
THE FRACTIONAL ANISOTROPIC CALDERÓN PROBLEM FOR
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Abstract. We consider the fractional anisotropic Calderón problem for the

nonlocal parabolic equation (∂t−∆g)su = f (0 < s < 1) on closed Riemannian

manifolds. More concretely, we can determine the Riemannian manifold (M, g)
up to isometry by using the local source-to-solution map in an arbitrarily

small open cylinder in the spacetime domain. This can be regarded as a

nonlocal analog of the anisotropic Calderón problem in the parabolic setting.
We also study several useful properties for nonlocal parabolic operators by

using comprehensive spectrum analysis with semigroup theory.
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1. Introduction

In 1980, A. P. Calderón [Cal06Cal06] proposed a problem: Can the (anisotropic) con-
ductivity be recovered in a medium by using its voltage and current measurements
on the boundary? This problem is often called the anisotropic Calderón problem,
which can be reformulated in the geometrical setting, see [LU89LU89]. In other words,
can one recover (M, g) by using the boundary measurements (usually, researchers
utilize either the Dirichlet-to-Neumann map or the Neumann-to-Dirichlet map)?
In the works [LU89LU89, LU01LU01, LLS20LLS20], the authors studied the anisotropic Calderón
problem on real-analytic manifolds with real-analytic metrics. However, without
using analyticity assumptions, the anisotropic Calderón problem is a well-known
long-standing open problem in the inverse problems community for the spatial di-
mension n ≥ 3.

In the works [FGKU24FGKU24, Fei24Fei24, FKU24FKU24], the authors investigated the fractional
anisotropic Calderón problem on closed connected smooth Riemannian manifolds,
which they used the local source-to-solution map as measurement so that they can
determine the manifold up to isometry. This type of result is different from that
of their local counterparts. On the one hand, the fractional anisotropic Calderón
problem can be resolved. On the other hand, the result holds for any spatial
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dimension n ≥ 2, without additional analytic assumptions on manifolds (M, g).
The study of fractional inverse problems has been an attractive research field.
Thanks to the pioneering work [GSU20GSU20], the authors proved two important ma-
terials: The strong uniqueness and Runge approximation. Motivated by the work
[GSU20GSU20], there are many articles studied fractional type inverse problems, such as
[GRSU20GRSU20, CLR20CLR20, CLL19CLL19, CMR21CMR21, CMRU22CMRU22, GLX17GLX17, CGRU23CGRU23, GU21GU21, HL19HL19,
HL20HL20, LL22LL22, LL23LL23, LLR20LLR20, LLU22LLU22, LLU23LLU23, Lin22Lin22, Lin23Lin23, Rül23Rül23, RS18RS18, RS20RS20,
KLW22KLW22, KRZ23KRZ23, KLZ24KLZ24, LZ24LZ24, LZ23LZ23, LTZ24aLTZ24a, LTZ24bLTZ24b, LNZ24LNZ24] and references
therein. It is worth to mentioning that an entanglement principle for the fractional
Laplacian has been found in [FKU24FKU24, FL24FL24] for both compact and non-compact
manifolds.

The mathematical model in this paper is given as follows. Let (M, g) be a
smooth closed Riemannian manifold of dimension dimM ≥ 2, and −∆g be the
positive Laplace-Beltrami operator defined on M , i.e., g = g(x) ∈ C∞(M) satisfies
the classical ellipticity condition (we do not address more in this paper). A closed
manifold is compact without boundary. Given s ∈ (0, 1) and T > 0, let

H := ∂t −∆g,

and we consider the fractional parabolic equation

(1.1)

{
Hsu = f in M × (−T, T )
u = 0 in M × {t ≤ −T},

where the fractional parabolic operator Hs can be defined by the spectrum theory
(see Section 22). The well-posedness of (1.11.1) holds for any f in a suitable function
space with the compatibility condition

(1.2) f = 0 in M × {t ≤ −T}.

Let O ⊂ M be an open set, by the well-posedness of (1.11.1), we can define the local
source-to-solution map SM,g,O of (1.11.1) via

(1.3) SM,g,O : C∞
c (O × (−T, T )) ∋ f 7→ uf

∣∣
O×(−T,T )

∈ Hs(O × (−T, T )),

where uf ∈ Hs(M × R) is the solution to (1.11.1). Here Hs(M × R) is a suitable
function space given Section 22.

Recall that −∆g is a nonnegative linear operator on the Hilbert space L2(M).
Since M is a connected closed smooth Riemannian, it is known that −∆g possesses
a discrete spectrum, which can be denoted as an eigenpairs {(λk, ϕk)}k≥0, such that

0 = λ0 < λ1 ≤ λ2 ≤ . . .↗ ∞ (up to normalization) and {ϕk}k≥0 is an orthonormal

basis in L2(M). Notice that these eigenvalues λk may not be distinct. The zeroth
eigenfunction ϕ0 ≡ 1 in M . This implies that

(1.4) (ϕk, 1)L2(M) = (ϕk, ϕ0)L2(M) = 0, for all k ∈ N.

Furthermore, it is known that the fractional Laplace-Beltrami operator can be
defined by

(−∆g)
s
u(x) =

∞∑
k=1

λsk (u, ϕk)L2(M) ϕk(x) for x ∈M,

where we use λ0 = 0, and (φ,ψ)L2(D) :=
´
D
φψ dVg, for all φ,ψ ∈ L2(M). Here D

can be any subset of M , and dVg is the Riemannian volume element of (M, g) with

ψ being the complex conjugate of the (complex) function ψ. Similar L2 integral
formula notation will be utilized for any subsets in the space-time domain M ×R.
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Note that ((−∆g)
su, 1)L2(M) = 0, for any u ∈ Dom((−∆g)

s), where we used (1.41.4)

and Dom((−∆g)
s) :=

{
u ∈ L2(M) :

∑∞
k=0 λ

2s
k |(u, ϕk)L2(M)|2 <∞

}
.

Motivated by the above observations, the nonlocal parabolic operator Hs can be
defined spectrally. More precisely, given any function u = u(x, t) ∈ L2(M ×R), one
can write

u(x, t) =

∞∑
k=0

uk(t)ϕk(x) =
1√
2π

ˆ
R

∞∑
k=0

ûk(ρ)ϕk(x)e
itρ dρ,

where i =
√
−1. Here uk(t) and ûk(ρ) (the time-Fourier transform of uk(t)) are

given by

uk(t) := (u(·, t), ϕk(·))L2(M) and ûk(ρ) :=
1√
2π

ˆ
R
e−iρtuk(t) dt,(1.5)

respectively, for k ≥ 0. The fractional parabolic operator Hs is (formally) defined
by the pairing

⟨Hsu, v⟩ =
ˆ
R

∞∑
k=0

(iρ+ λk)
s
ûk(ρ)v̂k(ρ) dρ,

where we will justify the above pairing in Section 22 under appropriate sense with
suitable function spaces. We will introduce more properties of the operator Hs in
Section 22. Our main result to determine (M, g) (up to isometry) by using the local
source-to-solution map (1.31.3) is stated in the forthcoming theorem:

Theorem 1.1. Given s ∈ (0, 1), let (M1, g1) and (M2, g2) be closed connected
smooth Riemannian manifolds of dimM1 = dimM2 ≥ 2. Let Oj ⊂ Mj be a
nonempty open sets (for j = 1, 2) such that

(1.6)
(
O1, g1|O1

)
=

(
O2, g2|O2

)
:= (O, g) .

Suppose that

(1.7) SM1,g1,O1(f) = SM2,g2,O2(f), for any f ∈ C∞
c (O × (−T, T )),

where SMj ,gj ,Oj
denotes the local source-to-solution map of{(

∂t −∆gj

)s
uj = f in M × (−T, T ),

uj = 0 in M × {t ≤ −T},

for j = 1, 2. Then there exists a diffeomorphism Φ :M1 →M2 such that Φ∗g2 = g1
in M1 Φ = Id (the identity map) on O.

The preceding theorem was demonstrated in [FGKU24FGKU24] for the elliptic case.
Since (∂t −∆g)

s
is a space-like nonlocal operator (as g = g(x)), we could expect a

similar result for this nonlocal parabolic operator.

Strategy. To prove Theorem 1.11.1, our strategy is to demonstrate that the conditions
(1.61.6) and (1.71.7) can be used to deduce the identity

(1.8) e−τL1(x, z) = e−τL2(x, z), for x, z ∈ O and τ > 0,

where Lj := −∆gj , for j = 1, 2. If the condition (1.81.8) holds, then one can apply
[FGKU24FGKU24, Theorem 1.5] to conclude Theorem 1.11.1 as we wish. For this purpose, we
need to analyze the function e−τHf for any f ∈ C∞

c (O × (−T, T )) carefully (see
Sections 22 and 44).

Organization of the article. The paper is organized as follows. In Section 22, we
provide a rigorous definition of the nonlocal parabolic operator via the spectrum
theory and related function spaces will be introduced. Furthermore, we demonstrate
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that the future data u|{t≥T} of the solution u to (1.11.1) will not affect the solution
u|{−T≤t≤T}. In Section 33, we prove the well-posedness of (1.11.1), which also shows
that the operatorHs is a space-like nonlocal operator. Finally, the proof of Theorem
1.11.1 will be given in Section 44, which can be derived by showing the conditions (1.61.6)
and (1.71.7) ensure the identity (1.81.8).

2. The nonlocal parabolic operator on closed Riemannian manifolds

Given a ∈ R, let us denote

Ha(M × R) :=
{
u ∈ L2(M × R) : ∥u∥Ha(M×R) <∞

}
,

where

∥u∥Ha(M×R) =

(ˆ
R

∞∑
k=0

(
1 + |iρ+ λk|2

)a/2

|ûk(ρ)|2 dρ
)1/2

.

Here

|iρ+ λk|2 = ρ2 + λ2k, for k ∈ N ∪ {0}.

It is obvious that Hs(M×R) ⊂ L2(M×R). Moreover, for any open set O ⊂M×R,
let us denote

Ha(O) := {u|O : u ∈ Hs(M × R)} ,

H̃a(O) := closure of C∞
c (O) in Ha(M × R).

By the duality, there holds that

(Ha(O))∗ = H̃−a(O) and (H̃a(O))∗ = H−a(O).

We also write

Hs
F = {u ∈ Hs(M × R) : supp(u) ⊂ F} ,

for any closed set F ⊂M × R.
Let us first review several useful properties for the nonlocal operator Hs. Given

s ∈ (0, 1), let us define the domain of Hs by

Dom(Hs) = H2s(M × R)

where Here (λk)k≥0 is the eigenvalue of −∆g in M introduced in the previous

section. We denote H−s(M × R) as the dual space of Hs(M × R), and it is not
hard to check that

Hs : Hs(M × R) → H−s(M × R),

Hs : Hs/2(M × R) → L2(M × R).
(2.1)

The first relation can be seen by using the classical pairing argument. More con-
cretely, one has that

(2.2) (Hsu, v)L2(M×R) =

ˆ
R

∞∑
k=0

(iρ+ λk)
s
ûk(ρ)v̂k(ρ) dρ,

for any u, v ∈ C∞(M × R). Then a density argument (C∞(M × R) is dense in
Hs(M × R) with respect to the norm ∥·∥Hs) yields that (2.22.2) holds, so that the
mapping property (2.12.1) is valid in the following form

⟨Hsu, v⟩H−s×Hs =

ˆ
R

∞∑
k=0

(iρ+ λk)
s
ûk(ρ)v̂k(ρ) dρ
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and we use ∥u∥Hs = ∥u∥Hs(M×R) for the simplicity. This shows the first property
in (2.12.1). For the second property, it is easy to see by using the definition of Hs.
More generally, one can also derive that Hb satisfies

Hb : Ha(M × R) → Ha−2b(M × R),

for any a ∈ R and b ≥ 0.
On the other hand, we have the following integration-by-parts formula that

(2.3) (Hsu, v)H−s×Hs =
(
Hs/2u,Hs/2

∗ v
)
L2(M×R),

where Hs
∗ := (−∂t −∆g)

s
denotes the adjoint operator of Hs, which is also a time-

reversal operator of Hs. Similar to the definition of Hs, one can define Hs
∗ via

⟨Hs
∗v, u⟩H−s×Hs =

ˆ
R

∞∑
k=0

(−iρ+ λk)
s
v̂k(ρ)ûk(ρ) dρ,

where ûk(ρ) and v̂k(ρ) are given by (1.51.5).
Recall that (ϕk)k≥0 is an orthonormal basis in L2(M), and we can write the

semigroup
{
e−τL}

τ≥0
generated by L := −∆g on M as

e−τLφ(x) =

∞∑
k=0

e−τλk (φ, ϕk)L2(M) ϕk =

ˆ
M

e−τL(x, z)φ(z) dz,(2.4)

for any φ ∈ L2(M) and for k ≥ 0. Here e−τL(x, z) is the heat kernel of ∂t −∆g =
∂t + L on M , which is symmetric and nonnegative that

e−τL(x, z) = e−τL(z, x) ≥ 0, for all x, z ∈M.

Moreover, e−τL(x, z) possesses the Gaussian upper bound

(2.5) e−τL(x, z) ≤ C

τn/2
e−

|x−z|2
cτ , for all x, z ∈M and τ > 0,

where c, C > 0 are some positive constants (cf. [SY94SY94, Theorem 4.7, page 17]). On
the other hand, via the condition (1.41.4), observe that

(2.6) e−τL1(x) = 1, for all x ∈M and τ > 0,

whenever (M, g) is a closed Riemannian manifold.
Since ∂t and −∆g are commutable, we have e−τH = e−τL ◦ e−τ∂t and

e−τHu(x, t) = e−τL (
e−τ∂tu

)
= e−τL(u(·, t− τ))(x) =

ˆ
M

e−τL(x, z)u(z, t− τ) dz

(2.7)

in the sense that(
e−τHu, v

)
L2(M×R) =

ˆ
R

∞∑
k=0

e−τ(iρ+λk)ûk(ρ)v̂k(ρ) dρ

=

ˆ
R

∞∑
k=0

e−τλkuk(t− τ)vk(t) dt

=

ˆ
R

ˆ
M

ˆ
M

e−τL(x, z)u(z, t− τ)v(x, t) dzdxdt.

Recalling that(M, g) is a closed connected smooth Riemannian manifold, by using
the formula (2.22.2), it is not hard to see

(2.8)
∥∥e−τHu

∥∥
L2(M×R) ≤ e−c0τ∥u∥L2(M×R), for τ ≥ 0,

for some constant c0 > 0.
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With the above expressions and formulae, we can show an alternative formulation
used to characterize Hs by the heat semigroup method.

Lemma 2.1. Given s ∈ (0, 1), for any u ∈ Hs(M × R), there holds that

(2.9) Hsu =
1

Γ(−s)

ˆ ∞

0

(
e−τHu− u

) dτ

τ1+s

in the sense that

⟨Hsu, v⟩H−s×Hs =
1

Γ(−s)

ˆ ∞

0

( (
e−τHu, v

)
L2(M×R) − (u, v)L2(M×R)

) dτ

τ1+s
,

for any v ∈ Hs(M × R).

Proof. By using the formula

(iρ+ λk)
s
=

1

Γ(−s)

ˆ ∞

0

(
e−τ(iρ+λk) − 1

) dτ

τ1+s
,

where the integral converges absolutely (see the proof of [BDLCS21BDLCS21, Lemma 2.1]).
Combining with the formula (2.22.2), there holds that

⟨Hsu, v⟩H−s×Hs =

ˆ
R

∞∑
k=0

[
1

Γ(−s)

ˆ ∞

0

(
e−τ(iρ+λk) − 1

) dτ

τ1+s

]
ûk(ρ)v̂k(ρ) dρ,

which proves the assertion. □

Let us refer readers to the Balakrishnan formula (see [Sam02Sam02, equation (9.63),
page 285]), which can be used to define the general fractional order of operators.
Last but not least, we can derive an integral representation formula of Hs.

Proposition 2.2 (Representation formula). We have the integral formula of Hs

by

Hsu(x, t) =

ˆ ∞

0

ˆ
M

Ks(x, z; τ) (u(z, t− τ)− u(x, t)) dzdτ(2.10)

which belong to H−s(M × R), for any u ∈ Hs(M × R), where

(2.11) Ks(x, z; τ) :=
1

Γ(−s)
e−τL(x, z)

τ1+s
, for x, z ∈M and τ > 0.

Proof. Note that from the formulae (2.42.4) and (2.62.6), then there holds that

(2.12) 1 = e−τL1(x) =

ˆ
M

e−τL(x, z) dz, for all x ∈M.

Now, by using (2.72.7) and (2.92.9), we have

Hsu(x, t)

=
1

Γ(−s)

ˆ ∞

0

(ˆ
M

e−τL(x, z)u(z, t− τ) dz − u(x, t)

)
dτ

τ1+s

=
1

Γ(−s)

ˆ ∞

0

(ˆ
M

e−τL(x, z)u(z, t− τ) dz −
(ˆ

M

e−τL(x, z) dz

)
︸ ︷︷ ︸

=1 by (2.122.12)

u(x, t)

)
dτ

τ1+s

=
1

Γ(−s)

ˆ ∞

0

ˆ
M

e−τL(x, z)(u(z, t− τ)− u(x, t)) dz
dτ

τ1+s
,

where we use the Fubini theorem in the last identity. Finally, using (2.112.11), this
proves the assertion. □
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Remark 2.3. If u is time-independent, i.e., u(x, t) ≡ u(x), it is easy to see that
Hsu(x) = (−∆g)

su(x) by using the formula (2.102.10). However, from the initial
data of the problem (1.11.1), one can not simply take the solution u(x, t) as a time-
independent function so that one can apply the existing results given in [FGKU24FGKU24]
to show Theorem 1.11.1.

Motivated by [LLR20LLR20], we have the following lemma.

Lemma 2.4. Let χA(t) be the characteristic function of A ⊂ R, for any u ∈
Hs(M × R), then there holds that

(i) χA(t)u(x, t) ∈ Hs(M × R), for any interval A ⊂ R.
(ii) Hsu(x, t) = Hs

(
χ(−∞,T ](t)u(x, t)

)
for (x, t) ∈ Ω× (−T, T ).

Proof. Since χA(t) is a space-independent function, the first statement follows by
utilizing a similar approach given in [LLR20LLR20, Section 3]. For the second statement,
note that χ(−∞,T ](t)u ∈ Hs(M × R) provided that u ∈ Hs(M × R). Then the
identity holds by using the integral representation (2.102.10). More specifically, one
may compute that

Hsu(x, t)

=

ˆ ∞

0

ˆ
M

Ks(x, z; τ) (u(z, t− τ)− u(x, t)) dzdτ

=

ˆ ∞

0

ˆ
M

Ks(x, z; τ)
((
χ(−∞,T ](t)u

)
(z, t− τ)−

(
χ(−∞,T ](t)u

)
(x, t)

)
dzdτ

for (x, t) ∈ M × (−T, T ), and u ∈ Hs(M × R), and the last identity holds since
τ ∈ (0,∞). This completes the proof. □

The above lemma states that the value Hsu|M×(−T,T ) will not be affected by the

information u|{t≥T}. In other words, the value Hsu(x, t) depends only on the past,
not the future. Similar properties as in Lemma 2.42.4 hold for the adjoint operator
Hs

∗, and the value of Hs
∗u|M×[−T,T ] will not be affected by the past time {t ≤ −T}.

3. The well-posedness

We next turn to study the well-posedness of (1.11.1). As explained in [LLR20LLR20],
the operator Hs is a space-time coupled operator, which is the space-like nonlocal
operator. Thus, combining with the above relation (2.32.3), one can define the bilinear
form associated with (1.11.1) via

Bg(u, v) :=
(
Hs/2u,Hs/2

∗ v
)
L2(M×R).

then similar to the arguments as in [LLR20LLR20, BS24BS24], one can check that Bg(·, ·) is
bounded and coercive in the space Hs(M × R). It is worth mentioning that this
argument was first found in the work [LLR20LLR20], which also demonstrates that Hs is
a space-like nonlocal operator.

Lemma 3.1 (Well-posedness). Let (M, g) be a closed connected smooth Riemann-
ian manifold with dimM ≥ 2. Then given f ∈ H−s(M × R) fulfilling (1.21.2), there
exists a unique solution u ∈ Hs(M × R) solving (1.11.1).

Proof. Notice that even Hs is a fractional parabolic operator, we will use the Lax-
Milgram theorem to prove the result. To simplify the notation, let us denote

uT (x, t) = χ[−T,T ](t)u(x, t),
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which belongs to Hs(M × R) as u ∈ Hs(M × R) (see Lemma 2.42.4). On one hand,
for the boundedness, by using the Hölder inequality, we have

|Bg(uT , v)|

=

∣∣∣∣ˆ
R

∞∑
k=0

(iρ+ λk)
s
ûT,k(ρ)v̂k(ρ) dρ

∣∣∣∣
≤

(ˆ
R

∞∑
k=0

|iρ+ λk|s |ûT,k(ρ)|2 dρ
)1/2( ˆ

R

∞∑
k=0

|iρ+ λk|s |v̂k(ρ)|2 dρ
)1/2

≤ ∥uT ∥Hs(M×R)∥v∥Hs(M×R),

(3.1)

for any v ∈ Hs
M×[−T,T ], where uT,k and ûT,k are the functions given by (1.51.5) when

the function u is replaced by uT .
On the other hand, for the coercive, we can see that

Bg(uT , uT ) =

ˆ
R

∞∑
k=0

(iρ+ λk)
s ∣∣ûT,k(ρ)

∣∣2 dρ
=

ˆ
R

[ ∞∑
k=0

(
ρ2 + λ2k

)s/2
(cos(sθk) + i sin(sθk))

]∣∣ûT,k(ρ)
∣∣2 dρ,(3.2)

where θk = tan−1
(

ρ
λk

)
for k ∈ N. Note that the sine function is odd, and∣∣ûT,k(ρ)

∣∣2 =
∣∣ûT,k(−ρ)

∣∣2 for any ρ ∈ R, then there holds

ˆ
R

∞∑
k=0

(
ρ2 + λ2k

)s/2
sin(sθk)

∣∣ûT,k(ρ)
∣∣2 dρ = 0.

Meanwhile, since (ϕk)k≥0 is an orthonormal basis in L2(M), we can write uT (x, t) =∑∞
k=0 uT,k(t)ϕk(x) such that

∥uT (·, t)∥2L2(M) =

∞∑
k=0

∣∣uT,k(t)
∣∣2, for t ∈ R,

where we used ∥ϕk∥L2(M) = 1, for all k ≥ 0. Inserting the above identities into
(3.23.2), we can obtain

|Bg(uT , uT )| =
ˆ
R

∞∑
k=0

(
ρ2 + λ2k

)s/2
cos(sθk)

∣∣ûT,k(ρ)
∣∣2 dρ

≥
ˆ
R

∞∑
k=0

(
ρ2 + λ2k

)s/2
cos(sπ/2)

∣∣ûT,k(ρ)
∣∣2 dρ

≥ cs∥uT ∥2Hs(M×R),

(3.3)

for some constant cs > 0 depending only on s ∈ (0, 1).
Therefore, for any f ∈ C∞

c (M × (−T, T )), by using (3.13.1) and (3.33.3), the Lax-
Milgram theorem yields that

Bg(uT , v) = (f, v)L2(M×R) ,

admits a unique solution uT ∈ Hs(M × R) to the initial value problem (1.11.1) with
uT = 0 in M × {t ≤ −T}. This proves the assertion. □

Remark 3.2. With the above well-posedness at hand, the local source-to-solution
map (1.31.3) is automatically well-defined. Moreover, since the solution u = 0 in
{t ≤ −T} and uT = u in M× [−T, T ], then it is possible to extend the measurement
in the whole spacetime cylinder O × R.
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4. The Calderón problem

4.1. Auxiliary lemmas. It is different to the nonlocal elliptic case as in [FGKU24FGKU24],
the function e−τHu is not a solution to any (local) ”parabolic equations”, but we
can still find a useful equation for the function e−τHu. The next lemma is similar
to [LLU22LLU22, Lemma 3.1] in the Euclidean case.

Lemma 4.1. Let u ∈ Hs(M × R), and consider the function

ũ(x, t, τ) := e−τHu(x, t), in M × R× (0,∞).

Then ũ is a solution to

(4.1)

{
(∂t + ∂τ −∆g) ũ = 0 in M × R× (0,∞),

ũ(x, t, 0) = u(x, t) in M × R.

Moreover, ũ(x,−T, τ) = 0 for any x ∈M and τ ∈ (0,∞).

Proof. By using the representation formula (2.72.7) of ũ(x, t, τ), we have

ũ(x, t, τ) =

ˆ
M

e−τL(x, z)u(z, t− τ) dz,

so that

(∂τ −∆g) ũ =

ˆ
M

[
(∂τ −∆g) e

−τL(x, z)
]
u(t− τ, z) dz︸ ︷︷ ︸

=0 since e−τL(x,z) is the heat kernel

+

ˆ
M

e−τL(x, z)∂τ (u(z, t− τ)) dz

=

ˆ
M

e−τL(x, z)∂τ (u(t− τ, z)) dz,

(4.2)

for (x, t, τ) ∈ M × R× (0,∞), where we used that e−τL(x, z) is the heat kernel of
∂τ −∆g on M . Interchanging ∂τ and ∂t in the right hand side of (4.24.2), one has

(∂τ −∆g) ũ = −∂t
(ˆ

M

e−τL(x, z)u(z, t− τ) dz

)
= −∂tũ in M × R× (0,∞),

which shows the first equation of (4.14.1) holds. Moreover, it is easy to check that

ũ(x, t, 0) = lim
τ→0

ˆ
M

e−τL(x, z)u(z, t− τ) dz = u(x, t), for (x, t) ∈M × R.

Now, given any τ > 0, we can directly see that

ũ(x,−T, τ) =
ˆ
M

e−τL(x, z)uT (z,−T − τ)︸ ︷︷ ︸
=0 for τ>0

dz = 0, for (x, τ) ∈M × (0,∞).

This concludes the proof. □

Let us reformulate the initial value problem (1.11.1) into a source problem, which
helps us eliminate the initial condition in (1.11.1). As we discussed in Section 33, the
solution u of (1.11.1) in ΩT is the same as the solution uT (x, t) = χ(−T,T )(t)u(x, t).
Moreover, with the representation formula (2.102.10) and the pass time condition in
(1.11.1) at hand, we can compute that

Hsu(x, t)|t≤−T

=

ˆ ∞

0

ˆ
M

Ks(x, z; τ) (u(z, t− τ)− u(x, t)) dzdτ

∣∣∣∣
{t≤−T}

= 0 in M,

(4.3)
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since u(x, t) = u(z, t − τ) = 0 for t ≤ −T and for all τ ∈ (0,∞). This also shows
that the condition (1.21.2) must be satisfied. In Lemma 2.42.4, we have explained that
the future data of u|{t≥T} will not affect the solution u of (1.11.1) in the spacetime
domain M × (−T, T ). Hence, there would be infinitely many functions defined
globally on M × R solving the equation (1.11.1) by varying the function u|{t≥T}.
However, combining with (4.34.3), let us adopt the notion for the ”uniqueness” that
(1.11.1) admits a unique solution uT ∈ Hs

M×[−T,T ]. In other words, the equation (1.11.1)

can be rewritten in terms of

(4.4) HsuT = f in M × (−T, T ),
for any f ∈ C∞

c (O × (−T, T )).
By using the previous discussions, we can write the solution uT in (4.44.4) of the

form

uT = H−sf in M × (−T, T ),
and we aim to write down a more explicit expression formula of H−s.

Lemma 4.2. Given 0 < s < 1, let f = f(x, t) ∈ C∞
c (M × (−T, T )), then the

solution uT of (4.44.4) is given by

uT =
1

Γ(s)

ˆ ∞

0

e−τHf
dτ

τ1−s

=

ˆ ∞

0

ˆ
M

K−s(x, z; τ)f(z, t− τ) dzdτ,

(4.5)

where K−s(x, z, τ) is the kernel function defined by (2.112.11) whenever the exponent s
is replaced by −s.

Proof. The proof can be seen by using the formula of the Gamma function that

(iρ+ λk)
−s

=
1

Γ(s)

ˆ ∞

0

e−τ(iρ+λk)
dτ

τ1−s
.

The derivation in the first identity of (4.54.5) is similar to the proof of Lemma 2.12.1. For
the second equality in (4.54.5), one simply uses the heat kernel e−τL(x, z) combining
with the factor 1

Γ(s)
1

τ1−s . This proves the assertion. □

Remark 4.3. The first identity of (4.54.5) will play an essential role in the proof of
Theorem 1.11.1.

4.2. Proof of Theorem 1.11.1. Now, we can prove Theorem 1.11.1.

Proof of Theorem 1.11.1. Let ω1, ω2 ⊂ O be nonempty open sets such that ω1∩ω2 = ∅.
Given an arbitrary f ∈ C∞

c (ω1 × (−T, T )), the condition (1.61.6) implies that

(∂t −∆g1)
m
f = (∂t −∆g2)

m
f = (∂t −∆g)

m
f on ω1 × (−T, T ),

and ∆m
g f ∈ C∞

c (ω1× (−T, T )), for any m ∈ N. Meanwhile, using (1.71.7), there holds
that

(4.6) H−s
1 ((∂t −∆g)

m
f)
∣∣
O×(−T,T )

= H−s
2 ((∂t −∆g)

m
f)
∣∣
O×(−T,T )

,

for any m ∈ N, where Hj := ∂t −∆gj , for j = 1, 2. Note that

wj(x, t) := χ[−T,T ](t)H−s
j

((
∂t −∆gj

)m
f
)
(x, t)

is the solution to

Hs
jwj = (∂t −∆g)

m
f ∈ C∞

c (ω1 × (−T, T )) in M × R,

for j = 1, 2 and for any m ∈ N. Then the identity (4.64.6) is equivalent to

H−s
1 ((∂t −∆g)

m
f)
∣∣
O×R = H−s

2 ((∂t −∆g)
m
f)
∣∣
O×R ,
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where we use the same technique by multiplying the time cutoff function χ[−T,T ](t),
which was shown in Section 33. This makes that the solution wj are supported in
M × [−T, T ], which are zero in the sets M × ({t ≤ −T} ∪ {t ≥ T}), for j = 1, 2.
Let us emphasize again that the future information of these solutions in the set
M × {t ≥ T} will not affect the solution in the set M × (−T, T ), and hence we
simply take the solution to be zero in the future time domain.

By using Lemma 4.24.2, the above identity yields that

(4.7)

ˆ ∞

0

(
e−τH1 − e−τH2

)
((∂t −∆g)

m
f)

dτ

τ1−s
= 0,

for (x, t) ∈ O × R and m ∈ N. Furthermore, for f ∈ C∞
c (ω1 × (−T, T )) and

n+1
2 < ℓ ∈ N, the Sobolev embedding and (2.82.8) imply∥∥e−τHj (∂t −∆g)

m
f
∥∥
L∞(Mj×R)

≤ C
∥∥e−τHj (∂t −∆g)

m
f
∥∥
Hℓ(Mj×R)

≤ C
∥∥e−τHj

(
1− ∂2t −∆gj

)ℓ
(∂t −∆g)

m
f
∥∥
L2(Mj×R)

≤ Ce−c0τ
∥∥ (1− ∂2t −∆gj

)ℓ
(∂t −∆g)

m
f
∥∥
L2(Mj×R)

(4.8)

which ensures that the the integral in (4.74.7) convergence uniformly for (x, t) ∈ O×R,
for any m ∈ N. Notice that in the right-hand side of (4.84.8), it is a local computation,
for any smooth function f ∈ C∞

c (ω1 × (−T, T )).
Similar to [LLU22LLU22], using the commutative property e−τHjHm

j = Hm
j e

−τHj , for

all τ ≥ 0 on Dom
(
Hm

j

)
, we can obtain

e−τHj ((∂t −∆g)
m
f) = (∂t −∆g)

m (
e−τHjf

)
= (−∂τ )m

(
e−τHjf

)︸ ︷︷ ︸
By (4.14.1)

,
(4.9)

for any m ∈ N, where e−τHjf solves (4.14.1) as g = gj , for j = 1, 2. Inserting (4.94.9)
into (4.74.7), there holds that

ˆ ∞

0

∂mτ
((
e−τH1 − e−τH2

)
f
)
(x, t)

dτ

τ1−s
= 0,(4.10)

for (x, t) ∈ O×R and m ∈ N. Meanwhile, as (x, t) ∈ ω2×(−T, T ), we can integrate
by parts (4.104.10) m-times. Note that there are no end-point contributions while
doing this integration by parts. More concretely, as showed in [FGKU24FGKU24], using
the exponential decay (4.84.8) as τ → ∞ and the Gaussian upper bound (2.52.5) for the
heat kernel e−τL(x, z) as τ → 0, one can guarantee that

lim
τ→∞

∣∣∣∣∂ℓτ ((e−τH1 − e−τH2
)
f
)
(x, t)

1

τk−s

∣∣∣∣
= lim

τ→0

∣∣∣∣∂ℓτ ((e−τH1 − e−τH2
)
f
)
(x, t)

1

τk−s

∣∣∣∣ = 0,

(4.11)

where we use

(4.12)

∣∣∣∣∂ℓτ ((e−τH1 − e−τH2
)
f
)
(x, t)

∣∣∣∣ ≤ Ce−
c
τ

for any k, ℓ ∈ N, for any τ ∈ (0, 1) and for some constant c > 0.
With (4.114.11) at hand, integrating (4.104.10) m-times, there holds that

ˆ ∞

0

((
e−τH1 − e−τH2

)
f
)
(x, t)

dτ

τm+1−s
= 0, for all m ∈ N,
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which is equivalent to

ˆ ∞

0

((
e−τH1 − e−τH2

)
f
)
(x, t)

dτ

τm+2−s
= 0, for all m ∈ N ∪ {0}.(4.13)

By using the change of variable that η = 1
τ , the identity (4.134.13) yields that

(4.14)

ˆ ∞

0

φ(η)ηm dη = 0,

for all m ∈ N, where

φ(η) :=

((
e−

1
ηH1 − e−

1
ηH2

)
f
)
(x, t)

ηs
, for (x, t) ∈ ω2 × R.

By using (2.82.8) and (4.124.12), one can obtain that

|φ(η)| ≤ C
e−cη

ηs
,

for some constants c, C > 0. Therefore, the Fourier transform of χ[0,∞)(η)φ(η) is

F
(
χ[0,∞)(η)φ(η)

)
(ξ) =

1√
2π

ˆ ∞

0

φ(η)e−iηξ dη

is holomorphic for Imξ < c. Via (4.144.14), it is known that F
(
χ[0,∞)φ

)
(ξ) equals to

zero at ξ = 0, which implies that φ(η) ≡ 0 for η > 0. This implies that

(4.15)
((
e−τH1 − e−τH2

)
f
)
(x, t) = 0 for (x, t) ∈ ω2 × R and τ > 0.

The next task is to transfer the above identity into another useful identity (1.81.8) as
we mentioned.

Thanks to Lemma 4.14.1, we know that e−τHjf solves the equation(
∂τ −∆gj

) (
e−τHjf

)
= −∂t

(
e−τHjf

)
, for (x, t, τ) ∈M × R× (0,∞),

for j = 1, 2. Let us integrate the above equation with respect to t ∈ R, so that

(
∂τ −∆gj

)
Fj

= −
ˆ ∞

−∞
∂t

(
e−τHjf

)
dt

= lim
t→−∞

(ˆ
M

e−τLj (x, z)f(z, t− τ) dz

)
− lim

t→∞

(ˆ
M

e−τLj (x, z)f(z, t− τ) dz

)
= 0,

(4.16)

for all x ∈M , τ > 0 and f ∈ C∞
c (ω1 × (−T, T )), where Lj := −∆gj , and

Fj = Fj(x, τ) =

ˆ ∞

−∞

(
e−τHjf

)
dt, for j = 1, 2.
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In addition, observe the function Fj(x, τ) more carefully, then one can rewrite Fj

in terms of

Fj(x, τ) =

ˆ ∞

−∞

(
e−τHjf

)
(x, t) dt

=

ˆ ∞

−∞

ˆ
M

e−τLj (x, z)f(z, t− τ) dzdt

=

ˆ
M

e−τLj (x, z)

(ˆ ∞

−∞
f(z, t− τ) dt

)
dz︸ ︷︷ ︸

By the Fubini (Tonelli) theorem

=
(
e−τLj f

)
(x),

(4.17)

for j = 1, 2, which are the well-defined, since the right-hand side in (4.174.17) is the
heat kernel representation formula as f ∈ C∞

c (ω1). Here e−τLj (x, z) ≥ 0 is the heat
kernel of ∂τ + Lj for j = 1, 2, and

f(z) :=

ˆ ∞

−∞
f(z, t− τ) dt ∈ C∞

c (ω1),

since f ∈ C∞
c (ω1 × (−T, T )). Due to arbitrariness of f ∈ C∞

c (ω1 × (−T, T )), the
function f(z) ∈ C∞

c (ω1) must also be arbitrary11.
Now, on the one hand, integrate (4.154.15) with respect to t ∈ (−∞,∞), plugging

(4.174.17) into (4.154.15) (after t-integration), then there holds that((
e−τL1 − e−τL2

)
f
)
(x) = 0 for x ∈ ω2 and τ > 0.

On the other hand, without loss of generality, we may assume that O is connected,
which is contained in a single coordinate patch for both manifolds M1 and M2.
Note that the function e−τLj f solves the heat equation (4.164.16), for j = 1, 2, which
implies that

(
e−τL1 − e−τL2

)
f solves the heat equation

(∂τ −∆g)
((
e−τL1 − e−τL2

)
f
)
= 0 for (x, τ) ∈ O × (0,∞).

Then the unique continuation property of the heat equation (cf. [Lin90Lin90]) implies((
e−τL1 − e−τL2

)
f
)
= 0 for (x, τ) ∈ O × (0,∞).

Now, as f(x, t) ∈ C∞
c (ω1 × (−T, T )) and ω1 ⋐ O arbitrary, so f(x) ∈ C∞

c (ω1) and
ω1 can be also arbitrary.

Therefore, one can obtain

e−τL1f
∣∣
O = e−τL2f

∣∣
O , for τ > 0.

Due to the arbitrariness of f ∈ C∞
c (O), the above identity implies

e−τL1(x, z) = e−τL2(x, z), for x, z ∈ O and τ > 0,

i.e., (1.81.8) holds. Finally, applying [FGKU24FGKU24, Theorem 1.5], one can find a diffeo-
morphism Φ : M1 → M2 such that Φ∗g2 = g1 on M1 with Φ = Id on O. This
proves the assertion. □

Acknowledgments. The author is partially supported by the National Science
and Technology Council (NSTC) Taiwan, under the projects 113-2628-M-A49-003
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1This can be easily seen by the following simple observations: Given any f ∈ C∞
c (ω1), choosing

f(z, t− τ) := f(z)h(t− τ), where h(·) ∈ C∞
c (−T, T ) such that

´∞
−∞ h(t) dt =

´∞
−∞ h(t− τ) dt = 1,

for all τ > 0.
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