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Abstract. Let A ∈ Sym(n×n) be an elliptic 2-tensor. Consider the anisotropic

fractional Schrödinger operator L s
A + q, where L s

A := (−∇ · (A(x)∇))s, s ∈
(0, 1) and q ∈ L∞. We are concerned with the simultaneous recovery of q and

possibly embedded soft or hard obstacles inside q by the exterior Dirichlet-to-

Neumann (DtN) map outside a bounded domain Ω associated with L s
A + q.

It is shown that a single measurement can uniquely determine the embedded

obstacle, independent of the surrounding potential q. If multiple measurements

are allowed, then the surrounding potential q can also be uniquely recovered.
These are surprising findings since in the local case, namely s = 1, both the

obstacle recovery by a single measurement and the simultaneous recovery of

the surrounding potential by multiple measurements are long-standing prob-
lems and still remain open in the literature. Our argument for the nonlocal

inverse problem is mainly based on the strong uniqueness property and Runge

approximation property for anisotropic fractional Schrödinger operators.
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1. Introduction.

1.1. Mathematical setup and statement of the main results. Let Sym(n×n)
signify the space of real-valued n × n symmetric matrices for n ≥ 2. Let A(x) =
(aij(x))ni,j=1 ∈ Sym(n× n), x ∈ Rn. Throughout, it is assumed that A satisfies the
following uniform ellipticity condition for some γ ∈ (0, 1),

γ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ γ−1|ξ|2 for all ξ, x ∈ Rn, (1.1)

and A(x) is C∞-smooth for any x ∈ Rn. Define LA to be the following PDO
(partial differential operator),

LA := −∇ · (A(x)∇),

Let s ∈ (0, 1) be a constant and introduce the following nonlocal PDO,

L s
A = (−∇ · (A(x)∇)s,

whose rigorous definition shall be given in Section 2.
Let Ω and D be two bounded open sets in Rn such that D b Ω and, Rn\Ω and

Ω\D are connected. Let q ∈ L∞(Ω\D) be a real-valued function. Physically speak-
ing, q and D, respectively, represent a potential and an embedded impenetrable
obstacle inside the potential.

Consider the following nonlocal problem associated with q and D,
L s
Au+ qu = 0 in Ω\D,
Bu = 0 in D,

u = g in Ωe := Rn\Ω,
(1.2)

where u ∈ Hs(Rn) is a weak solution of (1.2) with g ∈ Hs(Rn) being an exterior
Dirichlet data. In (1.2), Bu := u if D is a soft obstacle, and Bu := L s

Au if D is a
hard obstacle. It is known that (1.2) is uniquely solvable if {0} is not an eigenvalue
of the operator L s

A + q, in the following sense
if w ∈ Hs(Rn) solves (L s

A + q)w = 0 in Ω\D,
w = 0 in Ωe, and Bw = 0 in D,

then w ≡ 0.

(1.3)
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Throughout, we assume that {0} is not an eigenvalue of L s
A + q, and hence (1.2) is

well-posed. In particular, one has the following well-defined Dirichlet-to-Neumann
(DtN) map associated to the nonlocal problem (1.2),

ΛD,q : H→ H∗,
and ΛD,q is formally given by

ΛD,qψ := L s
Auψ|Ωe , (1.4)

where uψ is the unique solution to (1.2) with uψ = ψ in Ωe. In the subsequent
section, we shall introduce more details of the abstract Banach spaces H and H∗.
We regard the DtN map ΛD,q as the exterior measurement for our inverse problem
study. In this article, we are mainly concerned with the recovery of the embedded
obstalce D b Ω and the surrounding potential q(x) ∈ L∞(Ω\D) by using the
exterior DtN map of (L s

A + q)u = 0 in Ω\D.
For the inverse problem described above, our main results can be stated as fol-

lows.

Theorem 1.1. For n ≥ 2, let Ω ⊂ Rn be an open bounded set, D1, D2 b Ω be two
open subsets of Ω and O1,O2 ⊂ Ωe be two arbitrary nonempty open sets. Suppose
Dj and qj ∈ L∞(Ω\Dj) satisfy the eigenvalue condition (1.3), j = 1, 2. Let ΛDj ,qjbe

the DtN maps for the nonlocal equations (L s
A + qj)uj = 0 in Ω\Dj with uj = 0 in

Dj for j = 1, 2, then the following statements hold.
1. For any given g ∈ C∞c (O1) with g 6≡ 0 in O1, if

ΛD1,q1g|O2
= ΛD2,q2g|O2

,

then one has D1 = D2.
2. Furthermore, if

ΛD1,q1g|O2
= ΛD2,q2g|O2

for all g ∈ C∞c (O1),

then one has q1 = q2 in Ω\D, where D := Dj for j = 1, 2.

Moreover, if we further assume q(x) 6= 0 for any x ∈ Ω, then we have the following
unique recovery result for the sound hard case.

Theorem 1.2. Let Ω,Oj and Dj , qj, j = 1, 2, be the same as those described in
Theorem 1.1. Let ΛDj ,qjbe the DtN maps for the nonlocal equations (L s

A + qj)uj =

0 in Ω\Dj with L s
Auj = 0 in Dj for j = 1, 2, then the following statements hold.

1. We further assume that qj(x) 6= 0 for any x ∈ Ω and j = 1, 2. For any given
g ∈ C∞c (O1) with g 6≡ 0 in O1, if

ΛD1,q1g|O2
= ΛD2,q2g|O2

,

then one has D1 = D2.
2. Furthermore, if

ΛD1,q1g|O2 = ΛD2,q2g|O2 for all g ∈ C∞c (O1),

then one has q1 = q2 in Ω\D, where D := Dj for j = 1, 2.

Remark 1.1. In this paper, we define the nonlocal Neumann derivative of the
solution u to (1.2) as L s

Au. This notion is used for defining both the hard obstacle
D and the exterior measurement data in (1.4). With such a definition, we show the
well-posedness of the direct problem (1.2) as well as derive the unique determination
results in Theorems 1.1 and 1.2 for the associated inverse problems. Nevertheless,
we would like to point out that there are different ways of introducing the nonlocal
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Neumann derivative; see for example in [7, Section 3], and the nonlocal Neumann
derivative can also be defined by

N s
Au(x) :=

ˆ
Ω

(u(x)− u(z))Ks(x, z)dz, (1.5)

where the integral kernel Ks(x, z) is given in (2.1) in what follows. There is the
following relationship which connects the aforementioned two definitions of the non-
local Neumann derivatives (cf. [7, Lemma 3.6]),

L s
Au|Ωe = (N s

Au−mu+ L s
A(E0u)) |Ωe ,

where m(x) :=
´

Ω
Ks(x, z)dz and E0u = χΩeu. Clearly, one can use N s

Au in (1.5)
to replace L s

Au for a different definition of a hard obstacle in (1.2). This leads to
a different forward nonlocal problem, and it would be interesting to consider this
forward model as well as the associated inverse problems as those in Theorems 1.1
and 1.2. However, this would significantly change our theoretical framework for the
present study and we choose to leave it for a future work.

By the first statement in Theorem 1.1 or 1.2, a single pair of non-trivial Cauchy
data (g,ΛD,qg) is sufficient to uniquely recover the embedded soft or hard obstacle
D, independent of the surrounding potential q. It is also noted that no restrictive
regularity assumption is required on the obstacle D. If multiple measurements
are used, then both the embedded obstacle and the surrounding potential can be
uniquely recovered. We can further show that the recovery of the embedded obstacle
can be achieved without knowing whether it is soft or hard. Indeed, by virtue of
Theorems 1.1 and 1.2, it suffices for us to establish the following result.

Theorem 1.3. Let Ω,Oj and Dj , qj, j = 1, 2, be the same as those described in
Theorem 1.1. Let ΛDj ,qjbe the DtN maps for the nonlocal equations (L s

A + qj)uj =

0 in Ω\Dj with either

u1 = 0 in D1 and L s
Au2 = 0 in D2

or

L s
Au1 = 0 in D1 and u2 = 0 in D2,

then the following statements hold.
1. We further assume that qj(x) 6= 0 for any x ∈ Ω and j = 1, 2. Then for any

given g ∈ C∞c (O1) with g 6≡ 0 in O1, if

ΛD1,q1g|O2
= ΛD2,q2g|O2

,

then one has D1 = D2.
2. Furthermore, if

ΛD1,q1g|O2
= ΛD2,q2g|O2

for all g ∈ C∞c (O1),

then one has q1 = q2 in Ω\D, where D := Dj for j = 1, 2.

1.2. Discussions and historical remarks. The study of nonlocal inverse prob-
lems has received significant attention in the literature in recent years. The Calderón
problem for the fractional Schrödinger equation was first solved by Ghosh, Salo and
Uhlmann [8]. Based on the similar idea, [7] and [15] generalized the results to
the nonlocal variable case and nonlocal semilinear case, respectively. Note that
the global uniqueness results hold for these nonlocal cases for any space dimension
n ≥ 2. The proof of the Calderón problem strongly relies on the strong uniqueness
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property, and we refer readers to [8, Theorem 1.2] for the fractional Laplace (−∆)s

and [7, Theorem 1.2] for the nonlocal variable operator L s
A. The strong uniqueness

means that: for s ∈ (0, 1), u ∈ Hs(Rn), if u = L s
Au = 0 in an arbitrary nonempty

open set in Rn, then u ≡ 0 in Rn for any n ≥ 2. Based on the strong unique-
ness property, one can obtain the nonlocal Runge approximation property, which
states that any L2 function can be approximated by a sequence of the solutions to
(L s

A + q)u = 0.
Recently, Rüland and Salo [30] studied the fractional Calderón problem under

lower regularity conditions and established the stability results for the determina-
tion of unknown potentials. They [29] proved the optimal logarithmic stability for
the corresponding inverse problem associated to the fractional Schrödinger equation.
In [9], the authors characterized an if-and-only-if relationship between two positive
potentials and their associated DtN maps of the fractional Schrödinger equation.
Harrach and Lin [9] also provided a reconstruction algorithm of an unknown inclu-
sion based on the monotonicity method. The nonlocal inverse problems reveal some
novel and distinctive features compared to their local counterparts. For the current
study of simultaneously recovering unknown potentials with possibly embedded im-
penetrable obstacles, we also provide some interesting discussions and observations
compared with its local counterpart.

When s = 1, (1.2) becomes a local problem and in such a case, one should replace

the nonlocal condition Bu = 0 in D by B̃u = 0 on ∂D, where B̃u = u if D is a soft

obstacle and B̃u = νT ·A · ∇u if D is a hard obstacle, with ν signifying the exterior
unit normal vector to ∂D. The corresponding local DtN map can be readily defined
on ∂D, which we still denote by ΛD,q. The local inverse problem of determining
D by ΛD,q is usually referred to as the obstacle problem. The obstacle problem
by a single measurement, namely determining D by a single pair of Cauchy data
(ψ,ΛD,qψ) is a well-known and long-standing problem in the inverse scattering the-
ory, which is also known as the Schiffer’s problem, particularly for the case A = I
and q = 1 [4,12,22]. There has been extensive study in the literature and significant
progress has been achieved in recent years on the Schiffer’s problem for the case
with general polyhedral obstacles; see [1,3,20,21] and [17,26,27] and the references
therein, respectively, for related uniqueness and stability studies. Under the restric-
tive assumption that ∂D is everywhere non-analytic, the Schiffer’s problem was
solved in [10]. However, for the case with general obstacles, the Schiffer’s problem
still remains open in the literature. According to Theorems 1.1–1.3, the nonlocal
Schiffer’s problem has been completely solved in our study. Hence, it would be much
interesting to study the connection of the nonlocal and local Schiffer’s problems.
This might be partly seen by taking the limit s→ 1−. The simultaneous recovery of
an embedded obstacle and an unknown surrounding potential is also a long-standing
problem in the literature and closely related to the so-called partial data Calderón
problem [5, 11]. The existing unique recovery results were established based on
knowing the embedded obstacle to recover the unknown potential [11], or knowing
the surrounding potential to recover the embedded obstacle [13, 14, 18, 19, 24], or
using multiple spectral data to recover both of them [16].

The rest of the paper is structured as follows. In Section 2, we provide rigor-
ous mathematical formulations of the nonlocal elliptic operator L s

A and fractional
Sobolev spaces. In Section 3, we study the well-posedness and the associated DtN
map for L s

A + q with an embedded obstacle. In Section 4, we prove the uniqueness
in determining the obstacle D in Ω by using a single exterior measurement. In
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Section 5, we prove the global uniqueness in recovering the surrounding potential
q. Combining with Section 4 and 5, then we prove Theorem 1.1–1.3.

2. Preliminary knowledge on L s
A . In this section, we present some preliminary

knowledge on the nonlocal PDO L s
A that shall be needed in our inverse problem

study. We begin with the definition of fractional Sobolev spaces.

2.1. Fractional Sobolev spaces. For 0 < s < 1, the fractional Sobolev space is
denoted by Hs(Rn) := W s,2(Rn), which is the standard L2 based Sobolev space
with the norm

‖u‖2Hs(Rn) = ‖u‖2L2(Rn) + ‖(−∆)s/2u‖2L2(Rn).

The semi-norm ‖(−∆)s/2u‖2L2(Rn) can also be expressed as

‖(−∆)s/2u‖2L2(Rn) = ((−∆)su, u)Rn ,

where

(−∆)su = cn,s P.V.

ˆ
Rn

u(x)− u(y)

|x− y|n+2s
dy

is the standard fractional Laplacian with the constant

cn,s =
Γ(n2 + s)

|Γ(−s)|
4s

πn/2

and P.V. denotes the standard principal value operator (see [6] for detailed descrip-
tion).

Next, given any open set U of Rn and η ∈ R, we consider the following Sobolev
spaces,

Hη(U) := {u|U ; u ∈ Hη(Rn)},

H̃η(U) := closure of C∞c (U) in Hη(Rn),

Hη
0 (U) := closure of C∞c (U) in Hη(U),

and

Hη

U
:= {u ∈ Hη(Rn); supp(u) ⊂ U}.

The Sobolev space Hη(U) is complete under the graph norm

‖u‖Hη(U) := inf
{
‖v‖Hη(Rn); v ∈ Hη(Rn) and v|U = u

}
.

It is known that H̃η(U) ⊆ Hη
0 (U), and Hη

U
is a closed subspace of Hη(Rn). For

more detailed discussions of the fractional Sobolev spaces, we refer to [6, 23].

2.2. Definition of L s
A. Let us get into the rigorous mathematical formulation for

the problem we study here. Let us begin with the definition of the nonlocal operator
L s
A, s ∈ (0, 1) via the spectral characterization of LA. Suppose that LA is a linear

second order self-adjoint elliptic operator, which is densely defined on L2(Rn) for
n ≥ 2. There is a unique resolution E(λ) of the identity, supported on the spectrum
of LA which is a subset of [0,∞), such that

LA =

ˆ ∞
0

λdE(λ)

i.e.,

〈LAf, g〉L2(Rn) =

ˆ ∞
0

λdEf,g(λ), f ∈ Dom(LA), g ∈ L2(Rn),
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where dEf,g(λ) is a regular Borel complex measure of bounded variation concen-
trated on the spectrum of LA, such that d|Ef,g|(0,∞) ≤ ‖f‖L2(Rn)‖g‖L2(Rn).

If φ(λ) is a real measurable function defined on [0,∞), then the operator φ(LA)
is given formally by

φ(LA) =

ˆ ∞
0

φ(λ)dE(λ).

That is, φ(LA) is a operator with the domain

Dom(φ(LA)) =

{
f ∈ L2(Rn) :

ˆ ∞
0

‖φ(λ)‖2dEf,f (λ) <∞
}
,

defined by

〈φ(LA)f, g〉L2(Rn) =

〈ˆ ∞
0

φ(λ)dE(λ)f, g

〉
L2(Rn)

=

ˆ ∞
0

φ(λ)dEf,g(λ).

Following that we define the nonlocal elliptic operators L s
A, s ∈ (0, 1) with domain

Dom(L s
A) ⊂ Dom(LA),

L s
A =

ˆ ∞
0

λs dE(λ) =
1

Γ(−s)

ˆ ∞
0

(
e−tLA − Id

) dt

t1+s
,

where Γ(s) is the standard Gamma function and Γ(−s) =
Γ(1− s)
−s

< 0 for s ∈

(0, 1). Here e−tLA (t ≥ 0) is the heat-diffusion semigroup generated by LA with
domain L2(Rn) and

e−tLA =

ˆ ∞
0

e−tλ dE(λ),

which enjoys the contraction property in L2(Rn) as ‖e−tLAf‖L2(Rn) ≤ ‖f‖L2(Rn).
Meanwhile, for any w ∈ Hs(Rn), we have

L s
Aw =

1

Γ(−s)

ˆ ∞
0

(
e−tLAw(x)− w(x)

) dt

t1+s
.

For more detailed discussions, we refer readers to [25,28,31].
In fact, the heat-diffusion semigroup admits a nonnegative symmetric heat kernel

Wt(x, z) for t > 0 by integration, that is for any f ∈ L2(Rn)

e−tLAf(x) =

ˆ
Ω

Wt(x, z)f(η)dη(z), x ∈ Rn,

and for any v, w ∈ Hs(Rn),

(e−tLAv, w)Rn =

ˆ
Rn

ˆ
Rn

Wt(x, z)v(z)w(x)dzdx = (v, e−tLAw)Rn , t ≥ 0.

Define

Ks(x, z) =
1

2|Γ(−s)|

ˆ ∞
0

Wt(x, z)
dt

t1+s
, (2.1)

which gives the kernel of anisotropic fractional Schrödinger operators and utilizes [2,
Theorem 2.4] we have

(L s
Av, w)Rn =

ˆ
Rn

ˆ
Rn

(v(x)− v(z))(w(x)− w(z))Ks(x, z)dxdz, (2.2)
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where we use the fact that A(x) is a bounded matrix-valued function defined in
Rn satisfying (1.1). In addition, the kernel Ks possesses the following pointwise
estimate (see [2, Theorem 2.4] again)

c1
|x− z|n+2s

≤ Ks(x, z) ≤
c2

|x− z|n+2s
, x, z ∈ Rn, (2.3)

for some constants c1, c2 > 0 depending on A, n and s and Ks(x, z) = Ks(z, x)
for all x, z ∈ Rn. We also refer readers to [7] for further discussions of the nonlocal
operator L s

A.

3. Nonlocal problems with the embedded obstacles and surrounding po-
tentials . In this section, we give the mathematical formulations for our nonlocal
problems.

3.1. Well-Posedness. In the subsequent discussions, we always let Ω ⊆ Rn to be a
bounded open set and D b Ω to be an open subset, q to be a potential in L∞(Ω\D)
and s ∈ (0, 1) to be a constant. Consider the nonlocal Dirichlet problem

(L s
A + q)u = f in Ω\D,

Bu = 0 in D,

u = g in Ωe.

(3.1)

Define the bilinear form Bq(·, ·) by

Bq(v, w) : =

ˆ
Rn

ˆ
Rn

(v(x)− v(z))(w(x)− w(z))Ks(x, z)dxdz

+

ˆ
Ω\D

q(x)v(x)w(x) dx, (3.2)

for any v, w ∈ Hs(Rn). Combining (2.2) and (3.2), we have that

Bq(v, w) =

ˆ
Rn

(L s
Av)w dx+

ˆ
Ω\D

qvw dx.

Then by using the standard variational formula, the weak solution can be defined
by

Definition 3.1. (Weak solution) Let Ω be a bounded open set in Rn. Given
f ∈ L2(Ω\D) and g ∈ Hs(Rn), we call that u ∈ Hs(Rn) is a (weak) solution to

(3.1) provided that ũg := u− g ∈ H̃s(Ω) and

Bq(u, φ) =

ˆ
Ω\D

fφdx for any φ ∈ C∞0 (Ω\D), (3.3)

with u− g ∈ H̃s(Ω) or equivalently

Bq(ũg, φ) =

ˆ
Ω\D

(f − (L s
A + q)g)φdx for any φ ∈ C∞0 (Ω\D).

Next, we have the following well-posedness.

Lemma 3.1. Let q ∈ L∞(Ω\D) and f ∈ L2(Ω\D). u ∈ Hs(Rn) solves

L s
Au+ qu = f in Ω\D,

(in the sense of distributions) if and only if u ∈ Hs(Rn) satisfies

Bq(u,w) =

ˆ
Ω\D

fwdx for all w ∈ H̃s(Ω\D).
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Moreover, when q satisfies the eigenvalue condition (1.3), we have the stability es-
timate

‖u‖Hs(Rn) ≤ C
(
‖f‖L2(Ω\D) + ‖g‖Hs(Rn)

)
, (3.4)

where C > 0 is a constant independent of f and g.

Proof. A straightforward computation shows thatˆ
Ω\D

(L s
Au+ qu− f)wdx

=

ˆ
Rn

ˆ
Rn

(u(x)− u(z))(w(x)− w(z))Ks(x, z)dxdz

+

ˆ
Ω\D

quwdx−
ˆ

Ω\D
fwdx

for all w ∈ C∞c (Ω\D). It is easy to see that the bilinear form Bq(·, ·) is bounded,
coercive and continuous by using the pointwise estimate (2.3) of the kernel Ks(x, z),
then the stability estimate (3.4) follows from the standard Lax-Milgram theorem (a
similar proof has been addressed in [7, Section 3]). This completes the proof.

Lemma 3.2. The solution u ∈ Hs(Rn) to (3.1) is independent of the value of
g ∈ Hs(Rn) in Ω, and it only relies on g|Ωe .

Proof. The proof is similar to that of [7, Proposition 3.4] and we skip it.

Via Lemma 3.2, we can consider the nonlocal problem (1.2) with Dirichlet data
in an abstract quotient space

H := Hs(Rn)/H̃s(Ω). (3.5)

We also refer readers to [7, 8] for more detailed discussions. Since the solution u ∈
Hs(Rn) of (3.1) only depends on the exterior value, in order to simplify notations,
we shall consider the Dirichlet data g in the quotient space H in the subsequent
studies.

3.2. The DtN map. We define the associated DtN map for L s
A+q via the bilinear

form Bq in (3.3).

Proposition 3.1. (DtN map) For n ≥ 2, let Ω ⊂ Rn be a bounded open set and
D b Ω be an obstacle. Let 0 < s < 1 and q ∈ L∞(Ω\D) satisfy (1.3). Let H be the
abstract space given in (3.5). Define

〈ΛD,qg, h〉H∗×H := Bq(ug, h), g, h ∈ H,

where ug ∈ Hs(Rn) is the solution to (1.2) with the exterior Dirichlet data g. Then
ΛD,q : H→ H∗ is a bounded linear map. Moreover, we have the following symmetry
property for ΛD,q,

〈ΛD,qg, h〉H∗×H = 〈ΛD,qh, g〉H∗×H , g, h ∈ H.

Proof. Combining with Lemma 3.2, the proof is similar to [7, Proposition 3.5], so
we skip it here.
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Remark 3.1. For any h ∈ H, there exists ĥ ∈ Hs(Rn) such that ĥ = h in Ωe. A
direct calculation shows that

(ΛD,qg, h)H∗×H = Bq(ug, ĥ)

=

ˆ
Rn
ĥ(L s

Aug)dx+

ˆ
Ω

qugĥdx

=

ˆ
Ωe

ĥ(L s
Aug)dx

=

ˆ
Ωe

h(L s
Aug) dx. (3.6)

Then from (3.6), we have

(Λqg, h)H∗×H =

ˆ
Ωe

h(L s
Aug) dx, for any h ∈ H,

which implies that

Λqg = L s
Aug|Ωe .

The integral identity allows us to solve the nonlocal type inverse problem as a
direct consequence of Proposition 3.1. It can be stated as follows.

Lemma 3.3. (Integral identity) For n ≥ 2, let Ω ⊂ Rn be a bounded open set and
D b Ω be a obstacle. Let s ∈ (0, 1) and q ∈ L∞(Ω\D) satisfy (1.3). For any
g1, g2 ∈ H, one hasˆ

Ωe

(ΛD,q1g1 − ΛD,q2g1)g2 dx =

ˆ
Ω\D

(q1 − q2)rΩ\Du1rΩ\Du2 dx

where uj ∈ Hs(Rn) solves (L s
A + qj)uj = 0 in Ω\D with uj |Ωe = gj for j = 1, 2,

and rΩ\Du refers to the restriction of u on Ω\D.

Proof. The proof is similar to [8, Lemma 2.5].

4. Recovery of the obstacle D. In this section, we show that the obstacle D can
be uniquely recovered by a single measurement. The following strong uniqueness
property shall be needed.

Proposition 4.1. [7, Theorem 1.2] For n ≥ 2 and 0 < s < 1. If u ∈ Hs(Rn)
satisfies u = L s

Au = 0 in any nonempty open set U ⊂ Rn, then u ≡ 0 in Rn.

Now we can prove the first statement of Theorem 1.1.

Theorem 4.1. Let Ω be a bounded open set in Rn, D1, D2 b Ω be two open subsets
and O1,O2 ⊂ Ωe be arbitrary nonempty open sets. Let qj ∈ L∞(Ω\D) satisfy (1.3)
and uj ∈ Hs(Rn) be the unique (weak) solution to{

L s
Auj + qjuj = 0 in Ω\Dj ,

Buj = 0 in Dj ,

for j = 1, 2. Besides, when Buj = L s
Auj, we further assume that qj(x) 6= 0 for

any x ∈ Ω, j = 1, 2. Suppose that ΛD1,q1g = ΛD2,q2g in O2, for any given nonzero
g ∈ C∞c (O1) with u1 = u2 = g in Ωe, then D1 = D2.
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Proof. First, we prove that u1 = u2 in Rn whenever ΛD1,q1g = ΛD2,q2g in O2 and
u1 = u2 = g in Ωe for the non-identically zero function g ∈ C∞c (O1).

Let w := u1 − u2 ∈ H̃s(Ω), then w solves{
L s
Aw + q1w = (q2 − q1)u2 in Ω\(D1 ∪D2),

w = 0 in Ωe.

Note that the set Ω \
(
∪2
i=1Di

)
is a non-empty open set. From the condition

ΛD1,q1g = ΛD2,q2g in O2 and ΛDj ,qjg = L s
Auj |Ωe , one can see that

L s
Aw = L s

A(u1 − u2) = 0 in O2 ⊂ Ωe.

In particular, we have w ∈ Hs(Rn) such that w = L s
Aw = 0 in O2. By applying the

strong uniqueness property (Proposition 4.1), we obtain w ≡ 0 in Rn, which shows
u1 = u2 in Rn.

Second, we claim that D1 = D2 in Rn by using contradiction arguments. Suppose
that D1 6= D2. Without loss of generality, we can assume that there exists a
nonempty open subset M b D2\D1. Then we have the following two cases.

Case 1. {
Either u1 = 0 in D1 or L s

Au1 = 0 in D1,

u2 = 0 in D2.

By using the condition u1 = u2 in Rn, we know that u1 = u2 = 0 in M b D2.
Applying the nonlocal elliptic equation for u1 in M , it is readily seen that

L s
Au1 = u1 = 0 in M.

Utilizing the strong uniqueness property again, we obtain that u1 ≡ 0 in Rn.
Case 2. {

Either u1 = 0 in D1 or L s
Au1 = 0 in D1,

L s
Au2 = 0 in D2.

Recall that u1 = u2 in Rn, then L s
Au1 = L s

Au2 in Rn by using a direct calcula-

tion. Hence, L s
Au1 = L s

Au2 = 0 in M b D2 \D1. By using the equation of u1 and
q1(x) 6= 0 for x ∈ Ω, we have

u1 = L s
Au1 = 0 in M.

Therefore, we have u1 ≡ 0 in Rn by the strong uniqueness property.
However, in either Case 1 or Case 2, the conclusion u1 ≡ 0 in Rn contradicts to

the fact that u1 = g in Ωe with a non-identically zero exterior data g. This proves
the first part of Theorem 1.1 to Theorem 1.3 by using a single exterior measurement.

Remark 4.1. Indeed, we do not need to use any information about the solution w
in Ω\(D1 ∪D2). We only utilize the strong uniqueness of w in the exterior domain
Ωe, which is a powerful tool in dealing with the nonlocal type inverse problems.

5. Recovery of the surrounding potential q. In this section, we prove the
uniqueness in determining the surrounding potential q in Ω \D.
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5.1. Runge approximation property. We shall make essential use of the follow-
ing Runge approximation property for solutions to the nonlocal elliptic equation.
If q ∈ L∞(Ω\D) satisfies the eigenvalue condition (1.3), we denote the solution
operator Φq by:

Φq : H→ Hs(Rn), g → u

where H := Hs(Rn)/H̃s(Ω) is the abstract space of exterior values, and u ∈ Hs(Rn)

is the unique solution to (L s
A+q)u = 0 in Ω\D with Bu = 0 in D and u−g ∈ H̃s(Ω).

Lemma 5.1. Let Ω ⊆ Rn be a bounded open set and D b Ω be an open subset.
Assume that s ∈ (0, 1) and q ∈ L∞(Ω \D) satisfies (1.3). Let O be any open subset
of Ωe. Consider the set

A := {u|Ω\D : u = Φqg, g ∈ C∞c (O)} ∩ {Bu = 0 in D}.

Then A is dense in L2(Ω\D).

Proof. The proof follows a similar argument to that of [7, Lemma 5.7]. For the
completeness of this paper, we present a detailed proof in what follows.

By the Hahn-Banach theorem, it is sufficient to show that for any v ∈ L2(Ω\D)
with

´
Ω\D vw dx = 0 for all w ∈ A, then it must satisfy v ≡ 0 in Ω \ D. If v is a

such function, which means v satisfiesˆ
Ω\D

v · rΩ\DΦqg dx = 0, for any g ∈ C∞c (O). (5.1)

We claim thatˆ
Ω\D

v · rΩ\DΦqg dx = −Bq(φ, g), for any g ∈ C∞c (O), (5.2)

where φ ∈ Hs(Rn) is the solution given by Lemma 3.1 to

(L s
A + q)φ = v ∈ Ω\D, φ ∈ H̃s(Ω\D).

In other words, Bq(φ,w) =
´

Ω\D v ·rΩ\Dw dx for any w ∈ H̃s(Ω\D). To prove (5.2),

let g ∈ C∞c (O), and we denote ug := Φqg ∈ H̃s(Rn) such that ug − g ∈ H̃s(Ω).
Then we haveˆ

Ω\D
v · rΩ\DΦqg dx =

ˆ
Ω\D

v · rΩ\D(ug − g) dx = Bq(φ, ug − g) = −Bq(φ, g),

in which we have used the fact that ug is a solution and φ ∈ H̃s(Ω\D).
Combining (5.1) and (5.2), we can obtain that

Bq(φ, g) = 0, for any g ∈ C∞c (O).

Using the fact that rΩ\Dg = 0, since g ∈ C∞c (O) we can derive thatˆ
Rn

L s
Aφ · g dx = 0 for any g ∈ C∞c (O),

and thus we obtain that φ ∈ Hs(Rn) satisfies

L s
Aφ|O = φ|O = 0.

By the strong uniqueness property again, we know that φ ≡ 0 in Rn and also v ≡ 0
in Ω\D. This finishes the proof.

Remark 5.1. It is easy to see that the soft or hard condition Bu = 0 in D does
not affect the conclusion of the previous lemma.
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5.2. Proof of the uniqueness in determining q. From the equal DtN maps,
by the first statements of Theorems 1.1–1.3, we know that the embedded obstacle
D is uniquely recovered. Next, we prove the global uniqueness in determining the
potential q ∈ L∞(Ω\D).

Theorem 5.1. For n ≥ 2, let Ω be a bounded open set in Rn, D b Ω be an open
subset and O1,O2 ⊂ Ωe be two arbitrary nonempty open sets. Let qj ∈ L∞(Ω\D)
satisfy (1.3) and uj ∈ Hs(Rn) be the unique (weak) solution to{

L s
Auj + qjuj = 0 in Ω\D,
Buj = 0 in D.

Assume that ΛD,qj are the DtN maps with respect to (L s
A + qj)uj = 0 for j = 1, 2.

If

ΛD,q1g|O2
= ΛD,q2g|O2

,

for all g ∈ C∞c (O1) with u1 = u2 = g in Ωe, then one can conclude that

q1 = q2 in Ω\D.

Proof. Since ΛD,q1g|O2
= ΛD,q2g|O2

for all g ∈ C∞c (O1), where O1,O2 are the open
sets of Ωe, substituting this condition into the integral identity in Lemma 3.3, we
have ˆ

Ω\D
(q1 − q2)u1u2 dx = 0, (5.3)

where uj ∈ Hs(Rn) are the solutions to (L s
A+qj)uj = 0 in Ω\D with the associated

exterior values gj ∈ C∞c (O1), for j = 1, 2 respectively.

Given ϕ ∈ L2(Ω\D), by Proposition 5.1, suppose that there exists two sequences

(u
(k)
j )k∈N for j = 1, 2 of functions in Hs(Rn), which satisfy

(L s
A + q1)u

(k)
1 = (L s

A + q2)u
(k)
2 = 0 in Ω\D,

Bu(k)
1 = 0 and Bu(k)

2 = 0 in D,

u
(k)
j = g

(k)
j in Ωe, for some exterior data g

(k)
j ∈ C∞c (O1),

rΩ\Du
(k)
1 = ϕ+ r

(k)
1 , rΩ\Du

(k)
2 = 1 + r

(k)
2 , for any k ∈ N,

where r
(k)
1 , r

(k)
2 → 0 in L2(Ω\D) as k → ∞. Substituting these solutions into the

integral identity (5.3) and taking the limit as k →∞, we can deduce thatˆ
Ω\D

(q1 − q2)ϕdx = 0

Since ϕ ∈ L2(Ω\D) is arbitrary, we readily see that q1 = q2 in Ω \ D. This also
completes the second parts of Theorems 1.1–1.3.
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