

µ(F (y))∇vN ·MM t∇vN dy

+

ˆ
Ω̃

µ(F (y))
[
2Re(∇vN ·MM tw2) + w2 ·MM tw2

]
dy

−
ˆ

Ω̃

γ(F (y))w1 ·MM tw1 dy,

where (w1, w2) := (Ẽ, H̃ −∇vN ) in this section and satisfies
curlw1 − iωµ̃w2 = iωµ̃∇vN in Ω̃,

curlw2 + iωγ̃w1 = 0 in Ω̃,

ν × w2 = 0 on ∂Ω̃.

(40)
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Following the proof of Theorem 2.1, the equation (32) is replaced by∣∣∣∣ˆ
Ω̃

w1 ·G2 + w2 ·G1 dy

∣∣∣∣ =

∣∣∣∣ˆ
Ω̃

(−iωµ̃∇vN ) · u2 dy

∣∣∣∣ (41)

for any (G1, G2) ∈ (L2(Ω̃))6, where (u1, u2) is the unique solution to
curlu1 + iωµ̃u2 = G1 in Ω̃,

curlu2 − iωγ̃u1 = G2 in Ω̃,

ν × u2 = 0 on ∂Ω̃.

Then it is left to show similarly∣∣∣∣ˆ
Ω̃

(−iωµ̃∇vN ) · u2 dy

∣∣∣∣ = o(1)‖u2‖H(curl ;Ω̃).

The proof is the same as in Theorem 2.1. In particular, the integration by parts in
(38) is still valid in this case using the boundary condition ν × u2|∂Ω̃ = 0.

As a result, we obtain the reconstruction formula for µ.

Theorem 2.2. Suppose that Ω, µ, ε, σ, P ∈ ∂Ω and fN all satisfy the assumptions
in Theorem 2.1. Then we have

lim
N→∞

J(fN |∂Ω) = µ(P ),

where J(fN |∂Ω) is defined by (39).

Proof of Theorem 1.1. By using all results in Section 2, we can prove Theorem 1.1
immediately.

3. Boundary determination of electromagnetic parameters with corrupted
data. The main objective of this part is to stably identify boundary values of the
unknown electromagnetic coefficients from the boundary measurement corrupted
by errors, modeled and handled similarly to that in [7] for the Calderón problem.

First, we give a description of the modeling for the random white noise, first
introduced in [7] for the Calderón problem, with modifications adopted to the system
of Maxwell’s equations with our electromagnetic boundary maps. In particular, the
random white noise is introduced to the boundary data on the H−1(∂Ω)-level as
well as on the L2(∂Ω) one.

3.1. Noise modeled on H−1(∂Ω). We start with the fact that (H−1(∂Ω))3 is a
Hilbert space and let {en : n ∈ N} be an orthonormal basis of (H−1(∂Ω))3. Recall
that our bilinear form with corrupted data are defined as

NA
µ,γ(f, g) =

ˆ
∂Ω

(ΛAµ,γ(f)× ν) · g dS +
∑
α∈N2

(f |eα1
)(g|eα2

)Xα (42)

N I
µ,γ(f, g) =

ˆ
∂Ω

ΛIµ,γ(f) · (g × ν) dS +
∑
α∈N2

(f |eα1
)(g|eα2

)Xα (43)

for f, g ∈ H−1/2(Div ; ∂Ω) ⊂ (H−1(∂Ω))3, where α = (α1, α2) ∈ N2 and (φ|ψ)
denotes the inner product in (H−1(∂Ω))3.

Then we have the following lemma after replacing L2(∂Ω) by (H−1(∂Ω))3 in [7,
Lemma 2.3].
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Lemma 3.1. There exists a complete probability space (Π,H,P), and a countable
family {Xα : α ∈ N2} of independent complex random variables satisfying (6).
Moreover, for every f, g ∈ (H−1(∂Ω))3 we have that

E

∣∣∣∣∣∑
α∈N2

(f |eα1)(g|eα2)Xα

∣∣∣∣∣
2

= ‖f‖2(H−1(∂Ω))3‖g‖
2
(H−1(∂Ω))3 .

Since the (H−1(∂Ω))3-norm is bounded by the H−1/2(Div , ∂Ω)-norm, immedi-
ately, we obtain the boundedness of the operators NA

µ,γ and N I
µ,γ from the space

H−1/2(Div ; ∂Ω)×H−1/2(Div ; ∂Ω) to L2(Π,H,P). It gives that
∣∣NA

µ,γ(f, g)
∣∣, ∣∣N I

µ,γ(f, g)
∣∣

are finite almost surely. Moreover, we have the following decay for the covariance.

Lemma 3.2. The following estimate holds

E

∣∣∣∣∣∑
α∈N2

(fN |eα1
)(fN |eα2

)Xα

∣∣∣∣∣
2

= ‖fN‖4(H−1(∂Ω))3 ≤ C∂ΩN
−2. (44)

Proof. The first equality directly comes from Lemma 3.1 and the second inequality
is obtained as follows. From (29), one has the equivalent formula

fN (z) = c
−1/2
0 ν(z)×WN (z), z ∈ ∂Ω,

where

WN (z) := (F−1)∗(∇vN ) = M(y)t∇yvN (y)|y=F−1(z).

Here, ν(z) is the unit outer normal to ∂Ω while ν(y) in (29) is the unit outer normal

to ∂Ω̃.
It is easy to verify

∇z ×WN (z) = 0.

For ϕ ∈ (H1(∂Ω))3,ˆ
Ω

∇×WN · ϕe −WN · ∇ × ϕe dz =

ˆ
∂Ω

fN · ϕ dS,

where ϕe ∈ (H3/2(Ω))3 is the extension such that ϕ = ν×ϕe|∂Ω×ν. The first term
of the left hand side vanishes by above. For the second term of the left hand side,
after a change of variable and passing the derivative, we haveˆ

∂Ω

fN · ϕ dS =−
ˆ

Ω

WN · ∇ × ϕ dz

=−
ˆ

Ω

(
∂y

∂z

)t (
∇vN ◦ F−1

)
(z) · (∇z × ϕ(z)) dz

=−
ˆ

Ω̃

∇vN (y) · (∇y × ϕ̃(y)) det

(
∂z

∂y

)
dy

=−
ˆ
∂Ω̃

vNν · (∇y × ϕ̃(y)) dS,

where ϕ̃ is the push-forward of ϕ by F given by

ϕ̃ = (M t)−1(y)ϕ(F (y)).

Finally, it is not hard to see thatˆ
∂Ω

fN · ϕ dS ≤ C‖vN‖(L2(∂Ω̃))3‖ϕ‖(H1(∂Ω))3 .
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Therefore,

‖fN‖(H−1(∂Ω))3 ≤ C‖vN‖(L2(∂Ω̃))3 ≤ C‖vN‖(H1/2(Ω̃))3 ≤ C∂ΩN
−1/2

which gives (44).

We state one crucial result from [7] which also works for the vector-valued func-
tions in this paper. This result will lead to the unique determination and the rate of
convergence of parameters for both Maxwell and elasticity systems with corrupted
data.

Proposition 1 (Lemma 2.5 in [7]). Let (X,Σ,m) be a measure space and {fn}∞n=1

be a vector-valued sequence in (Ls(X,Σ,m))3 for s ∈ [1,∞). Assume that fn → f in
(Ls(X,Σ,m))3 for some f ∈ (Ls(X,Σ,m))3 and there exists a sequence of positive
numbers {λn}∞n=1 ⊂ R+ with λn → 0 as n→∞ such that

∞∑
n=1

1

λsn

ˆ
X

|fn − f |sdm <∞.

Then one has fn → f for almost every x ∈ X.
Suppose furthermore that m(X) < ∞. Then, for every ε > 0, there exists a

n0 ∈ N such that

m{x ∈ X : |fn(x)− f(x)| ≤ λn} ≥ m(X)− ε, for n ≥ n0.

Remark 3. The n0 in the second part of the statement should satisfy
∞∑

n=n0

1

λsn

ˆ
X

|fn − f |s dm ≤ ε.

Proof of Theorem 1.2. The part (1) is a consequence of the first part of Proposition
1 to the sequence

{∑
(fN |eα1

)(fN |eα2
)Xα : N ∈ N\{0}

}
with λN = N−θ.

To prove part (2) of Theorem 1.2, again we take λN = N−θ/2. Applying the
second part of Proposition 1 to the sequence {

∑
(fN |eα1

)(fN |eα2
)Xα : N ∈ N\{0}},

and using (44), we obtain

P
{∣∣∣∑(fN |eα1)(fN |eα2)Xα

∣∣∣ ≤ N−θ/2} ≥ 1− ε

for N ≥ N0, where N0 is as in Remark 3, that is, we need
∞∑

N=N0

C2
∂Ω

N2−θ ≤ ε.

This holds whenever

(N0 − 1)1−θ >
C2
∂Ω

ε(1− θ)
,

which gives N0 ≥ cε−
1

1−θ . Lastly, we see that there exist Cγ > 0 and Cµ > 0 such
that{∣∣∣∑(fN |eα1

)(fN |eα2
)Xα

∣∣∣ ≤ N−θ/2} ⊂ {|NA
µ,γ(fN , fN )− γ(P )| ≤ CγN−θ/2

}
and{∣∣∣∑(fN |eα1

)(fN |eα2
)Xα

∣∣∣ ≤ N−θ/2} ⊂ {|N I
µ,γ(fN , fN )− µ(P )| ≤ CµN−θ/2

}
,
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respectively. This completes the proof.

3.2. Noise modeled on L2(∂Ω). The noisy admittance and impedance data, NA
µ,γ

and N I
µ,γ respectively, are defined in the level of L2(∂Ω) exactly in the same way as

in (42) and (43) with the exception of some details. The sequence {en : n ∈ N} is an
orthonormal basis of (L2(∂Ω))3, the inner product (φ|ψ) =

´
∂Ω
φ · ψdS, and finally

f, g ∈ H1/2(Div , ∂Ω). To make rigorous sense of this definition, we will assume the
boundary of the domain to be locally defined by the graph of C1,1 functions.

Lemma 3.3. There exists a complete probability space (Π,H,P), and a countable
family {Xα : α ∈ N2} of independent complex random variables satisfying (6).
Moreover, for every f, g ∈ (L2(∂Ω))3 we have that

E

∣∣∣∣∣∑
α∈N2

(f |eα1
)(g|eα2

)Xα

∣∣∣∣∣
2

= ‖f‖2(L2(∂Ω))3‖g‖
2
(L2(∂Ω))3 .

Lemma 3.4. The following estimate holds

E

∣∣∣∣∣∑
α∈N2

(fN |eα1)(fN |eα2)Xα

∣∣∣∣∣
2

= ‖fN‖4(L2(∂Ω))3 ≤ C∂Ω. (45)

Proof. To compute the L2-norm of fN , we could just take the part of ∂Ω inside the
ball of radius ρ and center P since fN vanishes outside. This part of ∂Ω could be
flatten and there the following identity would hold if N−1/2 < 2r

fN = ν × E|∂Ω = DF (~ed ×∇vN )|∂Ω̃.

A straightforward computation shows that

~ed×∇vN (x′, 0) = eiNα·(x
′,0)
[
N1/2~ed×∇ψ

(
N1/2(x′, 0)

)
+iN(~ed×α)ψ

(
N1/2(x′, 0)

)]
,

where ψ(x) = η(|x′|)η(xd). On the other hand, note that

DF (x′, 0) =

[
Id−1 0

∇′φ(x′ + p′) 1

]
, ~ed × α =

(1 + |∇′φ(p′)|2)

|∇′φ(p′)|

 −∂2φ(p′)
∂1φ(p′)

0

 ,
which implies that DF (0, 0)(~ed × α) = 0. Therefore, for |x′| < 2r, we have that

fN (F (x′, 0)) = eiNα·(x
′,0)
[
N1/2DF (x′, 0)(~ed ×∇ψ)

(
N1/2(x′, 0)

)
+ iN

(
DF (x′, 0)−DF (0, 0)

)
(~ed × α)ψ

(
N1/2(x′, 0)

)]
.

(46)

Thus,

‖fN‖(L2(∂Ω))3 . N1/2‖DF (x′, 0)(~ed ×∇ψ)
(
N1/2(x′, 0)

)
‖(L2(R2))3

+N‖
(
DF (x′, 0)−DF (0, 0)

)
(~ed × α)ψ

(
N1/2(x′, 0)

)
‖(L2(R2))3 .

The first term on the right hand side is bounded by a constant independent of N
because the rate of shrinking of the support of (~ed×∇ψ)(N1/2x′, 0). To ensure that
the second term is also bounded by a constant independent of N we need an extra
cancellation beside the shrinking of the support. This cancellation comes from the
inequality |DF (x′, 0)−DF (0, 0)| . |x′|, which is a consequence of the fact that ∂Ω
is locally described by C1,1 functions.
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Lemma 3.5. We have that, for T ≥ 1, there exists a C > 0 so that

E
∣∣∣∣ 1

T

ˆ 2T

T

∑
α∈N2

(ft2 |eα1)(ft2 |eα2)Xα dt

∣∣∣∣2 ≤ C

T 2/3
.

The constant C depends on upper bounds for the C1,1 norm of the functions de-
scribing locally the boundary of ∂Ω.

Proof. One can check that

E
∣∣∣∣ 1

T

ˆ 2T

T

∑
α∈N2

(ft2 |eα1
)(ft2 |eα2

)Xα dt

∣∣∣∣2 =
1

T 2

ˆ
QT

∣∣(fs2 |ft2)
∣∣2 d(s, t),

where QT = [T, 2T ] × [T, 2T ]. Consider S ∈ (0, T/2) to be chosen later and split
QT in the sets

D(S) = {(s, t) ∈ QT : t− S ≤ s ≤ t+ S},
L(S) = {(s, t) ∈ QT : T ≤ s < t− S},
R(S) = {(s, t) ∈ QT : t+ S < s ≤ 2T}.

Using Cauchy–Schwarz and the Lemma 3.4, we have that

1

T 2

ˆ
D(S)

∣∣(fs2 |ft2)
∣∣2 d(s, t) .

|D(S)|
T 2

' S

T
, (47)

since |D(S)|, the Lebesgue measure of D(S) is of the order ST . We are now going to
study the other pieces L(S) and R(S). Start by noticing that, using the expression
(46), the inner product (fs2 |ft2) can be written as a sum of terms of the form

st

ˆ
R2

ei(s
2−t2)α′·x′a(x′; s)b(x′; t) dx′, (48)

where |∂βa(x′; s)| . (1 + s)|β|χ(sx′) and |∂βb(x′; t)| . (1 + t)|β|χ(tx′) with χ a
compactly supported function in R2 and β ∈ N2 for |β| ≤ 1. Since D(S) contains
the stationary points of the oscillatory integral (48), we have that, in L(S) and
R(S), its phase is non-stationary. Then, write

ei(s
2−t2)α′·x′ =

−i
|α′|2(s2 − t2)

α′ · ∇ei(s
2−t2)α′·x′

in order to count the oscillations. Thus, the absolute value of (48) can be bounded,
modulo a multiplicative constant, by

st

|s2 − t2|

ˆ
R2

|∇a(x′; s)||b(x′; t)|+ |a(x′; s)||∇b(x′; t)| dx′

which in term is bounded, again modulo a multiplicative constant, by

1 + s+ t

|s2 − t2|
st

ˆ
R2

χ(sx′)χ(tx′) dx′ .
1 + s+ t

|s2 − t2|
. (49)

In the last inequality, we have used Cauchy–Schwarz. In R(S), s2 − t2 > 0 since

s2 − t2 > (t+ S)2 − t2 = 2St+ S2 > tS ≥ ST.

Hence, |s2 − t2| ≥ ST . On the other hand, in L(S), t2 − s2 > 0 since

t2 − s2 > t2 − (t− S)2 = 2St− S2 > tS ≥ ST.
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Again, |s2 − t2| ≥ ST . Thus, by the fact that (fs2 |ft2) can be written as a sum of
terms of the form (48), and these in turn can be bounded by the right-hand side of
(49), we have that

1

T 2

ˆ
L(S)∪R(S)

∣∣(fs2 |ft2)
∣∣2 d(s, t) .

|L(S) ∪R(S)|
T 2

T 2

S2T 2
.

1

S2
(50)

since |L(S) ∪R(S)| . T 2. Choosing S = T 1/3 to make the decays in (47) and (50)
of the same order, we have the inequality stated in the lemma.

Proof of the Theorem 1.3. The proof basically follows the proof of Theorem 1.2 by
applying Proposition 1 to the sequence of random variables{

1

TN

ˆ 2TN

TN

∑
α∈N2

(ft2 |eα1)(ft2 |eα2)Xα dt : N ∈ N\{0}

}
and by applying

E

∣∣∣∣∣ 1

TN

ˆ 2TN

TN

∑
α∈N2

(ft2 |eα1
)(ft2 |eα2

)Xα dt

∣∣∣∣∣
2

≤ C

N2+θ
→ 0

as N → ∞, obtained using Lemma 3.5 and λN = N−θ/2. Note that the C∂Ω

(used in control N0) is replaced by constants in Lemma 3.5, which depend on
∂Ω, lower bounds for ε0 and µ0, and upper bounds for ‖γ‖Lip(Ω) and ‖µ‖Lip(Ω),

respectively.

4. Boundary determination of Lamé moduli with corrupted data. In this
section, assuming that the data has measurement error as in section 3, we recon-
struct the boundary value of Lamé parameters and its rates of convergence formula
for the isotropic elasticity system.

Hereafter, we will consider the problem in R3. Let Ω ⊂ R3 be a bounded domain,
λ(x) and µ(x) be the Lamé parameters satisfying the strong convexity condition
in (8). The regularity assumptions of the boundary ∂Ω and the Lamé parameters
(λ, µ) will be described later.

We use the same notations as in Section 2. Given P = (p′, p3) ∈ ∂Ω and x =
(x′, x3), let φ : R2 → R be the Lipschitz function and (z′, z3) = F (x′, x3) = (x′ +
p′, x3 + φ(x′ + p′)) be the boundary flatten map near P ∈ ∂Ω. The matrix M is

defined in (18) with detM(x) = 1. Let Ω̃ = F−1(Ω).
Let u be the solution to the elasticity system (9) associated to the tensor C. By

a change of coordinates, the function ũ(x) := u(F (x)) solves a new elasticity system

∇ · (C̃∇ũ) = 0 in Ω̃, (51)

where we have utilized that

0 =

ˆ
Ω

C∇u : ∇φ dz =

ˆ
Ω̃

C̃∇ũ : ∇φ̃ dx, for any smooth test function φ.

Here C̃ is the elastic tensor expressed as

C̃(x) = M(x)⊗C(F (x))⊗M(x)t, (52)
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where⊗ denotes the multiplication between a fourth-order rank tensor and a matrix.

In particular, the function C̃ = (C̃iqkp)1≤i,q,k,p≤3 can be explicitly written as

C̃iqkp =

3∑
l,j=1

Cijkl
∂xp
∂zl

∂xq
∂zj

∣∣∣∣∣∣
z=F (x)

. (53)

Moreover, C̃ satisfies the strong convexity condition (8), but with a different positive

lower bound. Note that the new elastic tensor C̃ will lose the minor symmetric
property, that is,

Cijkl = Cijlk = Cjikl, for 1 ≤ i, j, k, l ≤ 3,

but we can still reconstruct its coefficients at the boundary. Use a change of variable
again, then we haveˆ

∂Ω

ΛCf · f dS =

ˆ
Ω

C∇u : ∇u dz =

ˆ
Ω̃

C̃∇ũ : ∇ũ dx, (54)

where ΛC is the Dirichlet-to-Neumann map defined by (11) and : denotes the Frobe-
nius product between two matrices.

4.1. Approximate solution and elliptic estimate. We first give a reconstruc-
tion formula for the Lamé parameters λ and µ on the surface.

Recall that η : R → [0, 1] be a smooth cutoff function given in Section 2. Let
ω ∈ R3, depending on x′, be chosen such that

|M(x′, 0)tω| = |M(x′, 0)t~e3|,
ω ·M(x′, 0)M(x′, 0)t~e3 = 0,

(55)

where ~e3 = (0, 0, 1).
Given any vector a = (a1, a2, a3) ∈ C3, for any integer N ≥ 1, we define a family

of approximation solutions of ũ by

G̃N (y) = η(N1/2|y′|)η(N1/2y3)eN(
√
−1ω−~e3)·(y−(x′,0))a

in a similar spirit for the Maxwell system in section 2.2, see also [28, Section 2.3.2.1].
Because of the need to use i as a summation index, we let

√
−1 denote the imaginary

unit. From now on, without loss of generality, we assume that x′ = 0. Then ω
satisfies (55) and ω = (ω1, ω2, 0). Similar to the notations introduced in section 2,
we denote

ψN (y) = η(N1/2|y′|)η(N1/2y3), eN (y) = eN(
√
−1ω−~e3)·y,

then we can express G̃N as

G̃N (y) = ψN (y)eN (y)a. (56)

In what follows, we first apply the gradient of the approximate solution {∇G̃N}∞N=1

in the integral (57) in Lemma 4.1 and then find out that its first term dominates
the whole behavior. This observation will play an essential role in providing the re-

construction formula for C̃(0) in section 4.2 assuming the boundary measurements
are corrupted.
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Lemma 4.1. Let λ, µ be the Lipschitz continuous Lamé moduli satisfying the strong

convexity condition (8). The four tensor C̃ is defined by (52) and ∇′φ(p′) exists.
Then we have

ˆ
Ω̃

C̃∇G̃N : ∇G̃N dy (57)

=

3∑
i,j,k,l=1

Cijkl(F (0))akai

(
2∑

p,q=1

∂yp
∂zl

(0)
∂yq
∂zj

(0)ωpωq +
∂y3

∂zl
(0)

∂y3

∂zj
(0)

)

×
ˆ
R2

η(|y′|)2dy′ +O
(
e−

1
2N

1/2
)

+O

N−1/2 +

(
N

ˆ
|y′|≤N−1/2

|∇′φ(y′ + p′)−∇′φ(p′)|2 dy′
)1/2

 ,

where G̃N is the approximation solution defined by (56) and recall that ∇′φ :=
(∂1φ, ∂2φ)t.

For the flat case (i.e., 0 ∈ ∂Ω with Ω = {z3 > 0} near 0), the previous lemma
was proved in [28, Section 2]. The first term in the right hand side of (57) is the
dominant term of the boundary determination, while the remaining parts are lower
order terms. For the completeness of the paper, we provide a detailed proof below.

Proof of Lemma 4.1. Following the idea in the proof of [3, Lemma 1], we first note
that

ˆ
Ω̃

C̃∇G̃N : ∇G̃N dy =

3∑
i,q,k,p=1

ˆ
Ω̃

C̃iqkp(y)
∂(G̃N )k
∂yp

∂(G̃N )i
∂yq

dy, (58)

where G̃N = ((G̃N )1, (G̃N )2, (G̃N )3). For k = 1, 2, 3, by a direct computation, the

partial derivatives of (G̃N )k are

∂(G̃N )k
∂yp

=

(
N1/2η′(N1/2|y′|)η(N1/2y3)

yp
|y′|

+
√
−1NωpψN (y)

)
eN (y)ak, (59)

for p = 1, 2 and

∂(G̃N )k
∂y3

=
(
N1/2η(N1/2|y′|)η′(N1/2y3)−NψN (y)

)
eN (y)ak. (60)

Next, substituting (53), (59) and (60) into the identity (58), then one obtain

ˆ
Ω̃

C̃∇G̃N : ∇G̃N dy

=

3∑
i,j,k,l,q,p=1

ˆ
Ω̃

Cijkl(F (y))
∂yp
∂zl

∂yq
∂zj

∂(G̃N )k
∂yp

∂(G̃N )i
∂yq

dy

=: I + II + III + IV,
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where

I = N2
3∑

i,j,k,l=1

ˆ
Ω̃

Cijkl(F (0))

(
2∑

p,q=1

∂yp
∂zl

(0)
∂yq
∂zj

(0)ωpωq +
∂y3

∂zl
(0)

∂y3

∂zj
(0)

)
× η(N1/2|y′|)2η(N1/2y3)2e−2Ny3akai dy,

II = N2
3∑

i,k=1

[
2∑

p,q=1

ˆ
Ω̃

(
C̃iqkp(y)− C̃iqkp(0)

)
ωpωq +

ˆ
Ω̃

(
C̃i3k3(y)− C̃i3k3(0)

)]
× η(N1/2|y′|)2η(N1/2y3)2akai dy,

III = N3/2
3∑

i,j,k,l=1

ˆ
Ω̃

Cijkl(F (y))
(
− 2

2∑
p=1

∂yp
∂zl

∂y3

∂zj
ψN (y)η′(N1/2|y′|)

× η(N1/2y3)
yp
|y′|
− 2

∂y3

∂zl

∂y3

∂zj
ψN (y)η(N1/2|y′|)η′(My3)

)
e−2Ny3akai dy,

and

IV = N

3∑
i,j,k,l=1

ˆ
Ω̃

Cijkl(F (y))
( 2∑
p,q=1

∂yp
∂zl

∂yq
∂zj

η′(N1/2|y′|)2η(N1/2y3)2 ypyq
|y′|2

+

2∑
p=1

∂yp
∂zl

∂y3

∂zj
2η′(N1/2|y′|)η(N1/2|y′|)η(N1/2y3)η′(N1/2y3)

yp
|y′|

+
∂y3

∂zl

∂y3

∂zj
η′(N1/2y3)2η(N1/2|y′|)2

)
e−2Ny3akai dy.

We will show that I is the dominant term and II, III, IV are remainder terms
in the following arguments. We first estimate I. By using the integration by parts
with respect to the y3 variable and applying change of variables, we obtain

I =

3∑
i,j,k,l=1

Cijkl(F (0))akai

(
2∑

p,q=1

∂yp
∂zl

(0)
∂yq
∂zj

(0)ωpωq +
∂y3

∂zl
(0)

∂y3

∂zj
(0)

)

×
ˆ
R2

η(y′)2 dy′ +O
(
e−

1
2N

1/2
)
.

Secondly, by using change of variables again and following a similar argument as
in the proof of [3, Lemma 1], one can derive that

III = O
(
N−1/2

)
and IV = O

(
N−1/2

)
.

Finally, for the second term II, the triangle inequality yields that

|II| ≤ II1 + II2, (61)
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where

II1 . N2‖∇F−1‖2∞
3∑

i,j,k,l=1

ˆ
Ω̃

|Cijkl(F (y))− Cijkl(F (y′, 0))|

× η(N1/2|y′|)2η(N1/2y3)2e−2Ny3 dy,

II2 . N

3∑
i,k=1

ˆ
R2

( 2∑
p,q=1

|C̃iqkp(y′, 0)− C̃iqkp(0)|

+ |C̃i3k3(y′, 0)− C̃i3k3(0)|
)
η(N1/2|y′|)2 dy′,

for some constant C > 0 independent of N . Here we have utilized that |ωp| ≤ 1
for p = 1, 2 (recalling that ω = (ω1, ω2, 0) is a unit vector) and aj ’s are complex
numbers for j = 1, 2, 3.

To establish (61), we will estimate II1 and II2 separately. For II1, we choose
a constant λ > 0 and split the region of integral into two parts, namely, {y3 > λ}
and {y3 < λ}. Thus, one obtains, by following a similar argument as in (36), that

|II1| . o(1) (62)

when N →∞.
On the other hand, for II2, by Cauchy-Schwartz inequality, one can derive

|II2| .
(
N

ˆ
|y′|≤N−1/2

|C̃iqkp(y′, 0)− C̃iqkp(0)|2 + |C̃i3k3(y′, 0)− C̃i3k3(0)|2 dy′
)1/2

≤
(
N

ˆ
|y′|≤N−1/2

|∇′φ(y′ + p′)−∇′φ(p′)|2 dy′
)1/2

.

Using (22), it leads to

|II2| . o(1). (63)

We substitute (62) and (63) into (61). We combine the estimates for I to IV , then
we complete the proof.

We denote

κ :=

ˆ
R2

η(|y′|)2 dy′,

by a direct computation and let N →∞, then the main term I satisfies

I → κ

3∑
i,j,k,l=1

Cijkl(F (0))akai

(
2∑

p,q=1

∂yp
∂zl

(0)
∂yq
∂zj

(0)ωpωq +
∂y3

∂zl
(0)

∂y3

∂zj
(0)

)

= κ

3∑
i,j=1

Zij(P )aiaj , (64)

where Z(P ) = (Zij)1≤i,j≤3(P ) is the 2-tensor defined by (12). For more detailed
analysis about the boundary reconstruction for the isotropic elasticity system with-
out noise, we refer readers to [28, Section 2].

Similar to [7, Lemma 2.2], we have an analogues result for the elasticity system.
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Lemma 4.2. Let C be a Lipschitz continuous isotropic elastic tensor given by (10),

which satisfies (8). Let C̃ be the elastic four tensor defined by (52) and ∇′φ(p′)
exists. Let r̃N be the solution of{

∇ · (C̃∇r̃N ) = −∇ · (C̃∇G̃N ) in Ω̃,

r̃N = 0 on ∂Ω̃,

where G̃N ∈ (H1(Ω̃))3 is the approximate solution defined by (56). If ∇′φ(p′) exists,
then one has

‖∇r̃N‖(L2(Ω̃))3

. N−1/2 +N1/2

(ˆ
|y′|≤N−1/2

|∇′φ(y′ + p′)−∇′φ(p′)|2 dy′
)1/2

, (65)

for some constant C > 0 independent of G̃N and r̃N .

Proof. The estimate (65) holds by using the standard elliptic regularity estimate of
r̃N , Hardy’s inequality for ũN and Lemma 4.1. The detailed proof is the same as
the one of [3, Lemma 2], thus we refer the interested readers to [3].

4.2. Proof of Theorem 1.4. Let us consider the function uN with ũN = F ∗uN
and define ũN := κ−1/2(G̃N + r̃N ), then ũN ∈ (H1(Ω̃))3 is the solution of

∇ · (C̃∇ũN ) = 0 in Ω̃ with ũN = G̃N on ∂Ω̃. (66)

Denote fN = uN |∂Ω. From formula (54), one has

κ−1

ˆ
∂Ω̃

ΛC̃G̃N · G̃N dS =

ˆ
Ω̃

C̃∇ũN : ∇ũN dx. (67)

Recall that (Π,H,P) is a complete probability space, and {Xα : α ∈ N2} is
a countable family of independent complex Gaussian random variables Xα : $ ∈
Π 7→ Xα($) ∈ C as in Section 3 such that (6) holds with standard expectation of
a random variable defined by EX =

´
Π
XdP. Let {en : n ∈ N} be an orthonormal

basis of (L2(∂Ω))3, then we define the noisy data for the isotropic elasticity system
via the bilinear form

NC(f, g) :=

ˆ
∂Ω

ΛCf · g dS +
∑
α∈N2

(f |eα1
)(g|eα2

)Xα, (68)

for f, g ∈ (H1/2(∂Ω))3, where α = (α1, α2) and (W |w) =
´
∂Ω
W ·wdS ∈ C, for any

W,w ∈ (L2(Ω))3.
Next, by change of variables, (67), Lemma 4.1, Lemma 4.2 and the Cauchy-

Schwarz inequality, the equation (68) yields that

NC(fN , fN ) = κ−1

ˆ
∂Ω̃

ΛC̃G̃N · G̃N dS +
∑
α∈N2

(fN |eα1
)(fN |eα2

)Xα

=

3∑
i,j=1

Zij(P )aiaj +
∑
α∈N2

(fN |eα1
)(fN |eα2

)Xα

+O
(
N−1/2 + E(M)

)
, (69)



26 P. CARO, R.-Y. LAI, Y.-H. LIN AND T. ZHOU

where Zij is given by (12) and E(M) is an error term given by

E(M) := N1/2

(ˆ
|y′|≤N−1/2

|∇′φ(y′ + p′)−∇′φ(p′)|2 dy′
)1/2

.

We then state the following proposition by replacing L2(∂Ω) by (L2(∂Ω))3 in
Lemma 2.3 of [7].

Proposition 2. Let C be the isotropic elastic tensor and Ω be a bounded Lipschitz
domain in R3. Then there is a complete probability space (Π,H,P), and a countable
family

{
Xα : α ∈ N2

}
of independent complex random variables satisfying (6). In

addition, for any f, g ∈ (L2(∂Ω))3, we have

E

∣∣∣∣∣∑
α∈N2

(f |eα1
)(g|eα2

)Xα

∣∣∣∣∣
2

= ‖f‖2(L2(∂Ω))3‖g‖
2
(L2(∂Ω))3 . (70)

Furthermore, the corrupted data

NC : (H1/2(∂Ω))3 × (H1/2(∂Ω))3 → L2(Π,H,P)

and the following estimate holds

E |NC(f, g)|2 ≤ C
(
1 + ‖λ‖L∞(Ω) + ‖µ‖L∞(Ω)

)
‖f‖2(H1/2(∂Ω))3‖g‖

2
(H1/2(∂Ω))3 , (71)

for any f, g ∈ (H1/2(∂Ω))3, and for some constant C > 0 depending on ∂Ω. In
particular, (71) implies that |NC(f, g)| <∞ almost surely.

From (70), one can obtain

E

∣∣∣∣∣∑
α∈N2

(fN |eα1
)(fN |eα2

)Xα

∣∣∣∣∣
2

= ‖fN‖4(L2(∂Ω))3 ≤ C∂ΩN
−2, (72)

for some constant C∂Ω > 0 depending only on the Lipschitz function φ, where the
last inequality comes from the definition of the oscillating boundary data.

Under some suitable assumptions on the boundary ∂Ω̃, the last term in (69)
converges to zero as N →∞. Thus, the Lamé parameters λ and µ at P ∈ ∂Ω can
be reconstructed from NC(fN , fN ) and (72) by taking N →∞.

Proof of Theorem 1.4. Following the argument of [7] or of Section 3, one can obtain
the boundary determination as well as the rate of convergence for Lamé moduli,
which finishes the proof of Theorem 1.4.
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