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Abstract. We extend monotonicity-based inversion methods to an inverse

coefficient problem for the isotropic nonlocal elliptic equation

(−∇ · σ∇)su = 0 in Ω ⊂ Rn,

where 0 < s < 1, n ≥ 3, and Ω is a bounded open set. We establish a mono-

tonicity relation between the leading coefficient σ and the (partial) exterior
Dirichlet-to-Neumann (DN) map. Our main result shows that a monotonicity

ordering of the coefficients implies a corresponding ordering of the DN maps.

Furthermore, we construct localized potentials for the nonlocal equation, which
yield a local uniqueness result for the fractional inverse problem.
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1. Introduction

Inverse problems for nonlocal operators have attracted considerable attention in
recent years, with the fractional Laplacian (−∆)s (0 < s < 1) being a key exam-
ple. This operator emerges naturally in models of anomalous stochastic diffusion,
characterized by jumps and long-range interactions, as explored in works such as
[BV16BV16, RO16RO16]. In contrast to the classical Laplacian (s = 1), which describes stan-
dard Brownian motion, the nonlocal nature of the fractional Laplacian introduces
significant complexity. Nevertheless, recent progress indicates that inverse prob-
lems for nonlocal equations may be more manageable than their local counterparts,
thanks to robust properties like unique continuation and Runge approximation.
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The Calderón problem for the fractional Schrödinger equation was first inves-
tigated in [GSU20GSU20]. Central to this work is the Runge approximation property,
which allows any L2 function to be approximated by solutions to the fractional
Schrödinger equation. This property derives from the unique continuation princi-
ple (UCP), which asserts that if u = (−∆)su = 0 in any nonempty open subset,
then u ≡ 0 across Rn. Subsequent research has extended these findings to variable-
coefficient nonlocal elliptic operators [GLX17GLX17], addressing a challenge that remains
unresolved for their local counterparts.

Building on these foundations, a substantial body of literature has developed.
Simultaneous determination results are established in [CLL19CLL19, CLR20CLR20, LL23LL23], while
stability estimates are derived in [RS20RS20, KLW22KLW22, RS18RS18]. Additionally, monotonicity-
based methods for nonlocal inverse problems have been introduced in [HL19HL19, HL20HL20,
Lin22Lin22]. Further contributions, encompassing both linear and nonlinear settings, are
detailed in [LL22LL22, GRSU20GRSU20, CMRU22CMRU22, LZ23LZ23] and references therein.

Recent advancements have introduced innovative approaches to inverse prob-
lems for nonlocal operators. The recovery of leading coefficients has been achieved
through novel nonlocal-to-local reductions utilizing the Caffarelli–Silvestre exten-
sion, as demonstrated in [CGRU23CGRU23, Rül25Rül25, LLU23LLU23, LZ24LZ24]. Additionally, local-
to-nonlocal reduction is characterized in the transversally anisotropic setting in
[LNZ24LNZ24]. Meanwhile, heat semigroup methods on closed Riemannian manifolds
have proven effective for addressing the fractional anisotropic Calderón problem,
as explored in [FGKU24FGKU24, Fei24Fei24, FKU24FKU24, Lin24Lin24, FGK+25FGK+25]. Furthermore, the en-
tanglement principle for nonlocal elliptic operators, investigated in [FKU24FKU24, FL24FL24],
shows promise for analyzing systems of nonlocal equations. The Calderón prob-
lem for the logarithmic Laplacian—a zero-order nonlocal operator—has also been
recently addressed in [HLW25HLW25]. For a comprehensive overview of inverse problems
for nonlocal operators, we refer readers to the recent monograph [LL25LL25].

Mathematical formulation. Let Ω ⊂ Rn be a bounded Lipschitz domain, for
n ≥ 3, and 0 < s < 1. Consider the exterior value problem

(1.1)

{
(−∇ · σ∇)su = 0 in Ω,

u = f in Ωe,

where σ = σ(x) ∈ C2(Rn) satisfying

(1.2) 0 < λ ≤ σ(x) ≤ λ−1 for x ∈ Ω and σ = 1 in Ωe,

for some λ ∈ (0, 1), and

Ωe := Rn \ Ω

stands for the exterior domain. Throughout this work, we assume that the condition
(1.21.2) always holds. Let W ⊂ Ωe be a bounded open set with Ω ∩W = ∅, and Λσ
be the Dirichlet-to-Neumann (DN) map of (1.11.1), which is given by

(1.3) Λσ : H̃s(W )→ H−s(W ), f 7→ (−∇ · σ∇)suf
∣∣
W
,

where uf ∈ Hs(Rn) is the solution to (1.11.1). In this work, we are interested in a
monotonicity relation between the DN map and leading coefficients σ. Throughout
this work, let us assume that σ is a positive bounded scalar function, with σ|Ωe

being known a priori.
In the works [HL19HL19, HL20HL20], the authors demonstrated if-and-only-if monotonicity

relations between the DN maps with lower order bounded potentials. To our best
knowledge, there is no existing literature to consider such relations between the DN
maps with leading coefficients in (1.11.1). In fact, in Section 33, we are going to prove
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that

σ1 ≥ σ2 in Ω =⇒ Λσ1
≥ Λσ2

.

Let us make the above sentence meaningful. On the one hand, the relation σ1 ≥ σ2

in Ω is referred to σ1(x) ≥ σ2(x) for almost every (a.e.) x ∈ Ω. In this work, we
have assumed that σ1, σ2 satisfy (1.21.2), so we justify the half-ordering σ1 ≥ σ2 is
referred to σ1(x) ≥ σ2(x), for all x ∈ Ω. On the other hand, we write Λσ1 ≥ Λσ2 ,
if it holds in the quadratic sense that

〈(Λσ1
− Λσ2

) f, f〉 ≥ 0,

for any f ∈ C∞c (W ). Here, 〈·, ·〉 denotes the duality pairing in a suitable sense (see
Section 22).

The method to study inverse problems using the combination of monotonicity
relations with localized potentials was found in [Geb08Geb08]. Due to this remarkable
approach and the flexibility of this method, there is some literature in this direction,
[AH13AH13, Har09Har09, HS10HS10, Har12Har12, HU13HU13, BHHM17BHHM17, HU17HU17, BHKS18BHKS18, GH18GH18, HPS19bHPS19b,
HLL18HLL18, SKJ+19SKJ+19, HPS19aHPS19a]. In further, several works build practical reconstruction
methods based on monotonicity properties [TR02TR02, HLU15HLU15, HU15HU15, HM16HM16, MVVT16MVVT16,
TSV+16TSV+16, Gar17Gar17, GS17GS17, SUG+17SUG+17, VMC+17VMC+17, HM18HM18, ZHS18ZHS18, GS19GS19].

We revisit the fractional Calderón problem for the isotropic nonlocal elliptic
equation (1.11.1). By [CGRU23CGRU23], as σ is a scalar function fulfilling (1.21.2), the authors
proved the global uniqueness for (1.11.1). In other words, the isotropic scalar function
σ can be determined uniquely by the DN map Λσ. In this work, we prove a local
uniqueness result of (1.11.1):

Theorem 1.1 (Local uniqueness). Let Ω ⊂ Rn be a bounded domain with Lipschitz
boundary ∂Ω for n ≥ 3 and W b Ωe be a nonempty open subset. Let O ⊆ Ω be
a connected relatively open subset such that O ∩ ∂Ω 6= ∅. Let σj ∈ C2(Rn) satisfy
(1.21.2), and Λσj

be the DN map of

(1.4)

{
(−∇ · σj∇)suj = 0 in Ω,

uj = f in Ωe,

for j = 1, 2. Suppose

either σ1 ≤ σ2 in O or σ1 ≥ σ2 in O,(1.5)

then

Λσ1
f |W = Λσ2

f |W , for any f ∈ C∞c (W ),

implies σ1 = σ2 in O.

Remark 1.2. There is an alternative way to show that the nonlocal DN maps Λσ
of (1.11.1) determine their local DN maps of{

∇ · (σ∇v) = 0 in Ω,

v = g ∈ H1/2(∂Ω) on ∂Ω,

whenever the condition (1.21.2) holds. Therefore, combining σ|∂Ω = 1, one can use the
well-known result from [SU87SU87] so that the scalar conductivity σ can be determined
in the entire domain Ω. In other words, a global uniqueness result for (1.11.1) can be
derived by using this nonlocal-to-local reduction procedure.

Organization of the article. The structure of the paper is as follows. In Sec-
tion 22, we introduce the function spaces, nonlocal operators, and extension problems
that will be used throughout the article. Section 33 is devoted to proving the mono-
tonicity relation between the DN maps and the leading coefficients. A key step in
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this analysis is the construction of localized potentials for the extension problem,
which is carried out in Section 44. Finally, in Section 55, we combine these ingredients
to establish our main results.

2. Preliminaries

2.1. Function spaces. Let us quickly review some function spaces together with
the definition of the operator (−∇ · σ∇)s, which are introduced in many related
articles. Given 0 < s < 1, the space Hs(Rn) = W s,2(Rn) denotes the usual L2-
based fractional Sobolev space with the given norm

‖u‖Hs(Rn) := ‖u‖L2(Rn) + [u]Hs(Rn)

where [·]Hs(B)

[u]Hs(B) :=

(ˆ
B×B

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)1/2

,

is the seminorm, for any open set B ⊂ Rn.
Motivated by [GSU20GSU20], let B ⊂ Rn be a nonempty bounded open set with

Lipschitz boundary, C∞c (B) contains all C∞(Rn)-smooth functions supported in
B. Given b ∈ R, let us adopt the following notions

Hb(B) :=
{
u|B : u ∈ Hb(Rn)

}
,

H̃b(B) := closure of C∞c (B) in Hb(Rn),

Hb
0(B) := closure of C∞c (B) in Hb(B),

for different fractional Sobolev spaces. Hb(B) is complete in the sense

‖u‖Hb(B) := inf
{
‖w‖Hb(Rn) : w ∈ Hb(Rn) and w|B = u

}
.

As the exponent b = s ∈ (0, 1), H−s(B) stands for the dual space of H̃s(B), so
that H−s(B) can be characterized by

H−s(B) =
{
u|B : u ∈ H−s(Rn)

}
with inf

w∈Hs(Rn), w|B=u
‖w‖Hs(Rn),

In addition, we always denote(
H̃s(B)

)∗
= H−s(B) and

(
Hs(B)

)∗
= H̃−s(B).

throughout this paper.
Moreover, we also introduce L2-weighted Sobolev spaces for the Caffarelli-Silvestre

extension problem. Let A ⊆ Rn+1
+ be a nonempty set, y > 0, and consider

L2(A, y1−2s) as the L2-based weighted Sobolev space give by

L2(A, y1−2s) :=
{
ũ = ũ(x, y) : Rn+1

+ → R : ‖ũ‖L2(D,y1−2s) <∞
}
,

where

‖ũ‖L2(A,y1−2s) :=

(ˆ
A

y1−2s |ũ|2 dxdy
)1/2

.

Define

H1(A, y1−2s) :=
{
ũ ∈ L2(A, y1−2s) : ∇x,yũ ∈ L2(A, y1−2s)

}
,

with ∇x,y = (∇x, ∂y) = (∇, ∂y) being the total derivative for (x, y) ∈ Rn+1. It is
known that the H1(A, y1−2s) has a natural inner product structure that

(ũ, ṽ)L2(A,y1−2s) :=

ˆ
A

y1−2sũṽ dxdy,
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for any A ⊆ Rn+1
+ , so that ‖ũ‖2L2(A,y1−2s) = (ũ, ũ)L2(A,y1−2s). In particular, let us

denote another weighted Sobolev space by

H1
x(A, y1−2s) :=

{
ũ ∈ L2(A, y1−2s) : ∇ũ ∈ L2(A, y1−2s)

}
,

and clearly, H1
x(A, y1−2s) ⊂ H1(A, y1−2s).

2.2. Nonlocal operators. We next review the nonlocal elliptic operator Ls (0 <
s < 1), where

L := −∇ · (σ∇)

is a second-order uniformly elliptic operator of divergence form. Note that when
we define the nonlocal elliptic operator Ls, we do not need to assume the condition
σ = 1 in Ωe. It is known that the nonlocal operator Ls = (−∇·σ∇)s can be defined
by

Ls :=
1

Γ(−s)

ˆ ∞
0

(
e−tL − Id

) dt

τ1+s
,

where e−tL stands for the heat kernel of ∂t +L in Rn × (0,∞), and Id denotes the
identity map. Moreover, the operator Ls can be equivalently characterized by the
famous Caffarelli-Silvestre [CS07CS07] and Stinga-Torrea extension problems [ST10ST10].

We can also define the bilinear form of the exterior problem (1.11.1). It is known
that the exterior problem (1.11.1) is well-posed, and the DN map can be defined by
the bilinear form

〈Lsu,w〉 =
1

2

ˆ
Rn×Rn

(u(x)− u(z)) (w(x)− w(z))Ks(x, z) dxdz,(2.1)

where Ks(x, z) is can be derived by the heat kernel

(2.2) Ks(x, z) :=
1

Γ(−s)

ˆ ∞
0

pt(x, z)
dt

t1+s
.

As pt(x, z) stands for the symmetric heat kernel for L so that(
e−tLf

)
(x) =

ˆ
Rn

pt(x, z)f(z) dz, for x ∈ Rn, t > 0,

and {
(∂t + L)

(
e−tLf

)
= 0 for (x, t) ∈ Rn × (0,∞),(

e−tLf
)

(x, 0) = f(x) for x ∈ Rn.

The heat kernel pt(x, z) enjoys pointwise estimates (cf. [Dav90Dav90])

c1e
−α1

|x−z|2
t t−

n
2 ≤ pt(x, z) ≤ c2e−α2

|x−z|2
t t−

n
2 , for x, z ∈ Rn,

for some positive constants c1, c2, α1 and α2. Therefore, we can obtain pointwise
estimate for Ks(x, z) from the formula (2.22.2)

C1

|x− z|n+2s ≤ Ks(x, z) ≤
C2

|x− z|n+2s , for x, z ∈ Rn,

for some constants C1, C2 > 0, which ensures the well-posedness of (1.11.1) (see
[GLX17GLX17, Section 3] for detailed arguments). This is equivalent to say that given
any f ∈ Hs(Ωe), the equation (1.11.1) admits a unique solution u ∈ Hs(Rn). This
implies the DN map Λσ is well-defined, and there holds

〈Λσf, g〉H−s(W )×H̃s(W ) =
1

2

ˆ
Rn×Rn

(u(x)− u(z)) (w(x)− w(z))Ks(x, z) dxdz

for any f, g ∈ H̃s(W ), which justifies (1.31.3).
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2.3. The extension problem. Recalling that the extension problem for the non-
local operator Ls with 0 < s < 1 is

(2.3)

{
∇x,y · (y1−2sσ̃∇x,yũ) = 0 in Rn+1

+ ,

ũ(x, 0) = u(x) on ∂Rn+1
+ = Rn,

where ∇x,y = (∇, ∂y) with ∇ = ∇x. It is known that there holds the following
relation holds

(2.4) − lim
y→0

y1−2s∂yũ = ds(−∇ · σ∇)su in Rn,

where Rn+1
+ :=

{
(x, y) ∈ Rn+1 : x ∈ Rn, y > 0

}
,

(2.5) ds =
Γ(1− s)

22s−1Γ(s)
> 0

is a constant depending only on s ∈ (0, 1), and σ̃ is an (n+ 1)× (n+ 1) matrix of
the form

σ̃(x) =

(
σ(x)In 0

0 1

)
.(2.6)

with the n × n identity matrix In. This type of extension problem was called the
Caffarelli-Silvestre or Stinga-Torrea extension problem in the literature.

3. Monotonicity relation

In this section, we want to show that σ1 ≥ σ2 a.e. in Ω implies that Λσ1
≥ Λσ2

in the quadratic sense. More specifically, with the discussions from the previous
section, we use the notion

Λσ1 ≥ Λσ2 ⇐⇒ 〈Λσ1f, f〉H−s(W )×H̃s(W ) ≥ 〈Λσ2f, f〉H−s(W )×H̃s(W )

for any f ∈ C∞c (W ). In what follows, we may use 〈·, ·〉 ≡ 〈·, ·〉H−s(W )×H̃s(W ) to

denote the duality pairing, which simplifies the notations, provided that there are
no further confusions.

Lemma 3.1 (Monotonicity relations). Let Ω ⊂ Rn and W b Ωe be bounded open
sets with Lipschitz boundaries, for n ∈ N. Let σj be a bounded positive coefficient
satisfying (1.21.2), and Λσj

be the DN map of (1.41.4), for j = 1, 2. Then there hold thatˆ
Ω×(0,∞)

y1−2s (σ1 − σ2)
∣∣∇ũf1 ∣∣2 dxdy

≤ ds 〈(Λσ1
− Λσ2

)f, f〉

≤
ˆ

Ω×(0,∞)

y1−2s (σ1 − σ2)
∣∣∇ũf2 ∣∣2 dxdy,

(3.1)

and ˆ
Ω×(0,∞)

y1−2sσ2

σ1
(σ1 − σ2)

∣∣∇ũf2 ∣∣2 dxdy
≤ ds 〈(Λσ1

− Λσ2
)f, f〉

≤
ˆ

Ω×(0,∞)

y1−2s (σ1 − σ2)
∣∣∇ũf2 ∣∣2 dxdy,

(3.2)

where ũfj is the solution to the extension problem (2.32.3) as σ = σj and ũfj (x, 0) =

ufj (x) in Rn, where ufj ∈ Hs(Rn) is the solution to (1.41.4) as j = 2, with the constant

ds > 0 in (3.33.3).

Remark 3.2. Let us point out that
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(i) As s = 1, the monotonicity implication from the conductivity to the DN map
is easy to derive using the bilinear form and integration by parts. However,
as shown in Section 22, it is known that the bilinear form (2.12.1) may not
be useful to derive this monotonicity relation. Instead, we will use the
Caffarelli-Silvestre type extension problem (2.32.3) to prove the above lemma.

(ii) Note that the both sides of (3.13.1) contain solutions ũf1 and ũf2 , but in the both

sides of (3.23.2) only consist the solution ũf2 . The relation (3.13.1) is already use-
ful in the determination of the leading coefficients. For further applications
in inverse problems (such as inverse obstacle problems), the monotonicity
formula (3.23.2) would be needed. However, we do not pursue this problem in
this article.

Proof of Lemma 3.13.1. Let σ̃j be of the form (2.62.6) as σ = σj , and ũfj denote the

solution to (2.32.3) as ũ = ũfj with ũfj (x, 0) = ufj (x) in Rn, for j = 1, 2. Here

ufj ∈ Hs(Rn) is the solution to (1.41.4) for j = 1, 2. Then there holds that

(3.3) − lim
y→0

y1−2s∂yũ
f
j = ds(−∇ · σj∇)sufj in Rn,

for j = 1, 2, where ds is a positive constant given by (2.52.5). On the one hand, there
holds 〈

Λσj
f, f
〉

=

ˆ
W

(−∇ · σj∇)sufj · f dx,(3.4)

for j = 1, 2. On the other hand, we have

0 =

ˆ
Rn+1

+

∇x,y ·
(
y1−2sσ̃∇x,yũf1

)
ũf1 dxdy

= −
ˆ
Rn

(
lim
y→0

y1−2s∂yũ
f
1

)
ũf1 (x, 0) dx−

ˆ
Rn+1

+

y1−2sσ̃j∇x,yũf1 · ∇x,yũ
f
1 dxdy

= ds

ˆ
Rn

(−∇ · σj∇)suf1 · u
f
1 dx︸ ︷︷ ︸

By (2.42.4)

−Bσ̃1
(ũf1 , ũ

f
1 )

= ds

ˆ
W

(−∇ · σj∇)suf1 · f dx︸ ︷︷ ︸
Since uf solves (1.41.4) and uf

1 |Ωe
=f

−Bσ̃1
(ũf1 , ũ

f
1 ),

which implies that

Bσ̃1
(ũf1 , ũ

f
1 ) = ds 〈Λσ1f, f〉 ,(3.5)

where

Bσ̃j
(ũ, w̃) :=

ˆ
Rn+1

+

y1−2sσ̃j∇x,yũ · ∇x,yw̃ dxdy

=

ˆ
Rn+1

+

y1−2sσj∇ũ · ∇w̃ dxdy +

ˆ
Rn+1

+

y1−2s∂yũ∂yw̃ dxdy

is a symmetric bilinear form, for j = 1, 2 and any functions ũ and w̃.
Similarly, we also have

(3.6) Bσ̃1
(ũf1 , ũ

f
2 ) = ds 〈Λσ1

f, f〉 ,
Combining (3.43.4), (3.53.5) and (3.63.6), we have

ds 〈Λσ1
f, f〉 = Bσ̃1

(ũf1 , ũ
f
1 ) = Bσ̃1

(ũf1 , ũ
f
2 ),

ds 〈Λσ2
f, f〉 = Bσ̃2

(ũf2 , ũ
f
2 ).
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Direct computations yield that

0 ≤ Bσ̃1
(ũf1 − ũ

f
2 , ũ

f
1 − ũ

f
2 )

= Bσ̃1
(ũf1 , ũ

f
1 )− 2Bσ̃1

(ũf1 , ũ
f
2 ) +Bσ̃1

(ũf2 , ũ
f
2 )

= −ds 〈Λσ1
f, f〉+ ds 〈Λσ2

f, f〉+Bσ̃1
(ũf2 , ũ

f
2 )−Bσ̃2

(ũf2 , ũ
f
2 ),

(3.7)

and this implies that

ds (〈Λσ1
f, f〉 − 〈Λσ2

f, f〉)

≤
(ˆ

Rn+1
+

y1−2sσ1

∣∣∇ũf2 ∣∣2 dxdy +

ˆ
Rn+1

+

y1−2s|∂yũf2 |2 dxdy
)

−
(ˆ

Rn+1
+

y1−2sσ2

∣∣∇ũf2 ∣∣2 dxdy +

ˆ
Rn+1

+

y1−2s|∂yũf2 |2 dxdy
)

≤
ˆ
Rn+1

+

y1−2s (σ1 − σ2)
∣∣∇ũf2 ∣∣2 dxdy

=

ˆ
Ω×(0,∞)

y1−2s (σ1 − σ2)
∣∣∇ũf2 ∣∣2 dxdy,

(3.8)

where we used σ1 = σ2 in Ωe. This proves the right-hand side ordering in (3.13.1).
Interchanging the indices j = 1, 2 in (3.83.8), we can obtain the left-hand side in (3.13.1).

Finally, for the left-hand side in (3.23.2), let us interchange σ1 and σ2 in (3.73.7) and
(3.83.8), then we have

ds 〈(Λσ1 − Λσ2)f, f〉

=

ˆ
Ω×(0,∞)

y1−2s (σ1 − σ2)
∣∣∇ũf1 |2 dxdy

+

ˆ
Ω×(0,∞)

y1−2sσ2

∣∣∇(ũf2 − ũf1)∣∣2 dxdy
=

ˆ
Ω×(0,∞)

y1−2s
(
σ1

∣∣∇ũf1 ∣∣2 + σ2

∣∣∇ũf2 ∣∣2 − 2σ2∇ũf1 · ∇ũ
f
2

)
dxdy

=

ˆ
Ω×(0,∞)

y1−2sσ1

∣∣∣∣∇ũf1 − σ2

σ1
∇ũf2

∣∣∣∣2 dxdy︸ ︷︷ ︸
nonnegative

+

ˆ
Ω×(0,∞)

y1−2s

(
σ2 −

σ2

σ1

) ∣∣∇ũf2 ∣∣2 dxdy
≥
ˆ

Ω×(0,∞)

y1−2sσ2

σ1
(σ1 − σ2)

∣∣∇ũf2 ∣∣2 dxdy,
which proves (3.23.2). �

Corollary 3.3. Adopting all assumptions in Lemma 3.13.1, let σ1, σ2 be two positive
bounded coefficients, then

σ1 ≥ σ2 implies Λσ1
≥ Λσ2

.

Proof. The proof can be seen using either (3.13.1) or (3.23.2). �

Remark 3.4. From the above discussions, one can see the monotonicity relations
depend only on the gradient of certain solutions with respect to the transversal
direction (i.e., x-variable), but not y ∈ (0,∞).
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4. Localized potentials and Runge approximation

We first rewrite the extension problem (2.32.3). If u ∈ Hs(Rn) is a solution to (1.11.1)
into

(4.1)


∇x,y · (y1−2sσ̃∇x,yũ) = 0 in Rn+1

+ ,

lim
y→0

y1−2s∂yũ = 0 on Ω× {0},

ũ(x, 0) = f(x) on Ωe × {0}.

Thanks to the monotonicity formulas given in the previous section, both sides in
(3.13.1) and (3.23.2) depend only on the gradient along the x-direction but are inde-
pendent of y > 0. Thus, we can construct localized potentials for the extension
problem (4.14.1) by showing the Runge approximation with respect to the x-variable.
More specifically, we have the next result.

Theorem 4.1 (Runge approximation). Let Ω ⊂ Rn be a bounded Lipschitz domain
for n ≥ 3, and B,D ⊆ Ω be measurable sets, B \D possess positive measure, and
Ω\D is connected to ∂Ω. Then there exist functions v = v(x) ∈ H1(B∪D), and 0 6≡
β1 = β1(y) ∈ C∞c ((0,∞)), such that the function v(x)β1(y) can be approximated in
the H1

x(B ∪D, y1−2s)-norm by solutions ũ of (4.14.1), and satisfies

(4.2) ∇v|D ≡ 0 and ∇v|B 6≡ 0.

We will explicitly construct the functions v(x) and β1(y) in the proof of Theorem
4.14.1. Assuming Theorem 4.14.1 is true, we can have the following existence of localized
potentials.

Corollary 4.2 (Localized potentials). Let B,D ⊆ Ω be nonempty measurable sets,
B \D possess positive measure, and Ω \D is connected to ∂Ω. Let W b Ωe be a
nonempty open subset, then there exists a sequence {fk}∞k=1 ⊂ C∞c (W ) such thatˆ

B×(0,∞)

y1−2s
∣∣∇ũfk ∣∣2 dxdy →∞,

ˆ
D×(0,∞)

y1−2s
∣∣∇ũfk ∣∣2 dxdy → 0,

as k →∞, where ufk ∈ H1(Rn+1
+ , y1−2s) is the solution to (4.14.1) with{

lim
y→0

y1−2s∂yũ
fk = 0 in Ω,

ũfk(x, 0) = fk(x) in Ωe,

for all k ∈ N.

Proof. By using Theorem 4.14.1, there exist functions v ∈ H1(B ∪ D), 0 6= β1 ∈
C∞c ((0,∞)), and sequence of solutions ṽf̃k ∈ H

1(Rn+1
+ , y1−2s) of

∇x,y · (y1−2sσ̃∇x,y ṽf̃k) = 0 in Rn+1
+ ,

lim
y→0

y1−2s∂y ṽ
f̃k = 0 on Ω× {0},

ṽf̃k(x, 0) = f̃k(x) on Ωe × {0},

for all k ∈ N, such thatˆ
B×(0,∞)

y1−2s
∣∣∇ṽf̃k ∣∣2 dxdy → ˆ

B×(0,∞)

y1−2sβ2
1 |∇v|

2
dxdy > 0,

and ˆ
D×(0,∞)

y1−2s
∣∣∇ṽf̃k ∣∣2 dxdy → ˆ

D×(0,∞)

y1−2sβ2
1 |∇v|

2
dxdy = 0.
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Notice that the value
´
D×(0,∞)

y1−2s
∣∣∇ṽf̃k ∣∣2 dxdy > 0 for all k ∈ N thanks to the

UCP of (4.14.1). Let

fk :=
f̃k√´

D×(0,∞)
y1−2s

∣∣∇ṽf̃k ∣∣2 dxdy ,
then ũfk = ṽf̃k√´

D×(0,∞)
y1−2s

∣∣∇ṽf̃k ∣∣2 dxdy solves (4.14.1) with the boundary data f = fk ∈

C∞c (W ), for k ∈ N. This proves the assertion. �

Now, it remains to prove Theorem 4.14.1.

A formal proof of Theorem 4.14.1. Let us consider the case s = 1/2 and σ = In (the
n × n identity matrix). For simplicity, let us define C := B ∪ D ⊆ Ω, such that
Ω \ C is connected to ∂Ω. Without loss of generality, we may assume that ∂C

is Lipschitz. Given ψ ∈ H̃−1(C), by the duality argument of the Hahn-Banach
theorem, we only need to claim

(4.3)

ˆ ∞
0

〈
ũf (·, y), ψ(·)

〉
C
dy = 0

implies

(4.4)

ˆ ∞
0

〈
β̃1(y)v(·), ψ(·)

〉
C
dy = 0,

where 〈·, ·〉C denotes the duality pairing betweenH1(C) and its dual space H̃−1(C)11.

Here the function v ∈ H1(C) will satisfy (4.24.2), and β̃1 ∈ C∞c ((0,∞)) fulfills´∞
0
β̃1(y) dy = 1, β̃1 ≥ 0, and supp

(
β̃1

)
⊂ (1, 2). Moreover, let us define β̃k(y) =

k−1β̃1(y/k) for all k ∈ N and y > 0, then there holds
´∞

0
β̃k(y) dy = 1 as well.

To conclude the Hahn-Banach argument, let us consider the adjoint problem

(4.5)


∆x,yw = ψ in Rn+1

+ ,

lim
y→0

∂yw = 0 in Ω× {0},

w = 0 in Ωe × {0}.

Since C ⊆ Ω is a measurable set with C ∩ ∂Ω 6= ∅, note that∣∣∣∣ ˆ ∞
0

〈ũf , ψ〉 dy
∣∣∣∣ ≤ ‖ψ‖H̃−1(C)

ˆ ∞
0

‖ũf (·, y‖H1(C) dy <∞,

then the assumption in (4.34.3) can be rewritten as

0 =

ˆ ∞
0

〈
ũf , ψ

〉
C
dy

=

ˆ ∞
0

ˆ
Rn

(∆x,yw) ũf dxdy

=

ˆ
Rn

w(x, 0)
(

lim
y→0

∂yũ
f ) dx︸ ︷︷ ︸

:=(I)

+

ˆ ∞
0

ˆ
Rn

w
(
∆x,yũ

f
)
dxdy︸ ︷︷ ︸

=0 since ũf solves (4.14.1)

−
ˆ
Rn

(
lim
y→0

∂yw
)
ũf (x, 0) dx

= −
ˆ
W

(
lim
y→0

∂yw
)
f dx,

1Note that the (4.34.3) is equivalent to
´
C

( ´∞
0 ũf (x, y) dy

)
ψ(x) dx and (4.44.4) is equivalent to´

C

( ´∞
0 β̃1(y)v(x) dy

)
ψ(x) dx.
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where we used both boundary information of ũf and w from the equations (4.14.1)
and (4.54.5) such that the term (I) = 0. Since f ∈ C∞c (W ) is arbitrary, there must
hold that limy→0 ∂yw = 0 in W . Thanks to the (weak) UCP and Ω\C is connected
to ∂Ω, then it follows that

w ≡ 0 in
(
Ωe ∪ (Ω \ C)

)
× (0,∞).

Particularly, there holds that

(4.6) w|(∂Ω∪∂C)×(0,∞) = ∂νw|(∂Ω∪∂C)×(0,∞) = 0,

and limy→0 ∂yw = 0 in Rn.
We can conclude the proof by taking the function v ∈ H1(C), which can be

extended to an H1(Rn) function and satisfies

(4.7) ∆v = 0 in C.

Similar to [CGRU23CGRU23, Section 3], we have

−〈ψ, v〉C = −
〈
ψ,

ˆ ∞
0

β̃k(y)v dy

〉
C

= − lim
k→∞

〈
ψ,

ˆ ∞
0

β̃k(y)v dy

〉
C

= − lim
k→∞

ˆ
Ω×(0,∞)

β̃kw∆v dxdy︸ ︷︷ ︸
:=(II)

+ lim
k→∞

ˆ
Ω×(0,∞)

v∂yβ̃k∂yw dxdy

= lim
k→∞

k−2

ˆ
Ω×(k,2k)

v∂yβ̃1∂yw dxdy

= 0,

(4.8)

where we also used (4.64.6) to get rid of boundary contributions. The term (II) = 0
thanks to the facts ∆v = 0 in C and w = 0 in

(
Ω \ C

)
× (0,∞).

Finally, since v ∈ H1(C) is a solution to (4.74.7) with C = B∪D and B∩D = ∅, one
can simply take v to be piecewise defined solution, which is a nonconstant solution
in B, and v = 1 in D. Therefore, with these special choices at hand, we can imply
that (4.24.2) holds. This demonstrates the ideas of the proof of the density, which is
very similar to the case shown in [CGRU23CGRU23, Section 3]. �

Remark 4.3. From the first identity in (4.84.8), we can see that〈
ψ,

ˆ ∞
0

β̃k(y)v dy

〉
C

= 0, for all k ∈ N,

which, of course, holds as k = 1. The rigorous proof will follow the same idea and
approach as in the formal one.

The rigorous proof can be concluded by introducing suitable cutoff functions in
both x and y directions, given as in [CGRU23CGRU23, Section 3].

Proof of Theorem 4.14.1. The argument is similar to the rigorous proof [CGRU23CGRU23,
Proposition 3.1]. As in the formal proof, let C = B ∪ D with C ∩ ∂Ω 6= ∅, and

ψ ∈ H̃−1(C). Then we have∣∣∣∣ˆ ∞
0

y1−2s
〈
ũf (·, y), ψ(·)

〉
C
dy

∣∣∣∣ ≤ ‖ψ‖H̃−1(C)‖ũf‖H1(C,y1−2s) <∞,

and by the duality argument of the Hahn-Banach theorem, it suffices to claim that

(4.9)

ˆ ∞
0

y1−2s
〈
ũf (·, y), ψ(·)

〉
C
dy = 0
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implies

(4.10)

ˆ ∞
0

y1−2s 〈β1(y)v(·), ψ(·)〉C dy = 0,

where 〈·, ·〉C denotes the duality pairing betweenH1(C) and its dual space H̃−1(C)22.
As we shall see, the function v ∈ H1(C) could be an arbitrary function satisfying

(4.11) ∇ · (σ∇v) = 0 in C.

Moreover, β1 is a suitable cutoff function with respect to the y-direction, which will
be given in Appendix AA.

To this end, consider the adjoint problem

(4.12)


∇x,y ·

(
y1−2sσ̃∇x,yw

)
= y1−2sψ in Rn+1

+ ,

lim
y→0

y1−2s∂yw = 0 in Ω× {0},

w = 0 in Ωe × {0}.

The solvability of the above problem (4.124.12) can be found in [CGRU23CGRU23, Section 3],
so we do not give further details about it. The rest of the argument is completely
the same as the proof of [CGRU23CGRU23, Proposition 3.1], with suitable cutoff function
arguments in both x and y directions; by using (4.94.9), one can obtainˆ

W

f lim
y→0

y1−2s∂yw dx = 0, for any f ∈ C∞c (W ).

This implies that limy→0 y
1−2s∂yw = 0 in W . Combining with w = 0 in W × {0}

and Ω \ C is connected to ∂Ω, the UCP implies that

w = 0 in
(
Ωe ∪

(
Ω \ C

))
× (0,∞).

This particularly implies also implies that w = ∂νw = 0 on (∂Ω ∪ ∂C) × (0,∞),
and limy→0 y

1−2s∂yw = 0 in Rn.
Finally, given any function v ∈ H1(C) that satisfies (4.114.11), then the same argu-

ments as in the proof of [CGRU23CGRU23, Proposition 3.1] and (4.84.8), the identity (4.104.10)
must hold. In other words, for any solution v ∈ H1(C) = H1(B ∪D) to (4.114.11), the
function v(x)β1(y) can be approximated by solutions ũ of (2.32.3) in H1(B∪D, y1−2s),
then this concludes the proof. �

Remark 4.4. In the proof of [CGRU23CGRU23, Proposition 3.1], there are more (smooth)
cutoff functions involved. However, the proofs of Theorem 4.14.1 and [CGRU23CGRU23,
Proposition 3.1] are the same, and there are no major changes to the whole ar-
gument. We skip the details.

5. Proof of the local uniqueness

We are now ready to prove Theorem 1.11.1.

Proof of Theorem 1.11.1. We want to claim σ1 = σ2 in O by using the monotonicity
relation and localized potentials. Since the condition (1.51.5) holds, we may assume
σ1 − σ2 ≥ 0 in O, and there exists B ⊆ O such that

(5.1) σ1 − σ2 ≥ δ > 0 in B,

for some δ > 0. Additionally, we can assume D := Ω\O, such that B \D possesses
positive measure since B ∩D = ∅, and Ω \D is connected to ∂Ω.

2Note that the (4.94.9) is equivalent to
´
C

( ´∞
0 y1−2sũf (x, y) dy

)
ψ(x) dx and (4.104.10) is equivalent

to
´
C

( ´∞
0 y1−2sβ1(y)v(x) dy

)
ψ(x) dx.
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Next, the monotonicity relation (3.23.2) yields that

0 = ds 〈(Λσ1 − Λσ2)fk, fk〉

≥
ˆ

Ω×(0,∞)

y1−2sσ2

σ1
(σ1 − σ2)

∣∣∇ũfk2

∣∣2 dxdy
≥ −C

ˆ
D×(0,∞)

y1−2s
∣∣∇ũfk2

∣∣2 dxdy + cδ

ˆ
B×(0,∞)

y1−2s
∣∣∇ũfk2

∣∣2 dxdy,
(5.2)

for some constants c, C > 0 independent of ũfk2 , where
{
ũfk2

}
k∈N ⊂ H

1(Rn+1
+ , y1−2s)

are localized potentials constructed by Corollary 4.24.2. Here C :=
∥∥σ2

σ1
(σ1 − σ2)

∥∥
L∞(Ω)

and c := minΩ
σ2

σ1
> 0. Hence, taking k →∞ in the inequality (5.25.2), we can obtain

0 ≥ −C
ˆ
D×(0,∞)

y1−2s
∣∣∇ũfk2

∣∣2 dxdy︸ ︷︷ ︸
→0 as k→∞

+cδ

ˆ
B×(0,∞)

y1−2s
∣∣∇ũfk2

∣∣2 dxdy︸ ︷︷ ︸
→∞ as k→∞

→ +∞,

as k → ∞, which leads to a contradiction. Therefore, the inequality (5.15.1) cannot
be true, which implies that σ1 ≤ σ2 in O.

Similarly, when σ1 − σ2 ≤ 0 in O, we may assume that σ1 − σ2 ≤ −δ′ < 0 in
B ( O for some δ′ > 0, this will lead a contradiction too. More concretely, with
the same notations as before, one can use the monotonicity relation (3.23.2) again,

0 ≤
ˆ

Ω×(0,∞)

y1−2s (σ1 − σ2)
∣∣∇ũfk2

∣∣2 dxdy
≤ C

ˆ
D×(0,∞)

y1−2s
∣∣∇ũfk2

∣∣2 dxdy − δ′ ˆ
B×(0,∞)

y1−2s
∣∣∇ũfk2

∣∣2 dxdy
→ −∞,

which leads to a contradiction, too. Thus, σ1 = σ2 in B, concluding the proof. �

Remark 5.1. It would also be interesting to use the monotonicity approach to
study the Lipschitz stability for piecewise analytic coefficients and inverse obstacle
problems as we mentioned earlier.

Appendix A. The auxiliary function

The function introduced in this work, β1 = β1(y), was constructed in the proof of
[CGRU23CGRU23, Proposition 3.1]. For the sake of completeness, let us collect the existing
construction of βk (k ∈ N) as follows: Given b ∈ (0, 1), let γb : (0,∞)→ (0, b) be a
smooth function with supp (γb) ⊂ [0, 2−b

1−b ] and γb(y) = b for y ∈ [1, 1
1−b ]. One can

also assume that ˆ ∞
0

γb(y) dy =
b

1− b
and

∣∣∂`yγb(y)
∣∣ ≤ C,

for ` = 0, 1, 2, where C > 0 is a constant independent of b ∈ (0, 1). Let

Ib,k :=

ˆ ∞
0

y1−2sγb(y − k) dy

=

ˆ 2−b
1−b

0

(y + k)1−2sγb(y) dy

∈


bk1−2s

1−b

(
1,
(

1 + 2−b
k(1−b)

)1−2s
)
, if s ∈ (0, 1

2 ],

bk1−2s

1−b

((
1 + 2−b

k(1−b)

)1−2s

, 1

)
, if s ∈ ( 1

2 , 1)
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where Ib,k depends continuously on b ∈ (0, 1). From the above analysis, it is evident
that the values attained by Ib,k can range from arbitrarily large to arbitrarily close
to 0. By the continuity of for all k ∈ N, there exist bk,s ∈ (0, 1) such that Ibs,k,k = 1.
Now, let

βk(y) := γbk,s
(y − k) and Rk,s := k +

1

1− bk,s
,

then βk : (0,∞)→ [0, 1] satisfies

supp (βk) ⊂ (k,Rk,s + 1) ,

βk(y) = bk,s, for y ∈ (k + 1, Rk,s),∣∣∂`yβk(y)
∣∣ ≤ C,ˆ ∞

0

y1−2sβk(y) dy = 1,

for ` = 0, 1, 2, and for some constant C > 0 independent of k ∈ N.
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[RS18] Angkana Rüland and Mikko Salo. Exponential instability in the fractional Calderón

problem. Inverse Problems, 34(4):045003, 21, 2018.
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