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Abstract. In this work, we study the partial data Calderón problem for the
anisotropic Schrödinger equation

(0.1) (−∆g̃ + V )u = 0 in Ω× (0,∞),

where Ω ⊂ Rn is a bounded smooth domain, g̃ = gij(x)dx
i ⊗ dxj + dy ⊗ dy

and V is translationally invariant in the y direction. Our final goal is to show

that both the metric g and the potential V can be recovered from the (partial)
Neumann-to-Dirichlet (ND) map on Γ × {0} with Γ ⋐ Ω. Our approach can

be divided into the following steps:
Step 1. Boundary determination. We establish a novel boundary determi-

nation to identify (g, V ) on Γ with the help of suitable approximate solutions

for (0.10.1) with inhomogeneous Neumann boundary condition.
Step 2. Relation to a nonlocal elliptic inverse problem. We relate inverse

problems for the Schrödinger equation with the nonlocal elliptic equation

(0.2) (−∆g + V )1/2v = f in Ω,

via the Caffarelli–Silvestre type extension, where the measurements are en-
coded in the source-to-solution map. The nonlocality of this inverse problem

allows us to recover the associated heat kernel.
Step 3. Reduction to an inverse problem for a wave equation. Combining

the knowledge of the heat kernel with the Kannai type transmutation formula,

we transfer the inverse problem for (0.20.2) to an inverse problem for the wave
equation

(0.3) (∂2
t −∆g + V )w = F in Ω× (0,∞),

where the measurement operator is also the source-to-solution map. We can
finally determine (g, V ) on Ω \ Γ by solving the inverse problem for (0.30.3).
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1. Introduction

In this paper, we investigate an inverse boundary value problem for a certain
class of elliptic partial differential equations (PDEs) on the transversal domain
Ω×(0,∞). The nowadays prototypical example of an inverse problem for an elliptic
PDE was introduced by Calderón [Cal06Cal06], in which the objective is to recover the
conductivity γ in the conductivity equation

(1.1) div(γ∇u) = 0 in Ω

from the (full) Dirichlet-to-Neumann (DN) map Λγ . From a physical point of
view, this corresponds to inducing a voltage f on the boundary and measuring the
resulting (normal) current j = γ∂νuf |∂Ω across it, where uf is the solution of (1.11.1)
with uf = f on ∂Ω and ν denotes the outward pointing normal vector field along
∂Ω. A closely related problem is the determination of an unknown potential q in
the Schrödinger equation

(1.2) (−∆+ q) v = 0 in Ω

from the DN map Λqg = ∂νvg|∂Ω, which was resolved in [SU87SU87] for n ≥ 3 and
[Buk08Buk08] for n = 2. The solutions of (1.11.1) and (1.21.2) are connected via the Liouville
reduction v = γ1/2u, which also gives a precise relation between Λγ and Λq only
involving γ|∂Ω and ∂νγ|∂Ω, and by the boundary determination result of Kohn and
Vogelius [KV84KV84], the solution of the inverse problem for the Schrödinger equation
directly resolves the Calderón problem under suitable regularity assumptions on γ.
Let us note that the result of Kohn and Vogelius is a local boundary determination
result, that is to recover γ and ∂νγ at a boundary point x0 ∈ ∂Ω, one only needs
to know Λγ in a small neighborhood of x0. For a more comprehensive account
of these results, we refer the readers to the survey article [Uhl09Uhl09]. Inverse prob-
lems in transversally anisotropic geometries with full data or partial data have also
been considered in various models, such as [DSFKSU09DSFKSU09, DSFKLS16DSFKLS16, DSFKL+20DSFKL+20,
KSU07KSU07, LLLS21LLLS21, FO20FO20, FLL23FLL23, KU18KU18].

Recently, the above type of inverse problems has been extended to nonlocal
models like

(1.3) (L+ q)u = 0 in Ω,

where L is, for example, an elliptic nonlocal operator, and one again aims to re-
cover the potential q and possibly some coefficients on which L may depend from
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the related DN map ΛL,q. The first model studied in the literature [GSU20GSU20] is
the case of the fractional Laplacian L = (−∆)s, having Fourier symbol |ξ|2s, and
the resulting equation (1.31.3) is by now usually called fractional Schrödinger equa-
tion. If one assumes that the nonlocal operator L in (1.31.3) satisfies the unique
continuation property (UCP), implying the Runge approximation, then one can
show that the inverse problem related to (1.31.3) is uniquely solvable (see, for exam-
ple, [RZ23RZ23, LZ23LZ23]). Two classical examples of nonlocal operators having the UCP
are the fractional Laplacian [GSU20GSU20] and the Bessel potential operator ⟨D⟩s with

Fourier symbol
(
1 + |ξ|2

)s/2
[KPPV20KPPV20]. Let us note that in both cases proving the

UCP for these operators rests on the existence of a nice extension problem related
to these operators, but unfortunately, up to now, there is no characterization of
nonlocal operators having this property.

More precisely, Caffarelli and Silvestre [CS07CS07] characterized the fractional Lapla-
cian (−∆)s as the Dirichlet-to-Neumann operator for the associated extension prob-
lem. This point of view of the fractional Laplacian is commonly referred to as
the Caffarelli-Silvestre extension in the literature. The UCP for this extension
problem was shown in [Rül15Rül15]. For general variable coefficients nonlocal elliptic
operators of order s ∈ (0, 1), Stinga and Torrea [ST10ST10] demonstrated analogous
results such that this type of nonlocal operators can be also characterized via
the related extension problem. Based on this, the authors of [GLX17GLX17] solved the
Calderón problem for variable coefficients nonlocal operators, whereas the analo-
gous result for their local counterpart remains open in dimensions n ≥ 3. Indeed,
there are several uniqueness results for nonlocal inverse problems, which are still
open for their local counterparts and maybe even not true, such as the drift prob-
lem [CLR20CLR20], the obstacle problem [CLL19CLL19], the inverse source problem [LL23LL23],
and the characterization via monotonicity relations [HL19HL19, HL20HL20]. Hence, one can
regard the nonlocality as a tool that helps solve inverse problems. Recently, the
works [CGRU23CGRU23, LLU23LLU23, Rül23Rül23, LZ24LZ24] provide interesting connections between the
nonlocal and local Calderón type inverse problems for both elliptic and parabolic
equations. We also refer readers to several related articles for nonlocal operators,
such as [CRZ22CRZ22, KRZ23KRZ23, KLZ24KLZ24, CRTZ24CRTZ24, LZ23LZ23, LTZ24LTZ24] and the references therein.
Very recently, the recovery of the geometrical information (M, g) and potential V
simultaneously has been investigated by [FKU24FKU24] on closed Riemannian manifolds,
and we also refer readers to [Fei24Fei24, FGKU24FGKU24] as the potential V = 0.

Based on this observation, we study in this article a class of inverse problems
for (local) elliptic PDEs having a similar form as the ones emerging in the re-
lated extension problems for the aforementioned operators. In the next section, we
introduce the considered model in more detail.

1.1. Mathematical formulation. Let Ω be a bounded smooth domain11 in Rn

with n ≥ 2. Suppose that we have given on Ω a (smooth) Riemannian metric
g = (gij)1≤i,j≤n satisfying the uniform ellipticity condition

(1.4) λ |ξ|2 ≤ gij(x)ξ
iξj ≤ λ−1 |ξ|2 in Ω,

for some constant λ ∈ (0, 1) and for any vector ξ =
(
ξ1, . . . , ξn

)
∈ Rn. Throughout

the whole article, we impose the Einstein summation convention. Let ∆g be the
Laplace-Beltrami operator given by

∆gu := |g|−1/2∂i
(
|g|1/2gij∂ju

)
,

where |g| = det g, gij denotes the components of the inverse matrix g−1 and ∂j =
∂xj .

1Throughout this work we say D ⊂ Rn is a domain if it is an open connected set.
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To formulate the PDE problem, let us extend g to a Riemannian metric g̃ on
Ω× R+, where R+ = (0,∞), by setting

(1.5) g̃ = gijdx
i ⊗ dxj + dy ⊗ dy

or equivalently in matrix form

g̃(x) =

(
g(x) 0
0 1

)
.(1.6)

In equation (1.51.5) and below, we denote the coordinates in Ω × R+ by (x, y) or
(x1, . . . , xn, xn+1) and the range of the indices about we sum will always be clear
from the context. Then the induced Laplace–Beltrami operator on Ω×R+ becomes

∆g̃ = ∆g + ∂2y .

Next, let us consider the following mixed boundary value problem for an anisotropic
Schrödinger equation 

(−∆g̃ + V )u = 0 in Ω× R+,

−∂yu = f on Ω× {0},
u = 0 on ∂Ω× R+,

(1.7)

where V = V (x) is a given bounded nonnegative potential, which is translation
invariant in the y-direction.

With the well-posedness result of equation (1.71.7) (see Section 22) at hand, we can
define for any domain Γ ⊊ Ω the related (partial) Neumann-to-Dirichlet (ND) map

ΛΓ
g,V : H−1/2(Γ) → H1/2(Γ), f 7→ uf |Γ ,

where we identify Γ with Γ×{0} and uf ∈ H1
0 (Ω× [0,∞)) is the unique solution to

(1.71.7). The involved function spaces will be introduced in Section 22. Now, we can
formulate the considered inverse problem.

(IP1) Inverse problem for the elliptic equation. Can one uniquely determine
the metric g and potential V in Ω by using the knowledge of the partial
ND map ΛΓ

g,V ?

If Γ = Ω, this inverse problem (IP1)(IP1) can be viewed as the boundary determina-
tion problem for both g and V , since both g and V depend only on the x-variable.
This can be proved by introducing suitable approximate solutions (see Section 33)
so that both g and V can be recovered. Because of this, we assumed that Γ ̸= Ω.

Theorem 1.1 (Global recovery). Let Ω ⊂ Rn, n ≥ 2, be a bounded smooth do-
main, and Γ ⋐ Ω be a domain with smooth boundary ∂Γ, so that Γ and Ω \ Γ are
connected. Let g1, g2 ∈ C∞(Ω;Rn×n) be two Riemannian metrics satisfying the
uniform ellipticity condition (1.41.4) (extended to Ω×R+ via (1.51.5)). Assume that the
two potentials 0 ≤ V1, V2 ∈ C∞(Ω) are translation invariant in the y-direction. Let
ΛΓ
gj ,Vj

be the partial ND map of
(
−∆g̃j + Vj

)
uj = 0 in Ω× R+,

−∂yuj = f on Ω× {0},
uj = 0 on ∂Ω× R+,

(1.8)

for j = 1, 2. Suppose that

ΛΓ
g1,V1

f = ΛΓ
g2,V2

f on Γ for any f ∈ C∞
c (Γ),(1.9)

then there exists a diffeomorphism Ψ : Ω → Ω with Ψ|Γ = IdΓ such that

g1 = Ψ∗g2 in Ω and V1 = V2 ◦Ψ in Ω,

where IdΓ denotes the identity map on Γ.
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Note that we have the following uniqueness result in the case V ≡ 0.

Corollary 1.2. Suppose all assumptions of Theorem 1.11.1 hold and let ΛΓ
gj ,0 be the

local ND map of 
∆g̃juj = 0 in Ω× R+,

−∂yuj = f on Ω× {0},
uj = 0 on ∂Ω× R+,

for j = 1, 2. Suppose that

ΛΓ
g1,0f = ΛΓ

g2,0f for any f ∈ H−1/2(Γ),

holds, then there exists a diffeomorphism Ψ: Ω → Ω with Ψ|Γ = IdΓ in Γ such that
g1 = Ψ∗g2 in Ω.

The preceding results are related to the Calderón problem on transversally
anisotropic geometries. In the work [DSFKLS16DSFKLS16], the authors investigated similar
problems by using lateral boundary Cauchy data, under appropriate geometrical
conditions for the manifold. However, in this work, we utilize the measurement
from the bottom of the domain, which makes the problems treated in these two
papers essentially different. In addition, Corollary 1.21.2 can be viewed as a special
case of the anisotropic Calderón problem (1.11.1), where the scalar conductivity γ is
replaced by a conductivity matrix (γij) and incorporates the physical situation in
which the medium has a directional dependent resistivity ρ = γ−1. This implies
that the current j does not necessarily flow into the direction of the electrical field
E, as they satisfy the relation j = ρE, and such behavior is met in various materi-
als. On the one hand, both the metric and the potential are y-independent, which
means that g and V depend on n variables. On the other hand, the (localized)
ND map ΛΓ

g,V is 2n-dimensional, which is different from the classical Calderón type

inverse problems that n-variables with (2n−2) boundary measurements. Hence, we
have 2-dimensional more boundary measurements that can be used in our study.

Let us point out that even if g is isotropic (i.e. gij = σδij for some scalar function
σ), it is impossible to determine both g and V in general, due to the natural ob-
struction from the Liouville reduction. More concretely, let us use the forthcoming
classical example to demonstrate why the result fails in general. Consider a positive
scalar function σ ∈ C∞(Ω) with σ = 1 near ∂Ω, and q ∈ L∞(Ω). Then the DN
data of

−∇ · (σ∇u) + qu = 0 and −∆w +

(
∆
√
σ√
σ

+
q

σ

)
w = 0︸ ︷︷ ︸

Liouville’s reduction: v=
√
σw

are the same, that is, (u|∂Ω, ∂νu|∂Ω) = (w|∂Ω, ∂νw|∂Ω), where we used σ = 1 near
∂Ω and ν is the unit outer normal on ∂Ω. However, it is easy to see that their
coefficients could be different. This type of inverse problem is usually referred to
as the diffuse optical tomography problem in the literature, which was investigated
in [Arr99Arr99, AL98AL98, Har09Har09]. Therefore, one would not expect that the injectivity for
the previously described Calderón problem (1.71.7) can be achieved.

As we mentioned before, in our model (1.71.7), g and V are transversally dependent,
but independent of the vertical variable. A typical example is graphite, which is
composed of multiple layers of graphene possessing, microscopically, a honeycomb
lattice. The directionally different conducting properties of graphite rests on the
fact that the layers are held together via the relatively weak Van der Waals forces,
whereas one observes delocalized π-systems in each graphene layer. Based on this,
the conductivity is much smaller in the transversal direction and the π−system is
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mostly responsible for the planar conduction. As a first approximation, one may
regard the conductivity as being constant, as we do it in the problem (1.71.7), but the
planar part of the conductivity matrix still depends on the y-coordinate as there
are different forms of stacking of the graphene layers and the layers have a nonzero
distance to each other. For a more detailed account of the physical properties of
such materials we refer to the specialized literature (see e.g. [AM76AM76, CFF+18CFF+18]).
Models having a non-trivial y-dependence will not be studied in this work.

Finally, let us mention that in the course of proving Theorem 1.11.1, we also es-
tablish the following unique determination result for an elliptic nonlocal inverse
problem, which is a generalization of [FGKU24FGKU24, Theorem 1.1].

Theorem 1.3. Assume that Ω, Γ, (gj , Vj) for j = 1, 2 are given as in Theorem

1.11.1 and let (g, V ) ∈ C∞(Ω;Rn×n) × C∞(Ω) be any pair of a uniformly elliptic
Riemannian metric g and nonnegative potential V such that

(g1|Γ , V1|Γ) = (g2|Γ , V2|Γ) = (g|Γ, V |Γ) .(1.10)

Let SΓ
gj ,Vj

: C∞
c (Γ) ∋ f 7→ vfj |Γ ∈ L2(Γ) be the local source-to-solution map of{

(−∆gj + Vj)
1/2v = f in Ω,

v = 0 on ∂Ω

for j = 1, 2. Suppose that

SΓ
g1,V1

f = SΓ
g2,V2

f for any f ∈ C∞
c (Γ),(1.11)

then there exists a diffeomorphism Ψ: Ω → Ω with Ψ|Γ = IdΓ such that

g1 = Ψ∗g2 and V1 = V2 ◦Ψ in Ω.

1.2. Strategy of proof. Next, let us explain our approach to prove Theorem 1.11.1
(cf. (IP1)(IP1)).

Step 1. Boundary determination. In the first step, we establish a novel bound-
ary determination result, which shows that the ND map on Γ, denoted by ΛΓ

g,V ,
determines the metric g and the potential V on Γ. To achieve this goal, we will
construct suitable approximate solutions for the anisotropic Schrödinger equation
(1.71.7) with inhomogeneous Neumann boundary condition on the bottom Ω×{0} and
homogeneous Dirichlet boundary condition on the lateral boundary ∂Ω× (0,∞).

Step 2. Relation to a nonlocal elliptic inverse problem. In the next step, we relate
via the Caffarelli–Silvestre type extension technique [CS07CS07, ST10ST10] (see Section 4.24.2)
the inverse problem for the Schrödinger equation with an inverse problem for the
nonlocal elliptic equation

(1.12) (−∆g + V )
1/2

v = f in Ω,

where the measurements are encoded in the source-to-solution map. The nonlocality
of this inverse problem allows us to recover the associated heat kernel of the heat
operator ∂t−∆g+V on Γ×(0,∞). This is partially inspired by the work [FGKU24FGKU24]
and will be utilized in the proof of our main result (cf. (IP2)(IP2)).

Step 3. Reduction to an inverse problem for a wave equation. In the third step,
by combining the knowledge of the heat kernel with the Kannai type transmutation
formula, we relate the nonlocal inverse problem for (1.121.12) to an inverse problem for
the wave equation

(1.13)
(
∂2t −∆g + V

)
w = F in Ω× (0,∞),

where the measurement operator is again the source-to-solution map and the wave
w vanishes on the lateral boundary ∂Ω and has zero initial conditions (cf. (IP3)(IP3)).
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By relating this measurement map with a restricted Dirichlet-to-Neumann (DN)
map for the wave equation (1.131.13) and using existing uniqueness results for wave
equations (cf. [KOP18KOP18]) we can finally determine (g, V ) on Ω \ Γ.

Finally, let us remark that for Calderón type inverse problems, many research
articles establish unique determination results by using complex geometrical optics
(CGO) solutions. For example in the classical Calderón problem for the Schrödinger
equation −∆+q, they can be used together with a suitable integral identity to show
that the Fourier transform of the difference of the potentials vanishes. The above-
outlined approach does not require these special solutions, but let us emphasize that
the boundary determination result also relies on oscillating approximate solutions
(Lemma 3.23.2) and appropriate integral identities (Theorem 3.13.1).

1.3. Organization of the paper. The paper is organized as follows. In Section
22, we define the function spaces used throughout this work and prove the well-
posedness of (1.71.7), so that the corresponding localized ND map can be defined
rigorously. In Section 33, we show that the localized ND map ΛΓ

g,V determines both
g and V on the open set Γ, which can be viewed as a boundary determination
result. We give a characterization of the anisotropic Schrödinger equation and the
associated nonlocal elliptic equation in Section 44. We also transfer our local inverse
problem to a nonlocal inverse problem in this section and show that the correspond-
ing heat kernel is determined. In Section 55, we use a Kannai-type transmutation
formula together with the known heat kernels to transfer the information from the
elliptic nonlocal inverse problem to an inverse problem for a wave equation. This
inverse problem is eventually solved by using existing unique determination results
for wave equations. Furthermore, in the Appendices AA, BB and CC we collect some
proofs of necessary background material, which we used throughout the article.

2. Preliminaries

In this section, we collect some fundamental material that will be utilized through-
out our work.

2.1. Function spaces. If U is an open subset of some Euclidean space Rm, we
denote by L2(U) and H1(U) the usual Lebesgue and Sobolev spaces concerning the
Lebesgue measure. These are Hilbert spaces, carry the norms

∥u∥L2(U) :=

(ˆ
U

|u|2 dx
)1/2

,

∥u∥H1(U) :=
(
∥u∥2L2(U) + ∥∇u∥2L2(U)

)1/2
,

and the related inner products are defined via the polarization identity. Here ∇
denotes the usual gradient concerning the Euclidean metric hij = δij . If U has a
Lipschitz boundary, then clearly we have a well-defined (bounded) trace operator
H1(U) ∋ u 7→ u|∂U ∈ L2(∂U, dHm−1), where dHm−1 is the (m − 1)-dimensional
Hausdorff measure, and its image coincides with the Slobodeckij space H1/2(∂U),
that is the space of functions v on ∂U such that

(2.1) ∥v∥H1/2(∂U) :=
(
∥v∥2L2(∂U) + [v]2H1/2(∂U)

)1/2
<∞,

where [·]H1/2(∂U) is the Gagliardo seminorm given by

(2.2) [v]H1/2(∂U) :=

(ˆ
∂U×∂U

|v(x)− v(y)|2

|x− y|m
dHm−1(x)dHm−1(y)

)1/2

.

The dual space of H1/2(∂U) is denoted by H−1/2(∂U). For any open set Γ ⊂ ∂U ,
the spaces H1/2(Γ) are defined exactly as in (2.12.1) and (2.22.2) up to replacing ∂U by
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Γ. If u ∈ H−1/2(∂U) is supported in Γ, where Γ ⊂ ∂U is a given open set, then we
say u belongs to the space H−1/2(Γ). Next, let us observe that the trace operator
is bounded as a map from H1(U) to H1/2(∂U). Furthermore, for any open set
U ⊂ Rm we define

H1
0 (U) := closure of C∞

c (U) in H1(U),

and if U is a Lipschitz domain, then H1
0 (U) coincides with the kernel of the trace

operator.
Next, we introduce some relevant notations for the Riemannian setting. If U ⊂

Rm is a given open set with coordinates
(
x1, . . . , xm

)
, Riemannian metric h = (hij)

and inverse h−1 =
(
hij
)
, then we denote the induced Riemannian measure by

dVh := |h|1/2dx1 . . . dxm

with |h| = det(h) and the inner products of vector fields and 1-forms by

X · Y := hijX
iY j , ω · η := hijωiηj ,

where X = Xi∂i, Y = Y j∂j , ω = ωidx
i and η = ηjdx

j . The latter definition
is consistent with the musical isomorphism between the tangent and cotangent
space, which reads in coordinates Xi = gijX

j . As usual we set |X| =
√
X ·X

and |ω| =
√
ω · ω, when X is a vector field and ω a 1-form. We believe that these

notations will not lead to any confusion as it is always clear from the context to
which we are referring. In particular, if u, v are functions on U and d denotes the
exterior derivative, we have

du · dv = hij∂iu∂jv and du · ξ = hij (∂iu) ξj ,

for any ξ = (ξ1, . . . , ξn) ∈ Rn. Furthermore, we set

∥u∥L2(U ;dVh) :=

(ˆ
U

|u|2dVh
)1/2

and

∥u∥H1(U ;dVh) :=
(
∥u∥2L2(U ;dVh)

+ ∥du∥2L2(U ;dVh)

)1/2
for functions u on U . Note that if the (smooth) Riemannian metric h = (hij) is
uniformly elliptic (fulfilling the condition (1.41.4)), then one clearly has

(2.3) ∥u∥L2(U) ∼ ∥u∥L2(U ;dVh) and ∥∇v∥L2(U) ∼ ∥dv∥L2(U ;dVh)

for all u ∈ L2(U) and v ∈ H1(U), where ∼ indicates equivalence of norms. In other
words, there are positive constants c, C independent of u such that

c∥u∥L2(U ;dVh) ≤ ∥u∥L2(U) ≤ C∥u∥L2(U ;dVh).

Similar statements hold for the higher order spaces Hk(U) and Hk(U, dVh) for
k ∈ N.

Finally, we introduce a function space consisting of functions with vanishing trace
on part of the boundary, which is adapted to our problem (1.71.7). For this assume
that Ω ⊂ Rn is a Lipschitz domain carrying a uniformly elliptic Riemannian metric
g = (gij) with canonical extension g̃ to Ω× R+ (see (1.51.5)). Moreover, let dVg, dVg̃
be the Riemannian measures on Ω and Ω× R+, respectively. Then we define

H1
0 (Ω× [0,∞)) := closure of C1

c (Ω× [0,∞)) in H1(Ω× [0,∞)).

This function space will play on the one hand the role of the solution space and on
the other hand the space of test functions in the weak formulations for our mixed
boundary value problems.
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2.2. Well-posedness for the elliptic equation. Let us start by defining the
bilinear form related to the PDE

(−∆g̃ + V )u = 0 in Ω× R+,

−∂yu = f on Ω× {0},
u = 0 on ∂Ω× R+.

(2.4)

Proposition 2.1 (Bilinear form). Let Ω ⊂ Rn be a Lipschitz domain endowed
with a uniformly elliptic Riemannian metric g = (gij) and extension g̃ to Ω× R+.
Suppose that V ≥ 0 is a bounded potential. Then the map Bg,V : H1

0 (Ω× [0,∞))×
H1

0 (Ω× [0,∞)) → R given by

Bg,V (u, φ) :=

ˆ
Ω×R+

(du · dφ+ V uφ) dVg̃(2.5)

is bounded, coercive bilinear form.

Proof. The bilinearity is obvious and the boundedness is an immediate consequence
of the uniform ellipticity of g, the equivalence (2.32.3) and Hölder’s inequality. The co-
ercivity on the other hand follows by V ≥ 0, the Poincaré inequality (Theorem A.2A.2)
and again the uniform ellipticity of g as well as the equivalence (2.32.3). □

Now, by the Lax–Milgram theorem we can easily establish the following well-
posedness result.

Lemma 2.2 (Well-posedness). Let Ω ⊂ Rn be a Lipschitz domain endowed with a
uniformly elliptic Riemannian metric g = (gij) and extension g̃ to Ω×R+ given by

(1.61.6). Suppose that V ≥ 0 is a bounded potential. Then for any f ∈ H−1/2(Ω×{0}),
there exists a unique solution u = uf ∈ H1

0 (Ω× [0,∞)) of (2.42.4), that is there holds

(2.6) Bg,V (u, φ) =
〈
f, |g|1/2φ|Ω×{0}

〉
for all φ ∈ H1

0 (Ω×[0,∞)), where ⟨·, ·⟩ denotes the duality pairing between H1/2(Ω×
{0}) and H−1/2(Ω× {0}). Moreover, the unique solution u satisfies the estimate

(2.7) ∥u∥H1(Ω×R+) ≤ C∥f∥H−1/2(Ω×{0})

for some C > 0 independent of u and f .

Proof. First of all let us observe that the map ℓf : H
1
0 (Ω× [0,∞)) → R defined via

ℓf (φ) =
〈
f, |g|1/2φ|Ω×{0}

〉
for φ ∈ H1

0 (Ω× [0,∞)) is a bounded linear map. There holds

|ℓf (φ)| ≤ C∥f∥H−1/2(Ω×{0})
∥∥φ|Ω×{0}

∥∥
H1/2(Ω×{0})

≤ C∥f∥H−1/2(Ω×{0})∥φ∥H1(Ω×R+)

for all φ ∈ H1
0 (Ω× [0,∞)), where we used the trace theorem. By Proposition 2.12.1 we

can apply the Lax–Milgram theorem and can conclude that there exists a unique
u ∈ H1

0 (Ω× [0,∞)) satisfying (2.62.6) and

∥u∥H1(Ω×R+) ≤ C ∥ℓf∥(H1
0 (Ω×[0,∞))∗ ≤ C∥f∥H−1/2(Ω×{0}).

This proves the assertion. □

One has the following elliptic estimate:

Proposition 2.3 (Elliptic estimate). Let Ω ⊂ Rn be a Lipschitz domain endowed
with a uniformly elliptic Riemannian metric g = (gij) and extension g̃ to Ω × R+
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given by (1.61.6). Suppose that V ≥ 0 is a bounded potential, G ∈ L2(Ω × R+) and
f ∈ H−1/2(Ω× {0}). If v ∈ H1

0 (Ω× [0,∞)) solves

(2.8)


(−∆g̃ + V ) v = G in Ω× R+,

−∂yv = f on Ω× {0},
v = 0 on ∂Ω× R+,

then there holds

(2.9) ∥v∥H1(Ω×R+) ≤ C
(
∥G∥L2(Ω×R+) + ∥f∥H−1/2(Ω×{0})

)
,

for some constant C > 0 independent of v, G and f .

Proof. Note that by assumption there holds

Bg,V (v, φ) = ⟨G,φ⟩L2(Ω×R+,dVg̃) +
〈
f, |g|1/2φ|Ω×{0}

〉
,

for all φ ∈ H1
0 (Ω × [0,∞)). Using φ = v as a test function, then the coercivity of

Bg,V (Proposition 2.52.5) and the trace theorem imply

c∥v∥2H1(Ω×R+) ≤ Bg,V (v, v)

≤ ∥G∥L2(Ω×R+,dVg̃)∥v∥L2(Ω×R+,dVg̃)

+ ∥f∥H−1/2(Ω×{0})∥|g|
1/2v∥H1/2(Ω×{0})

≤ C
(
∥G∥L2(Ω×R+) + ∥f∥H−1/2(Ω×{0})

)
∥v∥H1(Ω×R+),

for some C > 0. Hence, we can conclude the proof. □

We also define the alternative bilinear form

Bg,V (u, φ) := Bg,V (u, |g|−1/2φ)

=

ˆ
Ω×R+

[
g̃−1∇x,yu · ∇x,yφ+ |g|1/2 g−1∇ |g|−1/2 · ∇uφ+ V uφ

]
dxdy,

(2.10)

where g̃ is given by (1.61.6) and the matrix g−1 has coefficients gij for 1 ≤ i, j ≤ n.
In terms of this bilinear form, a solution v ∈ H1

0 (Ω× [0,∞)) of (2.82.8) satisfies

Bg,V (v, φ) = ⟨G,φ⟩L2(Ω×R+) +
〈
f, φ|Ω×{0}

〉
,

for all φ ∈ H1
0 (Ω× [0,∞)). Here (and in the definition of Bg,V ) we are using that

our Riemannian metric g belongs to the class C∞(Ω;Rn×n).

2.3. Neumann-to-Dirichlet map. With the well-posedness of (2.42.4) and defini-
tion (2.102.10), we can define the partial ND map.

Proposition 2.4 (Partial ND map). Let Ω ⊂ Rn be a Lipschitz domain endowed
with a uniformly elliptic Riemannian metric g = (gij), and extension g̃ to Ω× R+

given by (1.61.6). Suppose that 0 ≤ V ∈ L∞(Ω), and Γ ⋐ Ω is an open set with
Lipschitz boundary. Then the partial ND map ΛΓ

g,V is given by

ΛΓ
g,V : H−1/2(Γ× {0}) → H1/2(Γ× {0}), f 7→ uf |Γ×{0} ,

where uf ∈ H1
0 (Ω× [0,∞)) is the unique solution to

(−∆g̃ + V )u = 0 in Ω× R+,

−∂yu = f on Ω× {0},
u = 0 on ∂Ω× R+

(2.11)

(see Lemma 2.22.2), is a well-defined bounded map. Moreover, for any F ∈ H−1/2(Γ×
{0}) there holds

(2.12)
〈
F,ΛΓ

g,V f
〉
= Bg,V (uF , uf ) ,

where uF ∈ H1
0 (Ω× [0,∞)) is the unique solution to (2.112.11) with Neumann data F .
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Proof. First note that ΛΓ
g,V is a well-defined map by the inclusionH−1/2(Γ×{0}) ↪→

H−1/2(Ω× {0}), Lemma 2.22.2 and the mapping properties of the trace operator. It
is bounded by the trace estimates and the continuity estimate (2.72.7). The identity
(2.122.12) is a direct consequence of the fact that uF solves (2.112.11) and uf ∈ H1

0 (Ω ×
[0,∞)). This concludes the proof. □

Remark 2.5. Similar to the identity (2.122.12), we can also derive the identity〈
F, |g|1/2 ΛΓ

g,V f
〉
= Bg,V (uF , uf ),

for any f, F ∈ H−1/2(Γ×{0}), where uf and uF ∈ H1
0 (Ω× [0,∞)) are the solutions

to (2.112.11) with Neumann data f and F , respectively, and Bg,V (·, ·) is defined by (2.52.5).

Lemma 2.6 (Integral identity). Let ΛΓ
qj ,Vj

be the partial ND maps of (1.81.8) for

j = 1, 2 and suppose that (1.91.9) holds. Then we have〈
f, |g1|1/2 ΛΓ

g1,V1
f
〉
−
〈
f, |g2|1/2ΛΓ

g2,V2
f
〉
= (Bg1,V1

−Bg2,V2
)
(
u
(1)
f , u

(2)
f

)
,(2.13)

for any f ∈ C∞
c (Γ), where Bgj ,Vj

is given by (2.102.10) as g = gj and V = Vj (j = 1, 2),

and u
(j)
f is the solution to (1.81.8), for j = 1, 2.

Proof. Recall that ΛΓ
gj ,Vj

f = u
(j)
f |Γ×{0}, for j = 1, 2. Then by (2.62.6), one has〈

f, |g1|1/2ΛΓ
g1,V1

f
〉
=
〈
f, |g1|1/2ΛΓ

g2,V2
f
〉

=
〈
f, |g1|1/2u(2)f |Γ

〉
= Bg1,V1

(
u
(1)
f , u

(2)
f

)
.

By the same argument we have〈
f, |g2|1/2ΛΓ

g2,V2
f
〉
= Bg2,V2

(
u
(2)
f , u

(1)
f

)
.

Using the symmetry of Bgj ,Vj
, j = 1, 2, we arrive at the formula (2.132.13) after sub-

tracting the previous two identities. □

3. Boundary determination

The main goal of this section is to prove that the partial ND map (1.91.9) implies
that the Riemannian metrics and potentials coincide in Γ. Suppose the partial ND
data

(
Γ, g, V,ΛΓ

g,V

)
satisfies the assumptions of Theorem 1.11.1, and we want to prove:

Theorem 3.1 (Local boundary determination). Let us adopt all assumptions and
notations from Theorem 1.11.1. Suppose (1.91.9) holds, then we have

g1 = g2 and V1 = V2 in Γ.

To show this, we next introduce suitable approximate solutions of
(−∆g̃ + V )u = 0 in Ω× R+,

−∂yu = f on Ω× {0},
u = 0 on ∂Ω× R+.

3.1. Approximate solutions. Let us mention that the subsequent construction is
inspired by the works [KY02KY02, LN17LN17]. For this purpose, let us consider the sequence
of Neumann data

ϕN (x) = NeiNx·ξη(x),(3.1)

where η ∈ C∞
c (Ω) is an arbitrary test function, and i =

√
−1 is the imaginary

unit, and N ≥ 1. Here x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn) ∈ Rn is a fixed co-vector
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and x · ξ = xjξj stands for the standard inner product in the Euclidean space.
Throughout this section, we will use the following notation

(3.2) |ξ|g =
√
gijξiξj

to distinguish it from the ususal Euclidean norm |ξ| and we may notice that the

uniform ellipticity of g implies that
√
λ |ξ| ≤ |ξ|g ≤

√
λ−1 |ξ|, where λ > 0 is the

ellipticity constant given in (1.41.4). Using the above notation we have the following
lemma.

Lemma 3.2 (Approximate solutions). For any N ≥ 1, there exists a smooth ap-
proximate solution ΦN of the form

ΦN (x, y) = eN(ix·ξ−|ξ|gy)
(
η(x)

|ξ|g
+

2∑
k=1

N−kψk(x,Ny)

)
,(3.3)

such that

(3.4)

{
−∂yΦN = ϕN on Ω× {0}
ΦN = 0 on ∂Ω× R+,

where |ξ|g is given by (3.23.2) and ϕN is given by (3.13.1). Here ψk(x,Ny) is a polynomial
in the variable Ny, whose coefficients are bounded in x. Moreover, we have the error
estimate

|(−∆g̃ + V ) ΦN | ≤ CN−1P(x,Ny)e−N |ξ|gy,(3.5)

for x ∈ Γ, y > 0 and some constant C > 0 independent of N ≥ 1, where P(x,Ny) =
Q(x)P (Ny) with P (Ny) being of polynomial growth and Q(x) compactly supported
in the x variable. Furthermore, if η is supported in Γ ⋐ Ω, then ΦN is supported
in Γ as the functions ψ1, ψ2 are.

Proof. Unless otherwise stated all differential operators in this proof act only on
the x variable. The construction of approximate solutions is based on the Wentzel–
Kramers–Brillouin (WKB) construction concerning the parameter N ≥ 1. Let us
first consider the function ΦN (x, y) of the form

ΦN (x, y) = eiNx·ξΨ(x,Ny),(3.6)

where ξ = (ξ1, . . . , ξn), x · ξ = xiξi = gijx
iξj . We may calculate

∆gΦN = |g|−1/2∂i

(
|g|1/2gij(iNξjΨ+ ∂jΨ)eiNx·ξ

)
= iNξig

ij (iNξjΨ+ ∂jΨ) eiNx·ξ

+ gij
[
iNξj∂iΨ+ ∂ijΨ+ div

(
g−1

)
(iNξjΨ+ ∂jΨ)

]
eiNx·ξ

=
[
−N2|ξ|2gΨ+ iN(2ξ · dΨ+ divg−1 · ξΨ)

+g−1 : D2Ψ+ divg−1 · ∇Ψ
]
eiNx·ξ,

where we denote
[
div
(
g−1

)]i
= |g|−1/2∂j

(
|g|1/2gij

)
, D2Ψ = (∂ijΨ)1≤i,j≤n and

A : B is the contraction AijBij . Taking into account ∆g̃ ≡ ∆g + ∂2y , we get

(−∆g̃ + V ) ΦN =
[
N2
(
|ξ|2gΨ− ∂2yΨ

)
− iN

(
2ξ · dΨ+ (divg−1 · ξ)Ψ

)
−(g−1 : D2Ψ+ divg−1 · ∇Ψ+ VΨ)

]
eiNx·ξ.

(3.7)

If we insert the ansatz

(3.8) Ψ(x,Ny) :=

2∑
k=0

N−kψ̃k(x,Ny).
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into (3.73.7), then we obtain

(−∆g̃ + V )ΦN

=
[
N2
(
|ξ|2gψ̃0 − ∂2y ψ̃0

)
+N

(
|ξ|2gψ̃1 − ∂2y ψ̃1

)
+
(
|ξ|2gψ̃2 − ∂2y ψ̃2

)]
eiNx·ξ

− iN
(
2ξ · dψ̃0 + (divg−1 · ξ)ψ̃0

)
eiNx·ξ

− i
(
2ξ · dψ̃1 + (divg−1 · ξ)ψ̃1

)
eiNx·ξ

− iN−1
(
2ξ · dψ̃2 + (divg−1 · ξ

)
ψ̃2)e

iNx·ξ

−
(
g−1 : D2ψ̃0 + divg−1 · ∇ψ̃0 + V ψ̃0

)
eiNx·ξ

−N−1
(
g−1 : D2ψ̃1 + divg−1 · ∇ψ̃1 + V ψ̃1

)
eiNx·ξ

−N−2
(
g−1 : D2ψ̃2 + divg−1 · ∇ψ̃2 + V ψ̃2

)
eiNx·ξ

= N2
(
|ξ|2gψ̃0 − ∂2y ψ̃0

)
eiNx·ξ

+N
(
|ξ|2gψ̃1 − ∂2y ψ̃1 − i(2ξ · dψ̃0 + (divg−1 · ξ)ψ̃0)

)
eiNx·ξ

+
[(
|ξ|2gψ̃2 − ∂2y ψ̃2 − i(2ξ · dψ̃1 + (divg−1 · ξ)ψ̃1

)
−
(
g−1 : D2ψ̃0 + divg−1 · ∇ψ̃0 + V ψ̃0

)]
eiNx·ξ

−N−1
[
− i
(
2ξ · dψ̃2 + (divg−1 · ξ)ψ̃2

)
+ g−1 : D2ψ̃1 + divg−1 · ∇ψ̃1 + V ψ̃1

]
eiNx·ξ

−N−2
(
g−1 : D2ψ̃2 + divg−1 · ∇ψ̃2 + V ψ̃2

)
eiNx·ξ.

The above identity is written in terms of the orders of N .
Next, let us set

L0 := −∂2y + |ξ|2g,
L1 := 2ξ · d+ divg−1 · ξ,
L2 := g−1 : D2 + divg−1 · ∇+ V.

(3.9)

Then the conjugate equation of ΨN becomes

e−iNx·ξ (−∆g̃ + V )
(
eiNx·ξΨN

)
= N2L0ψ̃0 +N

(
L0ψ̃1 − iL1ψ̃1

)
+
(
L0ψ̃2 − iL1ψ̃1 − L2ψ̃0

)
−N−1

(
− iL1ψ̃2 + L2ψ̃1

)
−N−2L2ψ̃2.

(3.10)

In order to prove (3.53.5), we aim to solve the following system of ordinary differential
equations (ODEs) in the y-variable

L0ψ̃0 = 0,

L0ψ̃1 = iL1ψ̃0,

L0ψ̃2 = iL1ψ̃1 + L2ψ̃0

(3.11)

with the boundary conditions
−∂yψ̃0

∣∣
y=0

= η(x), ψ̃0 → 0 as y → ∞,

−∂yψ̃1

∣∣
y=0

= 0, ψ̃1 → 0 as y → ∞,

−∂yψ̃2

∣∣
y=0

= 0, ψ̃2 → 0 as y → ∞.

(3.12)

Notice that if (3.113.11) holds, then (3.103.10) is of order N−1. Furthermore, the coefficient

V (x) only appears in the operator L2 and so it enters only into ψ̃2. Similarly as in
[KY02KY02, Lemma 2.1], we can solve the system (3.113.11), (3.123.12) iteratively.
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First, observe that a solution of the first ODE in (3.113.11) with the desired boundary
conditions is

(3.13) ψ̃0(x, y) = η̃(x)e−|ξ|gy with η̃(x) :=
η(x)

|ξ|g
.

By the definition of L1 and ψ̃0 (see (3.93.9) and (3.133.13)), we may calculate

iL1ψ̃0 = i
[
2ξ · dη̃ + (divg−1 · ξ)η̃

]
e−|ξ|gy + 2iη̃

(
ξ · de−|ξ|gy

)
= i
[
2ξ · dη̃ + (divg−1 · ξ)η̃

]
e−|ξ|gy + iη̃

(
∂kg

ij
)
ξkξiξj

|ξ|g
ye−|ξ|gy

:= f1(x)e
−|ξ|gy + f2(x)ye

−|ξ|gy.

(3.14)

Next note that for k ∈ N, there holds

∂2y
(
yke−|ξ|gy

)
= ∂y

[(
kyk−1 − |ξ|gyk

)
e−|ξ|gy

]
=
[
k(k − 1)yk−2 − 2k|ξ|gyk−1 + |ξ|2gyk

]
e−|ξ|gy

and thus we obtain

(3.15)
(
−∂2y + |ξ|2g

) (
yke−|ξ|2gy

)
=
[
2k|ξ|gyk−1 − k(k − 1)yk−2

]
e−|ξ|gy.

Now, we make the ansatz

(3.16) ψ̃1 = ψ̃1,0 + ψ̃1,1 with

{
ψ̃1,0(x, y) = h0(x)e

−|ξ|gy

ψ̃1,1(x, y) =
(
h1(x)y + h2(x)y

2
)
e−|ξ|gy.

Using (3.153.15), we deduce that

L0ψ̃1,1(x, y) = [2h1|ξ|g + h2 (4|ξ|gy − 2)] e−|ξ|gy

= [2 (h1|ξ|g − h2) + 4h2|ξ|gy] e−|ξ|gy.

Comparing with (3.143.14) infers that ψ̃1,1 solves the second ODE in (3.113.11), if we choose

(3.17) h1(x) =
f1(x)

2|ξ|g
+
f2(x)

4|ξ|2g
and h2(x) =

f2(x)

4|ξ|g
.

Moreover, ψ̃1,1 satisfies

−∂yψ̃1,1

∣∣
y=0

= −h1 and ψ̃1,1 → 0 as y → ∞.

On the other hand, from (3.153.15) we know that

(3.18) ψ̃1,0(x, y) = h0(x)e
−|ξ|gy with h0(x) =

h1(x)

|ξ|g
solves

L0ψ̃1,0 = 0 and − ∂yψ̃1,0

∣∣
y=0

= h1

and hence ψ̃1 with h0, h1, h2 as in (3.173.17) and (3.183.18) is the desired solution of the
second ODEs in (3.113.11) with the right boundary conditions (3.123.12).

Next, let us compute L1ψ̃1 and L2ψ̃0. The first one is easily seen via

L1ψ̃1 = 2ξ · dψ̃1 +
(
divg−1 · ξ

)
ψ̃1

=

2∑
k=0

yk
[
2ξ · dhk +

(
divg−1 · ξ

)
hk
]
e−|ξ|gy

−
2∑

k=0

yk+1hk (2ξ · d|ξ|g) e−|ξ|gy.
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For the second one, let us observe that

∂k
(
η̃e−|ξ|gy

)
= (∂kη̃ − yη̃∂k|ξ|g) e−|ξ|gy

∂2kℓ
(
η̃e−|ξ|gy

)
=
{
∂2kℓη̃ − y

[(
∂2kℓ|ξ|g

)
η̃ + (∂kη̃) (∂ℓ|ξ|g) + (∂ℓη̃) (∂k|ξ|g)

]
+y2 (∂k|ξ|g) (∂ℓ|ξ|g) η̃

}
e−|ξ|gy

(3.19)

for 1 ≤ ℓ, k ≤ n. This implies

L2ψ̃0 = g−1 : D2ψ̃0 + divg−1 · ∇ψ̃0 + V ψ̃0

=
(
g−1 : D2η̃ + divg−1 · ∇η̃ + V η̃

)
e−|ξ|gy

− y
[
g−1 : D2|ξ|g + 2dη̃ · d|ξ|g + η̃ divg−1 · ∇|ξ|g

]
e−|ξ|gy

+ y2|d|ξ|g|2η̃e−|ξ|gy.

Therefore, we can write

iL1ψ̃1 + L2ψ̃0 =
(
F1 + yF2 + y2F3 + y3F4

)
e−|ξ|gy,

for appropriate functions F1, F2, F3 and F4. As we want to find ψ̃2 solving

(3.20) L0ψ̃2 =
(
F1 + yF2 + y2F3 + y3F4

)
e−|ξ|gy,

the identity (3.153.15) suggests the ansatz

(3.21) ψ̃2 = ψ̃2,0 + ψ̃2,1

with {
ψ̃2,0(x, y) = H0(x)e

−|ξ|gy,

ψ̃2,1(x, y) =
(
H1(x)y +H2(x)y

2 +H3(x)y
3 +H4(x)y

4
)
e−|ξ|gy,

where again we use the zeroth order term to correct the Neumann data. Using
(3.153.15) we can write

L0ψ̃2,1 =
[
2|ξ|gH1 +H2 (4|ξ|gy − 2) +H3

(
6|ξ|gy2 − 6y

)
+H4

(
8|ξ|gy3 − 12y2

)]
e−|ξ|gy

= [2 (|ξ|gH1 −H2) + (4|ξ|gH2 − 6H3) y

+(6|ξ|gH3 − 12H4) y
2 + 8|ξ|gH4y

3
]
e−|ξ|gy.

By comparing this expression to (3.203.20) in terms of the order of the y-variable, we
see that if the algebraic system

F1 = 2(|ξ|gH1 −H2),

F2 = 4|ξ|gH2 − 6H3,

F3 = 6|ξ|gH3 − 12H4,

F4 = 8|ξ|gH4,

holds true, then ψ̃2,1 solves the ODE (3.203.20). Thus, the coefficients are given by

(3.22)


H1 =

4|ξ|3gF1+2|ξ|2gF2+2|ξ|gF3+3F4

8|ξ|4g
,

H2 =
2|ξ|2gF2+2|ξ|gF3+3F4

8|ξ|3g
,

H3 =
2|ξ|gF3+3F4

12|ξ|2g
,

H4 = F4

8|ξ|g .

The function ψ̃2,1 has Neumann data −H1 and hence as above we choose

(3.23) ψ̃2,0(x, y) = H0(x)e
−|ξ|gy with H0(x) =

H1(x)

|ξ|g
.
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Then ψ̃2 given by (3.213.21), (3.223.22) and (3.233.23) solves the last equation in (3.113.11) with
the correct boundary conditions (3.123.12).

Now, since ψ̃j , j = 0, 1, 2 solve (3.113.11), the identity (3.103.10) implies

(−∆g̃ + V ) ΦN = −eiNx·ξ[N−1(−L1ψ̃2 + L2ψ̃1) +N−2L2ψ̃2

]
.

To further simplify this identity, we next calculate the operators. Using the expan-
sions (3.163.16), (3.213.21) and the identity (3.193.19), we get

L1ψ̃2 =

4∑
k=0

yk (L1Hk) e
−|ξ|gy −

4∑
k=0

yk+1 (2ξ · d|ξ|g)Hke
−|ξ|gy,

L2ψ̃1 =

2∑
k=0

yk (L2hk) e
−|ξ|gy +

2∑
k=0

ykhk
(
g−1 : D2e−|ξ|gy + divg−1 · ∇e−|ξ|gy

)
+

2∑
k=0

ykdhk · de−|ξ|gy

=

2∑
k=0

yk(L2hk)e
−|ξ|gy

−
2∑

k=0

yk+1
[
hk
(
g−1 : D2|ξ|g + divg−1 · ∇|ξ|g

)
+ 2dhk · d|ξ|g

]
e−|ξ|gy

+

2∑
k=0

yk+2hk|d|ξ|g|2e−|ξ|gy,

and

L2ψ̃2 =

4∑
k=0

yk(L2Hk)e
−|ξ|gy

−
4∑

k=0

yk+1
[
Hk

(
g−1 : D2|ξ|g + divg−1 · ∇|ξ|g

)
+ 2dHk · d|ξ|g

]
e−|ξ|gy

+

4∑
k=0

yk+2Hk|d|ξ|g|2e−|ξ|gy.

Therefore, we can write

(3.24) (−∆g̃ + V ) ΦN = −eN(ix·ξ−|ξ|gy)
[
N−1α(x)P5(Ny) +N−2β(x)P6(Ny)

]
,

where α, β ∈ C∞
c (Ω) and Pj is a polynomial of degree at most j. The representation

(3.243.24) immediately implies the estimate (3.53.5). Next, observe that the constructed

function ΦN (x, y) = eiNx·ξ∑2
k=0N

−kψ̃k(x,Ny) has by (3.63.6), (3.83.8) and (3.123.12), the
Neumann data

−∂yΦN (x, y)|y=0 = NeiNx·ξ
2∑

k=0

N−k(−∂yψ̃k(x, 0)) = NeiNx·ξη(x) = ϕN (x).

Finally, the error estimate (3.53.5) and the assertion on the support are direct con-
sequences of the above construction. Therefore, we have constructed approximate

solutions, if we define ψj for j = 0, 1, 2 via ψ̃j = ψje
−|ξ|gy (see (3.133.13), (3.163.16) and

(3.213.21)), and from the above considerations we can conclude the proof. □
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3.2. Proof of Theorem 3.13.1. With the approximate solutions (3.33.3) at hand, we
can prove Theorem 3.13.1.

Proof of Theorem 3.13.1. For the ease of notation, let us set g = gj and V = Vj for
either j = 1 or j = 2. Let uN be the solution of

(−∆g̃ + V )uN = 0 in Ω× R+,

−∂yuN = ϕN on Ω× {0},
uN = 0 on ∂Ω× R+,

where ϕN is given by (3.13.1). Clearly, the same reasoning as in Section 22 works,
if the Neumann data and related functions are complex-valued. Let ΦN be the
approximate solution of uN with −∂yΦN |y=0 = ϕN . Note that we have

(3.25) ∂yuN = ∂yΦN and ∂yrN = 0 in Ω× {0},

where rN is the remainder term given by rN = uN − ΦN . Via (2.122.12), one has〈
ϕN ,Λ

Γ
g,V ϕN

〉
= Bg,V (uN , uN ),

where Bg,V is the bilinear form given by (2.102.10) and ϕN denotes the complex con-
jugate of ϕN . Thus, using the decomposition uN = ΦN + rN , we get〈

ϕN ,Λ
Γ
g,V ϕN

〉
=

ˆ
Ω×R+

[
g̃−1∇x,yuN · ∇x,yuN

+ |g|1/2 g−1∇ |g|−1/2 · ∇uN uN + V |uN |2
]
dxdy

:= IN + IIN ,

where we set

IN :=

ˆ
Ω×R+

g̃−1∇x,yΦN · ∇x,yΦN dxdy,

IIN :=

ˆ
Ω×R+

[
2g̃−1Re (∇x,yΦN · ∇x,yrN ) + g̃−1∇x,yrN · ∇x,yrN

+ |g|1/2 g−1∇ |g|−1/2 · ∇uN uN + V |uN |2
]
dxdy.

Here Re(f) stands for the real part of the complex-valued function f . Let us next
estimate IN and IIN separately.

Step 1. Estimate of IN .

Let us first compute the L2-norm of ΦN . By (3.33.3) and the change of variables
z = Ny one easily obtains the bound

∥ΦN∥L2(Ω×R+) ≤
∥∥∥∥e−N |ξ|gy η

|ξ|g

∥∥∥∥
L2(Ω×R+)

+

2∑
k=1

N−k
∥∥e−N |ξ|gyψk(·, Ny)

∥∥
L2(Ω×R+)

≲ N−1/2

(3.26)

for N ≥ 1. Again using the representation formula (3.33.3), a direct computation
yields that

∇x,yΦN =

[
N

(
iξ − y∇|ξ|g

− |ξ|g

)
η

|ξ|g
+ q(x,Ny)

]
eN(ix·ξ−|ξ|gy),(3.27)
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where q(x,Ny) is of polynomial growth in Ny and a bounded function x. Similarly
as for the L2 norm of ΦN , the identity (3.273.27) and the change of variables z = Ny
imply the following gradient estimate

∥∇x,yΦN∥L2(Ω×R+) ≤ N

∥∥∥∥( iξ
− |ξ|g

)
η

|ξ|g
e−N |ξ|gy

∥∥∥∥
L2(Ω×R+)

+ ∥q̃(x,Ny)e−N |ξ|gy∥L2(Ω×R+)

≲ N1/2

(3.28)

for N ≥ 1, where q̃ is of polynomial growth in Ny and bounded in x.
On the other hand, with the representation formula (3.273.27) at hand, a direct

computation ensures that

IN =

ˆ
Ω×R+

g̃−1∇x,yΦN · ∇x,yΦN dxdy

= N2

ˆ
Γ×R+

g̃−1

(
iξ − y∇|ξ|g

− |ξ|g

)
·
(

−iξ − y∇|ξ|g
− |ξ|g

)
η2

|ξ|2g
e−2N |ξ|gy dxdy

+N

ˆ
Γ×R+

p(x,Ny)e−2N |ξ|gy dxdy

= N2

ˆ
Γ×R+

(2|ξ|2g + |d|ξ|g|2y2)
η2

|ξ|2g
e−2N |ξ|gy dxdy +O(1)

= 2N2

ˆ
Γ×R+

e−2N |ξ|gyη2 dxdy +N−1

ˆ
Γ×R+

|d|ξ|g|2

|ξ|2g
y2η2e−2|ξ|gy dxdy

+O(1)

= N

ˆ
Γ

|ξ|−1
g η2 dx+O(1)

(3.29)

for ξ ̸= 0, where p(x,Ny) is of polynomial growth in Ny and a bounded function
in x. Moreover, in the last equality we used the fundamental theorem of calculus
and the notation O(1) or more generally O(Nα) for some α ∈ R means that the
term has growth Nα as N → ∞. Multiplying (3.293.29) by N−1, one can see that

lim
N→∞

N−1IN = lim
N→∞

{ˆ
Γ

|ξ|−1
g η2 dx+O

(
N−1

)}
=

ˆ
Γ

|ξ|−1
g η2 dx.(3.30)

Step 2. Estimate of IIN .

Notice that

IIN :=

ˆ
Ω×R+

[
2g̃−1Re (∇x,yΦN · ∇x,yrN ) + g̃−1∇x,yrN · ∇x,yrN

+ |g|1/2 g−1∇ |g|−1/2 · ∇ (ΦN + rN )
(
ΦN + rN

)
+ V |ΦN + rN |2

]
dx,

(3.31)

where we used uN = ΦN + rN again. By the construction of ΦN , (3.43.4) and (3.253.25),
we see that rN is a solution to

(−∆g + V ) rN = − (−∆g + V ) ΦN in Ω× R+,

−∂yrN = 0 on Ω× {0},
rN = 0 on ∂Ω× R+.
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By the elliptic estimate (2.92.9) and the change of variables z = Ny, there holds

∥rN∥H1(Ω×R+) ≲ ∥(−∆g + V ) ΦN∥L2(Ω×R+)

≲ N−1
∥∥P(x,Ny)e−N |ξ|gy

∥∥
L2(Ω×R+)

≲ N−3/2

(3.32)

for N ≥ 1. Using Hölder’s inequality, (3.263.26), (3.283.28) and (3.323.32), we can estimate
(3.313.31) as

|IIN | ≲ ∥∇x,yΦN∥L2(Ω×R+)∥∇x,yrN∥L2(Ω×R+) + ∥rN∥2H1(Ω×R+)

+ ∥∇x,yΦN∥L2(Ω×R+)(∥ΦN∥L2(Ω×R+) + ∥rN∥L2(Ω×R+))

+ ∥∇x,yrN∥L2(Ω×R+)∥ΦN∥L2(Ω×R+) + ∥ΦN∥2L2(Ω×R+)

≲ 1

(3.33)

for all ξ ̸= 0 and N ≥ 1. Multiplying (3.333.33) by N−1 and passing to the limit
N → ∞, we get

(3.34) lim
N→∞

N−1IIN = 0.

Combining (3.303.30) and (3.343.34), we get

lim
N→∞

N−1
〈
ϕN ,Λ

Γ
g,V ϕN

〉
= lim

N→∞
N−1 (IN + IIN ) =

ˆ
Γ

|ξ|−1
g η2 dx.(3.35)

Step 3. Recovery the metric g on Γ.

Now, suppose the condition (1.91.9) holds, then one can determine the metric (gij(x))

on Γ by varying 0 ̸= ξ = (ξ1, . . . , ξn) ∈ Rn. More precisely, let u
(j)
N = Φ

(j)
N + r

(j)
N be

the solutions to 
(
−∆gj − ∂2y

)
u
(j)
N + Vju

(j)
N = 0 in Ω× R+,

−∂yu(j)N (x, 0) = ϕN (x) on Ω× {0},
u
(j)
N = 0 on ∂Ω× R+,

where ϕN is given by (3.13.1), Φ
(j)
N stands for the approximate solution constructed

by Lemma 3.23.2, and r
(j)
N is the remainder term, for j = 1, 2 and N ≥ 1. With these

approximate solutions at hand, by using (3.353.35), we haveˆ
Γ

|ξ|−1
g1
η2 dx = lim

N→∞
N−1

〈
ϕN ,Λ

Γ
g1,V1

ϕN
〉

= lim
N→∞

N−1
〈
ϕN ,Λ

Γ
g1,V2

ϕN
〉

=

ˆ
Γ

|ξ|−1
g2
η2 dx,

for any test function η ∈ C∞
c (Γ), and for any 0 ̸= ξ = (ξ1, . . . , ξn) ∈ Rn. Thus, after

polarization of test functions, we deduce |ξ|g1 = |ξ|g2 on Γ, for any ξ = (ξ1, . . . , ξn) ∈
Rn. Therefore, we deduce that gkℓ1 ζkηℓ = gkℓ2 ζkηℓ on Γ, for all ζ, η ∈ Rn and hence

g1 = g2 on Γ.

Step 4. Recovery the potential V on Γ.

First, let us note that by (2.122.12) and the fact that all coefficients (gj , Vj) for j = 1, 2

are real-valued one has ⟨ϕN , |gj |1/2ΛΓ
gj ,Vj

ϕN ⟩ ∈ R, for j = 1, 2. Next, observe that

in the complex-valued case formula (2.132.13) in Lemma 2.62.6 becomes〈
f, |g1|1/2 ΛΓ

g1,V1
f
〉
−
〈
f, |g2|1/2ΛΓ

g2,V2
f
〉
= (Bg1,V1

−Bg2,V2
)
(
u
(1)
f , u

(2)
f

)
.
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Thus, by g1 = g2 in Γ and (1.91.9), there holds that

0 = ⟨ϕN , |g1|1/2 ΛΓ
g1,V1

ϕN ⟩ − ⟨ϕN , |g2|1/2ΛΓ
g2,V2

ϕN ⟩

= (Bg1,V1
−Bg2,V2

)
(
u
(1)
N , u

(2)
N

)
=

ˆ
Ω×R+

(
|g1|1/2 g−1

1 − |g2|1/2 g−1
2

)
∇u(1)N · ∇u(2)N dxdy

+

ˆ
Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)
u
(1)
N u

(2)
N dxdy.

(3.36)

for j = 1, 2. As in Step 3, we expand

(3.37) |gk|1/2g−1
k ∇u(1)N · ∇u(2)N = |gk|1/2g−1

k

(
∇Φ

(1)
N +∇r(1)N

)
·
(
∇Φ

(2)
N +∇r(2)N

)
for k = 1, 2. Next, inserting (3.373.37) into (3.363.36) and using g1 = g2 in Γ as well as

suppΦ
(j)
N ⊂ Γ, we get

0 =

ˆ
Ω×R+

(
|g1|1/2 g−1

1 − |g2|1/2 g−1
2

)
∇r(1)N · ∇r(2)N dxdy

+

ˆ
Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)(
Φ

(1)
N + r

(1)
N

)(
Φ

(2)
N + r

(2)
N

)
dxdy.

(3.38)

Applying the error estimate (3.323.32) of r
(j)
N for j = 1, 2 and Hölder’s inequality, we

have ∣∣∣∣ ˆ
Ω×R+

(
|g1|1/2 g−1

1 − |g2|1/2 g−1
2

)
∇r(1)N · ∇r(2)N dxdy

∣∣∣∣ ≲ N−3.(3.39)

On the other hand, for the second term in (3.383.38), one can see that
ˆ
Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)(
Φ

(1)
N + r

(1)
N

)(
Φ

(2)
N + r

(2)
N

)
dxdy

=

ˆ
Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)
Φ

(1)
N Φ

(2)
N dxdy +O

(
N−2

)
,

(3.40)

where we used (3.263.26) and (3.323.32). Hence, (3.383.38), (3.393.39) and (3.403.40) imply

N

ˆ
Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)
Φ

(1)
N Φ

(2)
N dxdy = O

(
N−1

)
,

which gives

(3.41) lim
N→∞

N

ˆ
Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)
Φ

(1)
N Φ

(2)
N dxdy = 0.

Thus, from the representation formula (3.33.3) and the change of variables z = Ny we
can conclude thatˆ

Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)
Φ

(1)
N Φ

(2)
N dxdy

=

ˆ
Ω×R+

(
|g1|1/2 V1 − |g2|1/2 V2

)
e−N(|ξ|g1+|ξ|g2 )y η2

|ξ|g1 |ξ|g2
dxdy +O

(
N−2

)
= N−1

ˆ
Γ×R+

|g1|1/2 (V1 − V2) e
−2|ξ|g1y

η2

|ξ|2g1
dxdy +O

(
N−2

)
,
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where we used in the last equality that g1 = g2 on Γ and η ∈ C∞
c (Γ). Inserting this

into (3.413.41) and using the fundamental theorem of calculus, we deduce that

0 =

ˆ
Γ×R+

|g1|1/2 (V1 − V2) e
−2|ξ|g1y

η2

|ξ|2g1
dxdy

=

ˆ
Γ

|g1|1/2 (V1 − V2)
η2

2|ξ|3g1
dx

for any η ∈ C∞
c (Γ). This shows by the usual polarization argument that

V1 = V2 on Γ.

This concludes the proof. □

4. Inverse problem for nonlocal equations

We start by reviewing in Section 4.14.1 the definition of fractional powers of ellip-
tic operators. In Section 4.24.2 we recall the extension property of elliptic variable
coefficient nonlocal operators. This helps us in Section 4.34.3 to relate the Neumann
derivative with the square root of an elliptic operator. Finally, in Section 4.44.4 we
show that the ND map uniquely determines the heat kernel of the operator−∆g+V .

4.1. Fractional powers of −∆g + V . As usual, let Ω ⊂ Rn denote a bounded

smooth domain. For any uniformly elliptic Riemannian metric g ∈ C∞(Ω;Rn×n)
and potential 0 ≤ V ∈ C∞(Ω), we introduce the operator

Pg,V := −∆g + V(4.1)

on L2(Ω, dVg) with homogeneous Dirichlet condition on ∂Ω, that is, it has domain

(4.2) Dom (Pg,V ) =
{
u ∈ H1

0 (Ω, dVg) ; Pg,V u ∈ L2(Ω; dVg)
}
,

where Pg,V u ∈ L2(Ω; dVg) has to be understood in the weak sense. Below, we will
show that22 Dom(Pg,V ) = H1

0 (Ω) ∩ H2(Ω). Arguing as in [Bre11Bre11, Theorem 8.22,
Theorem 9.31], one deduces that there exists a Hilbert basis (ϕk)k∈N ⊂ H1

0 (Ω) of

L2(Ω, dVg) and a sequence (λk)k∈N ⊂ R+ with λk → ∞ as k → ∞ such that{
Pg,V ϕk = λkϕk in Ω,

ϕk = 0 on ∂Ω,

for all k ∈ N. Moreover, by [Bre11Bre11, Theorem 9.25, Remark 24] it follows that
ϕk ∈ C∞(Ω).

Next observe that any u ∈ Dom(Pg,V ) with spectral decomposition u =
∑

k≥1 ukϕk
satisfies

(4.3) ∥Pg,V u∥2L2(Ω,dVg)
=
∑
k≥1

λ2k |uk|
2
<∞

and there holds

(4.4) Pg,V u =
∑
k≥1

λkukϕk.

The identities (4.44.4) and (4.34.3) suggest a natural definition for the fractional powers
Ps
g,V , 0 < s < 1 (more details are given in Appendix BB). To define it, let us

introduce the spaces H̃2s
g,V (Ω) consisting of all u ∈ L2(Ω, dVg) such that∑

k≥1

λ2sk |uk|2 <∞,

2Here and in the following, we make repeatedly use of the fact that Hk(Ω) = Hk(Ω, dVg) with

equivalent norms by the ellipticity (1.41.4) of g (see Section 2.12.1).



22 Y.-H. LIN, G. NAKAMURA, AND P. ZIMMERMANN

where u has the spectral decomposition u =
∑

k≥1 ukϕk in L2(Ω, dVg) (i.e. uk =

⟨u, ϕk⟩L2(Ω,dVg) for k ∈ N). Note that H̃2s
g,V (Ω) equipped with the inner product

(4.5) ⟨u, v⟩H̃2s
g,V (Ω) =

∑
k≥1

λ2sk ukvk

for u, v ∈ H̃2s
g,V (Ω) becomes a Hilbert space. This is true for any s ≥ 0. Similarly,

for s < 0, we denote by H−2s
g,V (Ω) the set of all u =

∑
k≥1 ukϕk satisfying

∥u∥H−2s
g,V (Ω) =

∑
k≥1

λ−2s
k |uk|2 <∞.

If one defines the inner product similarly as in (4.54.5), then H−2s
g,V (Ω) becomes a

Hilbert space and one can identify the dual space (H̃2s
g,V (Ω))

∗ and H−2s
g,V (Ω) with

equivalent norms.

Hence, for u ∈ H̃2s
g,V (Ω), we can define

(4.6) Ps
g,V u =

∑
k≥1

λskukϕk ∈ L2(Ω, dVg)

and Dom
(
Ps
g,V

)
= H̃2s

g,V (Ω). By construction we have∥∥Ps
g,V u

∥∥
L2(Ω;dVg)

= ∥u∥H̃2s
g,V (Ω), for all u ∈ H̃2s

g,V (Ω).

Lemma 4.1. We have

(4.7) Dom (Pg,V ) ↪→ Dom
(
Ps
g,V

)
and

(4.8) H̃s
g,V (Ω) ↪→ H̃t

g,V (Ω).

for all 0 ≤ t < s <∞.

Proof. To see (4.74.7), let k0 ∈ N be the smallest natural number such that λk0 ≥ 1.
Then for u =

∑
k≥1 ukϕk we have∑

k≥1

λ2sk |uk|2 ≤
∑

1≤k≤k0−1

λ2sk |uk|2 +
∑
k≥k0

λ2sk |uk|2

≤
∑
k≥1

|uk|2 +
∑
k≥1

λ2k|uk|2

≤ ∥u∥2L2(Ω,dVg)
+ ∥Pg,V u∥2L2(Ω,dVg)

<∞.

We only prove (4.84.8) for t = 0, that is

(4.9) H̃2s
g,V (Ω) ↪→ L2(Ω, dVg),

and the general result is followed by a simple modification. A direct calculation
shows

∥u∥2L2(Ω,dVg)
≤

∑
1≤k≤k0−1

|uk|2 +
∑
k≥k0

|uk|2

≤
∑

1≤k≤k0−1

λ2sk
λ2sk

|uk|2 +
∑
k≥k0

λ2sk |uk|2

≤
∑
k≥1

λ2sk |uk|2

= ∥u∥H̃2s
g,V (Ω),

where we used the first eigenvalue λ1 > 0. □
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Remark 4.2. Let us remark that in the special case gij = δij and V = 0, the
operator defined via (4.64.6) is called the spectral fractional Laplacian, and for more

details, in particular an alternative characterization of H̃2s
(δij),0

(Ω), we refer the

interested reader to [CT10CT10] and [BSV14BSV14, Section 3.1.3].

The following integration by parts formula holds.

Lemma 4.3. For all u, v ∈ H̃2s
g,V (Ω), we have

(4.10)
〈
Ps
g,V u, v

〉
L2(Ω,dVg)

=
〈
u,Ps

g,V v
〉
L2(Ω,dVg)

=
〈
P
s/2
g,V u,P

s/2
g,V v

〉
L2(Ω,dVg)

.

Proof. The proof can be easily seen by using (4.64.6) and straightforward computa-
tions. □

It is easily seen that the last expression in the integration by parts formula (4.104.10)

is precisely the inner product in H̃s
g,V (Ω). Because of this, for given f ∈ (H̃s

g,V (Ω))
∗,

we say u : Ω → R (weakly) solves{
Ps
g,V u = f in Ω,

u = 0 in ∂Ω,

if u ∈ H̃s
g,V (Ω) and

(4.11) ⟨u, v⟩H̃s
g,V (Ω) = ⟨f, v⟩,

where ⟨·, ·⟩ denotes the duality pairing between H̃s
g,V (Ω) and (H̃s

g,V (Ω))
∗. In fact,

it is not hard to see that (H̃s
g,V (Ω))

∗ = H−s
g,V (Ω) and

⟨f, v⟩ =
∑
k≥1

fkvk

for f ∈ (H̃s
g,V (Ω))

∗ and v ∈ H̃s
g,V (Ω) (see [BSV14BSV14, Section 7.9]).

Next, we want to relate the fractional powers Ps
g,V given by (4.64.6) with the asso-

ciated heat semigroup e−tPg,V , t ≥ 0. First, we have the next lemma.

Lemma 4.4. There holds

(4.12) e−tPg,V u =
∑
k≥1

e−tλkukϕk

for any u ∈ L2(Ω, dVg).

The proof of the above lemma is in Appendix BB. Furthermore, note that the
uniform ellipticity (1.41.4) of g, V ≥ 0 and the Poincaré inequality imply∥∥e−tPg,V

∥∥
L(L2(Ω,dVg))

≤ e−γt ≤ 1,(4.13)

for all t ≥ 0 and some γ > 0 (cf. e.g. [Are06Are06, Theorem 3.4.3]). Additionally, by
[Are06Are06, Example 9.2.2] we have e−tPg,V ≥ 0 for t ≥ 0.

Recall that the Gamma function is defined by

Γ(s) :=

ˆ ∞

0

e−tts−1 dt,

and one has

(4.14) λs =
1

Γ(−s)

ˆ ∞

0

(
e−tλ − 1

) dt

t1+s

for λ > 0 and 0 < s < 1. Then using fundamental properties of Pg,V (see
Lemma B.1B.1) and (4.144.14), one can show that there holds

(4.15) Ps
g,V u =

1

Γ(−s)

ˆ ∞

0

(
e−tPg,V u− u

) dt

t1+s
.
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for u ∈ H̃2s
g,V (Ω), which is called semigroup formula for Ps

g,V . It is well-known
that this holds in a very general setting, but in our case, the argument is more
elementary.

In fact, first of all taking in (4.144.14) λ = λk, multiplying by ukϕk and summing k
over {1, . . . ,m} we get

Ps
g,V

m∑
k=1

ukϕk =
1

Γ(−s)

ˆ ∞

0

m∑
k=1

(
e−tλk − 1

)
ukϕk

dt

t1+s

for all m ∈ N. Here, we used ϕk ∈ Dom(Pg,V ), (4.74.7), (4.64.6) and (4.124.12). By construc-
tion the left hand side converges to Ps

g,V u in L2(Ω, dVg) and hence passing to the
limit m→ ∞ gives

Ps
g,V u = lim

m→∞

1

Γ(−s)

ˆ ∞

0

m∑
k=1

(
e−tλk − 1

)
ukϕk

dt

t1+s

in L2(Ω, dVg). Hence, for all v ∈ L2(Ω, dVg) there holds〈
Ps
g,V u, v

〉
L2(Ω,dVg)

= lim
m→∞

1

Γ(−s)

〈ˆ ∞

0

m∑
k=1

(
e−tλk − 1

)
ukϕk

dt

t1+s
, v

〉
L2(Ω,dVg)

= lim
m→∞

1

Γ(−s)

ˆ ∞

0

〈 m∑
k=1

(
e−tλk − 1

)
ukϕk, v

〉
L2(Ω,dVg)

dt

t1+s

=
1

Γ(−s)

∞∑
k=1

ˆ ∞

0

(
e−tλk − 1

)
ukvk

dt

t1+s

(4.16)

where we set vk = ⟨v, ϕk⟩L2(Ω,dVg)
. Next, note that

∞∑
k=1

ˆ ∞

0

(
1− e−tλk

)
|uk||vk|

dt

t1+s

≤
∞∑
k=1

(ˆ 1/λk

0

(
1− e−tλk

) dt

t1+s
+

ˆ ∞

1/λk

(
1− e−tλk

) dt

t1+s

)
|uk||vk|.

(4.17)

Now, the second integral in the right-hand side of (4.174.17) can be bounded as
ˆ ∞

1/λk

(
1− e−tλk

) dt

t1+s
≤
ˆ ∞

1/λk

dt

t1+s
≲ λsk,

whereas the change of variables τ = tλk in the first integral yields

ˆ 1/λk

0

(
1− e−tλk

) dt

t1+s
= λsk

ˆ 1

0

(
1− e−τ

) dτ

τ1+s
≲ λsk.

Inserting these estimates into (4.174.17) gives

∞∑
k=1

ˆ ∞

0

(
1− e−tλk

)
|uk||vk|

dt

t1+s
≲

∞∑
k=1

λsk|uk||vk|

≲
∞∑
k=1

λ2sk |uk|2 +
∞∑
k=1

|vk|2

≲ ∥u∥2
H̃2s

g,V (Ω)
+ ∥v∥2L2(Ω,dVg)

<∞.
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Therefore, we can invoke Fubini’s theorem in (4.164.16) to get〈
Ps
g,V u, v

〉
L2(Ω,dVg)

=
1

Γ(−s)

ˆ ∞

0

∞∑
k=1

(
e−tλk − 1

)
ukvk

dt

t1+s

=
1

Γ(−s)

ˆ ∞

0

〈(
e−tPg,V − 1

)
u, v
〉
L2(Ω,dVg)

dt

t1+s
,

where we used (4.64.6) and (4.124.12). Hence, we have established (4.154.15).
Next, let us introduce the negative powers of Pg,V . For fixed 0 < s < 1, we set

P−s
g,V u =

∑
k≥1

λ−s
k ukϕk,

which is well-defined for u ∈ L2(Ω, dVg) as λk > 0. One easily verifies by a direct

calculation that Ps
g,V is an isomorphism as a map from H̃2s

g,V (Ω) to L
2(Ω) and there

holds

(4.18) P−s
g,V P

s
g,V = IdH̃2s

g,V (Ω) and Ps
g,V P

−s
g,V = IdL2(Ω,dVg).

Let us remark here that through the integration by parts formula (4.104.10), the oper-

ator Ps
g,V can be extended to a continuous map from H̃s

g,V (Ω) to H
−s
g,V (Ω) and its

again an isomorphism with inverse P−s
g,V . Furthermore, if one uses the identity

λ−s =
1

Γ(s)

ˆ ∞

0

e−tλ dt

t1−s
, λ > 0,

then there holds

P−s
g,V u =

1

Γ(s)

ˆ ∞

0

e−tPg,V u
dt

t1−s
(4.19)

for u ∈ L2(Ω, dVg). Note that the right-hand side of (4.194.19) converges in L2(Ω, dVg)
due to (4.134.13). In fact, (4.134.13) impliesˆ ∞

0

∥∥e−tPg,V u
∥∥
L2(Ω,dVg)

dt

t1−s
≤
(ˆ ∞

0

e−γt dt

t1−s

)
∥u∥L2(Ω,dVg)

≤ Γ(s)

γs
∥u∥L2(Ω,dVg).

(4.20)

Again to see the identity (4.194.19) one can rely on the abstract theory or argue similarly
as for (4.154.15) via an expansion in eigenfunctions and using the identity (4.124.12).

4.2. The Neumann derivative and the nonlocal equation. We start by re-
calling that, in a similar vein as the fractional Laplacian (−∆)s [CS07CS07], a wide
class of nonlocal operators can be recovered as Neumann derivatives of solutions to
suitable extension problems. For example in [ST10ST10, Theorem 1.1] it is shown that
if µ is a (σ-finite) nonnegative measure on Ω ⊂ Rn, L is a nonnegative, densely
defined, self-adjoint operator on L2(Ω, dµ) with domain Dom(L) and w ∈ Dom (Ls)
for some 0 < s < 1, then

(4.21) W (x, y) =
1

Γ(s)

ˆ ∞

0

e−tL (Lsw) (x)e−y2/4t dt

t1−s

solves {
LW − 1−2s

y ∂yW − ∂2yW = 0 in Ω× R+,

W = w on Ω× {0}
(4.22)

and one has

− lim
y→0+

y1−2s∂yW = csLsw on Ω× {0},(4.23)
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where cs > 0 is a constant depending only on s. The previous limit has to be
understood in the L2(Ω, dµ) sense.

In particular, as s = 1/2, we can connect (1.71.7) to a nonlocal equation. Let us
make a few remarks.

(a) We observe that actually in our special case s = 1/2 and L = Pg,V =
−∆g + V , the above result follows by a more elementary argument for

smooth functions. More precisely, let g ∈ C∞(Ω;Rn×n), V ∈ C∞(Ω) be
independent of y, and Ω has smooth boundary, then one can easily see,
arguing as in [CS07CS07], that the operator

Tf = −∂yu|y=0 ,

where u ∈ H1
0 (Ω× R+) uniquely solves
(−∆g + V )u− ∂2yu = 0 in Ω× R+,

u = 0 on ∂Ω× R+,

u = f on Ω× {0},

which is a positive operator with T 2f = (−∆g + V )f . Therefore, we have

Tf = (−∆g + V )1/2f

for f ∈ C∞(Ω) vanishing on ∂Ω. The identity T 2f = (−∆g + V ) f , for

f ∈ C∞(Ω) with f = 0 on ∂Ω, which can be seen as follows

T 2f = T
(
−∂yu|y=0

)
= ∂2yu

∣∣
y=0

= (−∆g + V )u|y=0 = (−∆g + V ) f,

since both g and V are y-independent.
(b) Furthermore, in our case L = Pg,V , we get from [Sti10Sti10, Section 3] that

under the additional boundary condition at infinity

lim
y→∞

W (x, y) = 0 weakly in L2(Ω, dVg)

that W given by (4.214.21) is the unique solution of (4.224.22) and in particular
coincides with the one obtained via the Fourier method, i.e. making the
ansatz W (x, y) =

∑
k≥1 ck(y)ϕk.

4.3. ND map and source-to-solution map. We next transfer the ND map of
(1.71.7) to the source-to-solution map for the nonlocal elliptic equation

P
1/2
g,V v = f in Ω.(4.24)

By (4.74.7) and our notion of weak solutions to (4.244.24) (see in particular (4.114.11)), we

know that for any f ∈ C∞
c (Ω) there exists a unique solution v ∈ H̃

1/2
g,V (Ω) of (4.244.24).

Hence, taking into account (4.94.9), for a given open subset Γ ⊊ Ω we can define
the local source-to-solution map corresponding to (4.244.24) by

SΓ
g,V : C∞

c (Γ) → L2(Γ), f 7→ vf
∣∣
Γ
,

for any f ∈ C∞
c (Γ), where vf ∈ H̃

1/2
g,V (Ω) is the solution to (4.244.24). Clearly, the

source-to-solution map could be defined on a larger space like H
−1/2
g,V (Ω) by our

notion of weak solutions, but C∞
c (Γ) is for our purposes enough. This naturally

leads to the following inverse problem:

(IP2) Inverse problem for the nonlocal elliptic equation. Can one deter-
mine the metric g and potential V in Ω by using the knowledge of the local
source-to-solution map SΓ

g,V ?



THE CALDERÓN PROBLEM FOR AN ANISOTROPIC SCHRÖDINGER EQUATION 27

Recalling that with the boundary determination at hand, we know the informa-
tion of both g and V on the measured open subset Γ ⋐ Ω. We next assert that
measurements in the inverse problem (IP1)(IP1) determine the measurements in (IP2)(IP2).

Lemma 4.5. Let Ω, Γ, (g1, V1) and (g2, V2) be given as in Theorem 1.11.1. Suppose
(1.91.9) holds, then one has

(4.25) SΓ
g1,V1

f = SΓ
g2,V2

f for any f ∈ C∞
c (Γ),

where Sgj ,Vj
: C∞

c (Γ) ∋ f 7→ vfj
∣∣
Γ
∈ L2(Γ) is the local source-to-solution map of

P
1/2
gj ,Vj

vfj = f in Ω.

for j = 1, 2.

Proof. Let us start by recalling that the boundary determination result established
in Section 33 ensures that

g1 = g2 and V1 = V2 on Γ.

Next, we show (4.254.25). For a given f ∈ C∞
c (Γ), we denote by ufj ∈ H1

0 (Ω× [0,∞))

the unique solutions of (1.81.8) for j = 1, 2 (see Lemma 2.22.2).

Claim 4.6. For j = 1, 2, we have ufj ∈ H3(Ω× [0, R)) for any R > 0.

Let us offer the proof of Claim 4.64.6 in Appendix AA. By using the previous

claim and suitable trace theorems, we know that ufj |y=0 ∈ H1
0 (Ω) ∩ H2(Ω) and

hence ufj |y=0 ∈ Dom(Ps
gj ,Vj

) by (4.74.7). In fact, Claim 4.64.6 ensures that ufj ∈
H1(0, R;H2(Ω)) for fixed R > 0 and so by the trace theorem we have ufj ∈
C([0, R];H2(Ω)), which gives ufj |y=0 ∈ H2(Ω). Next, let us note that ufj ∈
H1

0 (Ω × [0,∞)) ↪→ L2(0,∞;H1
0 (Ω)) ensures ufj (·, y) ∈ H1

0 (Ω) for a.e. y > 0.

Thus, we can deduce from ufj ∈ C([0, R];H1(Ω)) that ufj |y=0 ∈ H1
0 (Ω) as H

1
0 (Ω) is

a closed subspace of H1(Ω). Let φ ∈ L2(Ω, dVg) be fixed and consider the function
Uj : R+ → R defined by

Uf
j (y) :=

ˆ
Ω

ufj (x, y)φ(x) dVg(x).

Using ufj ∈ H1
0 (Ω × [0,∞)) ↪→ H1(R+;L

2(Ω; dVg)) we know that Uf
j ∈ H1(R+)

and hence the Sobolev embedding ensures the uniform continuity of Uf
j on [0,∞).

But then we get

Uf
j → 0 as y → ∞.

Thus, we can invoke the uniqueness statement (b)(b) of Section 4.24.2 to see that ufj is
the unique solution of the extension problem

(−∆g + V )u− ∂2yu = 0 in Ω× R+,

u = 0 on ∂Ω× R+,

u = ufj

∣∣∣
y=0

on Ω× {0},

for j = 1, 2. Thus, from (4.234.23) with L = Pgj ,Vj
and s = 1/2, we get that vjf = ujf |y=0

satisfies {
P
1/2
gj ,Vj

v = f in Ω,

v = 0 on ∂Ω.
(4.26)
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Now, vfj is indeed the unique solution to this problem by vfj ∈ H1
0 (Ω) ∩H2(Ω)

for j = 1, 2, (4.74.7) and the discussion at the beginning of the section. Combining
(4.264.26) with the condition (1.91.9), we have

vf1 = vf2 in Γ, for any f ∈ C∞
c (Γ),

or stated alternatively (4.254.25). This proves the assertion. □

4.4. Determination of heat kernel. The purpose of this section is to show that
if (gj , Vj) is is prescribed on the measurement set Γ and the source-to-solution

maps SΓ
gj ,Vj

coincide on Γ, then the Schwartz kernels e−tPgj,Vj (·, ·) of the semigroup

e−tPgj,Vj related to ∂t+Pgj ,Vj
in Ω×(0,∞) (see Appendix BB for more details) agree

on Γ. More precisely, we have the following lemma.

Lemma 4.7. Assume that Ω, Γ, (gj , Vj) for j = 1, 2 are given as in Theo-

rem 1.11.1 and let (g, V ) ∈ C∞(Ω;Rn×n) × C∞(Ω) be any pair of a uniformly el-
liptic Riemannian metric g and nonnegative potential V such that (1.101.10) holds. Let

SΓ
gj ,Vj

: C∞
c (Γ) ∋ f 7→ vfj |Γ ∈ L2(Γ) be the local source-to-solution map of (4.264.26) for

j = 1, 2. Suppose that (1.111.11) holds, then we have

(4.27) e−tPg1,V1 (x, z) = e−tPg2,V2 (x, z) for x, z ∈ Γ and t > 0.

Notice that the conditions (1.101.10) and (1.111.11) are the conclusions of Theorem 3.13.1
and Lemma 4.54.5.

Proof of Lemma 4.74.7. Fix any nonempty open subsetO1 ⋐ Γ and let f ∈ C∞
c (O1) ⊂

Dom(Pk
g,V ) for all k ∈ N0 = N∪ {0} (see Lemma B.2B.2). Using (1.101.10), we deduce the

identity

(−∆g1 + V1)
k
f = (−∆g2 + V2)

k
f = (−∆g + V )

k
f ∈ C∞

c (O1)

for any k ∈ N0. Therefore, using the preceding identity, (4.184.18) and (1.111.11), we can
deduce that

P
−1/2
g1,V1

(−∆g + V )
k
f = P

−1/2
g2,V2

(−∆g + V )
k
f on Γ.

Then (4.194.19) ensures thatˆ ∞

0

(
e−tPgj,Vj − e−tPgj,Vj

)
(−∆g + V )

k
f
dt

t1/2
= 0 on Γ(4.28)

for k ∈ N0 (see (4.204.20)). We also recall that by Lemma B.3B.3, (c)(c) we have

e−tPgj,Vj (−∆g + V )
k
f ∈ C∞(Ω× [0,∞))

for j = 1, 2.
Next, we follow arguments from [FGKU24FGKU24, Section 2] (see [GU21GU21, Proposition

3.1] for nonlocal elliptic operators and [LLU22LLU22, Section 4] for nonlocal parabolic
operators). We first note that by the semigroup property of e−tPg,V , t ≥ 0, we have
the commutativity

e−tPgj,Vj
(
−∆gj + Vj

)k
g =

(
−∆gj + Vj

)k
e−tPgj,Vj g(4.29)

and

∂kt
(
e−tPgj,Vj g

)
= (−1)k

(
−∆gj + Vj

)k
e−tPgj,Vj g(4.30)

for all g ∈ Dom(Pk
g,V ) (see (B.12B.12) and Lemma B.3B.3, (a)(a)). Thus, inserting (4.294.29) and

(4.304.30) into (4.284.28), we haveˆ ∞

0

∂kt
(
e−tPg1,V1 − e−tPg2,V2

)
f
dt

t1/2
= 0 on Γ, for all k ∈ N0.(4.31)
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We claim that there are no boundary contributions when performing in (4.314.31) an
integration by parts. Using the above relations, Lemma B.3B.3, (b)(b), (B.13B.13), (4.134.13) and
(B.14B.14), we get ∥∥∂kt (e−tPg1,V1 − e−tPg2,V2

)
f
∥∥
L∞(Ω)

≲
2∑

i=1

∥∥∂kt e−tPgi,Vi f
∥∥
Dom(Pm−k

gi,Vi
)

≲
2∑

i=1

m−k∑
ℓ=0

∥∥Pℓ
gi,Vi

∂kt e
−tPgi,Vi f

∥∥
L2(Ω,dVg)

≲
2∑

i=1

m−k∑
ℓ=0

∥∥∥e−tPgi,ViPℓ+k
gi,Vi

f
∥∥∥
L2(Ω,dVg)

≲
2∑

i=1

e−γit
m−k∑
ℓ=0

∥∥∥Pℓ+k
gi,Vi

f
∥∥∥
L2(Ω,dVg)

≲ ∥f∥H2m(Ω,dVg)e
−γt,

(4.32)

where γ = min (γ1, γ2) > 0. In the calculation above m is chosen such that m −
k > n/4. Note that formula (4.324.32) shows that for t → ∞ there are no boundary
contributions.

To proceed, we want to estimate the left-hand side of (4.324.32) for t > 0 and x ∈ O2,
where O2 is a nonempty open subset of Γ such that O1∩O2 = ∅. Indeed, by (B.10B.10)
and f ∈ C∞

c (O1) we may write

∂kt
[(
e−tPg1,V1 − e−tPg2,V2

)
f
]
(x)

= (−1)k
[ (
e−tPg1,V1 − e−tPg2,V2

)
(−∆g + V )

k
f
]
(x)

= (−1)k
ˆ
O1

[ (
e−tPg1,V1 (x, z)− e−tPg2,V2 (x, z)

)
(−∆g + V )

k
f(z)

]
dVg(z),

(4.33)

for x ∈ O2, where e
−tPgj,Vj (x, z) ≥ 0 is the (bounded) Schwartz kernel of e−tPgj,Vj

for j = 1, 2. Via (4.334.33), we have∣∣∂kt [(e−tPg1,V1 − e−tPg2,V2

)
f
]
(x)
∣∣

≤
ˆ
O1

∣∣∣ (e−tPg1,V1 (x, z)− e−tPg2,V2 (x, z)
)
(−∆g + V )

k
f(z)

∣∣∣ dVg(z)
≤
∥∥e−tPg1,V1 (·, ·)− e−tPg2,V2 (·, ·)

∥∥
L∞(O2×O1)

∥∥ (−∆g + V )
k
f
∥∥
L1(O1,dVg)

,

for x ∈ O2 and any k ∈ N0. Moreover, we can use a Gaussian upper bound for the
kernel e−tPgj,Vj (·, ·) (see (B.11B.11)) to obtain∣∣∂kt [(e−tPg1,V1 − e−tPg2,V2

)
f
]
(x)
∣∣

≤ ct−n/2e−b (dist(O1,O2))
2/teωt

∥∥ (−∆g + V )
k
f
∥∥
L1(O1,dVg)

,
(4.34)

for x ∈ O2, any k ∈ N0 and t > 0, where b, c > 0, ω ∈ R only depend on the heat
kernel e−tPgj,Vj (cf. (B.11B.11)) and dist(O1,O2) := inf {|x1 − x2| ; x1 ∈ O1, x2 ∈ O2}.
This shows that we also do not have a boundary contribution at t = 0 as by
assumption dist(O1,O2) > 0.

Therefore, using e−tPgj,Vj f ∈ C∞(Ω× [0,∞)) for j = 1, 2, (4.324.32) and (4.344.34), an
integration by parts (k times) with respect to the t-variable in (4.314.31) yields thatˆ ∞

0

[(
e−tPg1,V1 − e−tPg2,V2

)
f
]
(x)

dt

tk+1/2
= 0,



30 Y.-H. LIN, G. NAKAMURA, AND P. ZIMMERMANN

for x ∈ O2 and any k ∈ N0. In particular, by using the change of variables ζ = 1
t ,

we obtain ˆ ∞

0

ϕx(ζ)ζ
k dζ = 0,(4.35)

for x ∈ O2 and any k ∈ N0, where introduced for fixed x ∈ O2 the function
ϕx : (0,∞) → R by

ϕx(ζ) :=

(
e−

1
ζ Pg1,V1 − e−

1
ζ Pg2,V2

)
f(x)

ζ1/2
.

Claim 4.8. The functions (ϕx)x∈O2
have the following properties

(a) ϕx ∈ C∞((0,∞)) ∩ L2((0,∞))
(b) and for some α > 0 we have L(ϕx)(s) = 0 for 0 < s < α, where L : L2((0,∞)) →

L2((0,∞)) is the Laplace transform defined by

Lf(s) =
ˆ ∞

0

f(t)e−st dt

for f ∈ L2((0,∞)) and s > 0.

Proof of Claim 4.84.8. The smoothness assertion follows immediately from Lemma B.3B.3,
(c)(c). To see ϕx ∈ L2((0,∞)), we use the change of variables ζ = 1/t to write

∥ϕx∥2L2((0,∞)) =

ˆ ∞

0

∣∣(e− 1
ζ Pg1,V1 − e−

1
ζ Pg2,V2

)
f(x)

∣∣2
ζ

dζ

=

ˆ 1

0

∣∣(e−tPg1,V1 − e−tPg2,V2

)
f(x)

∣∣2 dt

t

+

ˆ ∞

1

∣∣(e−tPg1,V1 − e−tPg2,V2

)
f(x)

∣∣2 dt

t
.

The second integral is finite as e−tPgj,Vj f ∈ L2(0,∞;H1
0 (Ω)) for j = 1, 2 (see (B.6B.6))

and using (4.344.34) the first integral can be estimated as
ˆ 1

0

∣∣(e−tPg1,V1 − e−tPg2,V2

)
f(x)

∣∣2 dt

t

≲ ∥f∥L1(O1,dVg)

ˆ 1

0

t−n/2e−d/t dt

t

= d−n/2 ∥f∥L1(O1,dVg)

ˆ ∞

d

e−ττn/2−1 dτ

≲ d−n/2 ∥f∥L1(O1,dVg)
Γ(n/2) <∞

for some constant d > 0. This establishes ϕx ∈ L2((0,∞)) and hence completes the
proof of assertion (a)(a).

First, recall that we have∣∣∣∣∣e−sζ −
N∑

k=0

(−sζ)k

(N + 1)!

∣∣∣∣∣ = e−sξ

(N + 1)!
(−sζ)N+1,

for any N ∈ N, ζ > 0, s > 0 and some fixed ξ ∈ (0, ζ). As the Laplace transform is
a bounded operator from L2((0,∞)) to itself, we know that L(ϕx)(s) makes sense
for s > 0 (up to a set of measure zero). By (4.354.35), we have

ˆ ∞

0

ϕx(ζ)e
−sζ dζ =

ˆ ∞

0

ϕx(ζ)

(
e−sζ −

N∑
k=0

(−sζ)k

(N + 1)!

)
dζ,
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for any N ∈ N and s > 0. Therefore, we may estimate∣∣∣∣∣
ˆ ∞

0

ϕx(ζ)

(
e−sζ −

N∑
k=0

(−sζ)k

(N + 1)!

)
dζ

∣∣∣∣∣
≲

sN+1

(N + 1)!

ˆ ∞

0

|ϕx(ζ)| ζN+1 dζ

=
sN+1

(N + 1)!

(ˆ 1

0

|ϕx(ζ)| ζN+1 dζ +

ˆ ∞

1

|ϕx(ζ)| ζN+1 dζ

)
≲

sN+1

(N + 1)!

(
∥ϕx∥L2((0,∞)) +

ˆ ∞

1

|ϕx(ζ)| ζN+1 dζ

)
.

(4.36)

The last integral can be controlled by using the Gaussian bound (4.344.34) asˆ ∞

1

|ϕx(ζ)| ζN+1 dζ ≲
ˆ ∞

1

e−αζeω/ζζN+n/2+1/2 dζ

≲
ˆ ∞

1

e−αζζN+n/2+1/2 dζ

= α−(N+n/2+3/2)

ˆ ∞

d

e−ρρN+n/2+1/2 dρ

≲ α−(N+n/2+3/2)Γ(N + n/2 + 3/2).

for some α > 0. Next, let us recall that for any β ∈ C we have the asymptotics

(4.37) Γ(x+ β) ∼ Γ(x)xβ as x→ ∞.

Inserting this into (4.364.36) and using (4.374.37), we arrive at the estimate∣∣∣∣∣
ˆ ∞

0

ϕx(ζ)

(
e−sζ −

N∑
k=0

(−sζ)k

(N + 1)!

)
dζ

∣∣∣∣∣
≲

sN+1

(N + 1)!

(
∥ϕx∥L2((0,∞)) + α−(N+n/2+3/2)Γ(N + n/2 + 3/2)

)
≲

sN+1

(N + 1)!
+

sN+1

αN+n/2+3/2

Γ(N + n/2 + 3/2)

Γ(N + 2)

∼ sN+1

(N + 1)!
+
( s
α

)N
(N + 2)(n−1)/2

≲
sN+1

(N + 1)!
+
( s
α

)N
N (n−1)/2

= 0

as N → ∞. Here, we used that as N → ∞ the first term goes to zero for all s > 0
and the second term as long as 0 < s < α. Hence, we deduce that

L(ϕx)(s) = 0 for 0 < s < α

and this concludes the proof of (b)(b). Hence, Claim 4.84.8 is proved. □

Since ϕx ∈ L2((0,∞)) its Laplace transform can be extended analytically to the
right half plane of C and thus (b)(b) of Claim 4.84.8 together with the identity theorem
for analytic functions guarantee that Lϕx = 0 for s > 0. Now, we can invoke the
inversion formula to deduce ϕx(ζ) = 0 for ζ > 0. This in turn implies[(

e−tPg1,V1 − e−tPg2,V2

)
f
]
(x) = 0, for t > 0 and x ∈ O2.

On the other hand, via the condition (1.101.10), the function

v =
(
e−tPg1,V1 − e−tPg2,V2

)
f
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is a solution to {
(∂t + Pg,V ) v = 0 in Γ× (0,∞),

v = 0 in O2 × (0,∞),
(4.38)

where we utilized the notation g = g1 = g2 and V = V1 = V2 on the open subset
Γ ⋐ Ω. We may deduce from the fact that v solves (4.384.38), Γ is connected and
the unique continuation property of solutions to heat equations (see, for example,
[Lin90Lin90, Sections 1 and 4]) that[(

e−tPg1,V1 − e−tPg2,V2

)
f
]
(x) = 0, for t > 0 and x ∈ Γ.(4.39)

Let us also note that for any given f ∈ C∞
c (Γ) we can always choose open sets

O1,O2 ⊂ Γ such that supp f ⊂ O1 ⋐ Γ and O2 ∩ O1 = ∅. Hence, by (4.394.39) there
holds

e−tPg1,V1 f
∣∣
Γ
= e−tPg2,V2 f

∣∣
Γ
, for t > 0,(4.40)

for any f ∈ C∞
c (Γ). Finally, (4.404.40) and (B.10B.10) yield that

e−tPg1,V1 (x, z) = e−tPg2,V2 (x, z) for t > 0 and x, z ∈ Γ,

which implies that the condition (4.274.27) holds. This completes the proof. □

5. Inverse problem for wave equations

In this section, we introduce another key tool – the Kannai type transmutation
formula (see [Kan77Kan77]). This will transfer solutions of wave equations to solutions of
heat equations, via time integration against suitable kernel functions (see eq. (5.95.9)).
Using Lemma 4.74.7 allows us to relate the inverse problem (IP2)(IP2) to an inverse source
problem for the associated wave equation

(5.1)

{(
∂2t + Pg,V

)
w = F in Ω× [0,∞),

w(0) = w0, ∂tw(0) = w1 in Ω.

By establishing a unique determination for this inverse problem, we will prove in
Section 5.35.3 our main result, Theorem 1.11.1.

Before proceeding, let us collect some relevant well-posedness and regularity
results for the Cauchy problem (5.15.1), whose proof is presented in Appendix CC for
completeness.

Theorem 5.1. Let Ω ⊂ Rn be a smoothly bounded domain, g ∈ C∞(Ω;Rn×n) a
uniformly elliptic Riemannian metric, V ∈ C∞(Ω) be a nonnegative potential and
let Pg,V be the unbounded operator introduced in (4.14.1)-(4.24.2).

(a) Suppose that w0 ∈ H2(Ω, dVg) ∩ H1
0 (Ω, dVg), w1 ∈ H1

0 (Ω, dVg) and F ∈
C1([0,∞);L2(Ω, dVg)). Then there exists a unique function w satisfying

(5.2)


w ∈ C([0,∞);Dom(Pg,V )),

∂tw ∈ C([0,∞);H1
0 (Ω; dVg)),

∂2tw ∈ C([0,∞);L2(Ω, dVg))

and solving the Cauchy problem (5.15.1).
(b) If wj ∈

⋂
k∈NH

k(Ω, dVg) satisfy Pk
g,V wj ∈ H1

0 (Ω, dVg) for k ∈ N0, j = 0, 1

and F ∈ C∞
c (Ω × (0,∞)), then the unique solution w of (5.15.1) belongs to

C∞(Ω× [0,∞)).
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(c) Under the assumptions of assertion (a)(a), the unique solution w of (5.15.1) has
the representation formula

w(t) =
∑
k≥1

[
cos(tλ

1/2
k )wk

0 +
sin(tλ

1/2
k )

λ
1/2
k

wk
1 +

ˆ t

0

sin((t− τ)λ
1/2
k )

λ
1/2
k

Fk(τ) dτ

]
ϕk

= cos(tP
1/2
g,V )w0 +

sin(tP
1/2
g,V )

P
1/2
g,V

w1 +

ˆ t

0

sin((t− τ)P
1/2
g,V )

P
1/2
g,V

F (τ) dτ,

(5.3)

where Fk(t) = ⟨F (t), ϕk⟩L2(Ω,dVg)
and wk

j = ⟨wj , ϕk⟩L2(Ω,dVg)
for k ∈ N,

t ≥ 0, j = 0, 1.

From now on, for any source F ∈ C1([0,∞);L2(Ω, dVg)), we denote by wF ∈
C([0,∞);Dom(Pg,V )) the unique solution to the Cauchy problem for the wave equa-
tion with zero initial data{(

∂2t + Pg,V

)
w = F in Ω× (0,∞),

w(0) = ∂tw(0) = 0 in Ω.

Next, using this notation, we introduce the (local) source-to-solution map by

J Γ
g,V : C1([0,∞);L2(Γ, dVg)) → C([0,∞);H2(Γ)),

F 7→ wF
∣∣
Γ×[0,∞)

,
(5.4)

where Γ ⋐ Ω and L2(Γ, dVg) denotes the collection of functions G ∈ L2(Ω, dVg)

with suppG ⊂ Γ. Observe that by Theorem 5.15.1, (b)(b) we know that J Γ
g,V F ∈

C∞(Γ × [0,∞)), whenever F ∈ C∞
c (Ω × (0,∞)). The above considerations lead

naturally to the following inverse problem.

(IP3) Inverse problem for the wave equation. Can one uniquely determine
the metric g and potential V from the local source-to-solution map J Γ

g,V ?

The rest of this section is structured as follows. In Section 5.15.1 we show that the
inverse problem (IP2)(IP2) can be related to (IP3)(IP3), and in Section 5.25.2 we establish an
affirmative answer to the question (IP3)(IP3) and finally in Section 5.35.3 we proof our
main result, Theorem 1.11.1.

5.1. Kannai type transmutation and relation between (IP2)(IP2) and (IP3)(IP3).
The following lemma is similar to the one in [FGKU24FGKU24, Section 3] and we offer the
proof for the sake of completeness.

Lemma 5.2. Let Ω, Γ, (g1, V1) and (g2, V2) be given as in Theorem 1.11.1. Consider
the local source-to-solution map J Γ

gj ,Vj
of{(

∂2t + Pgj ,Vj

)
wj = F in Ω× (0,∞),

wj(0) = ∂twj(0) = 0 in Ω,
(5.5)

for j = 1, 2 and suppose that the conditions (1.101.10) and (4.274.27) hold for some pair
(g, V ) ∈ C∞(Ω;Rn×n)×C∞(Ω) consisting of a uniformly elliptic Riemannian met-
ric g and nonnegative potential V . Then there holds

J Γ
g1,V1

F = J Γ
g2,V2

F, for any F ∈ C∞
c (Γ× (0,∞)).(5.6)

Proof of Lemma 5.25.2. First note that via the Fourier inversion formula, we have

e−tλ2

=
1√
4πt

ˆ ∞

−∞
e−

ζ2

4t eiζλ dζ =
1√
4πt

ˆ ∞

−∞
e−

ζ2

4t cos(ζλ) dζ, t > 0.(5.7)
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For λ ̸= 0, an integration by parts in (5.75.7) yields that

e−tλ2

=
2

4
√
πt3/2

ˆ ∞

0

ζe−
ζ2

4t
sin(ζλ)

λ
dζ

=
1

4
√
πt3/2

ˆ ∞

0

e−
τ
4t
sin
(
τ1/2λ

)
λ

dτ.

(5.8)

Here we used that the sine function is odd and the change of variables τ = ζ2. For
any f ∈ L2(Ω, dVg), Lemma 4.44.4, (5.85.8) and Fubini’s theorem ensure that the Kannai
type transmutation formula holds, that is

e−tPgj,Vj f =
1

4
√
πt3/2

ˆ ∞

0

e−
τ
4t

sin(τ1/2P
1/2
gj ,Vj

)

P
1/2
gj ,Vj

f dτ in L2(Ω, dVg)(5.9)

for j = 1, 2. If f ∈ C∞
c (Γ), then (B.10B.10), (4.274.27) and (5.95.9) imply

ˆ ∞

0

e−
τ
4t

 sin
(
τ1/2P

1/2
g1,V1

)
P
1/2
g1,V1

f

 (x) dτ

=

ˆ ∞

0

e−
τ
4t

 sin
(
τ1/2P

1/2
g2,V2

)
P
1/2
g2,V2

f

 (x) dτ,

(5.10)

for t > 0 and x ∈ Γ. This holds in the sense that we test in the L2-sense the
expression under the integral against any h ∈ C∞

c (Γ). Applying the inverse Laplace
transform in (5.105.10), we obtain sin

(
τ1/2P

1/2
g1,V1

)
P
1/2
g1,V1

f

 (x) =

 sin
(
τ1/2P

1/2
g2,V2

)
P
1/2
g2,V2

f

 (x),(5.11)

for τ > 0 and x ∈ Γ. Therefore, with the representation formula (5.35.3) and F ∈
C∞

c (Γ× (0,∞)), by using (5.115.11), one can conclude

wF
1 (x, t) = wF

2 (x, t) in Γ× [0,∞),

which proves (5.65.6). This proves the assertion. □

5.2. Simultaneous determination for wave equations. The goal of this sec-
tion is to prove the following affirmative answer to the inverse problem (IP3)(IP3).

Theorem 5.3. Let Ω, Γ, (g1, V1) and (g2, V2) be given as in Theorem 1.11.1. Let
J Γ
gj ,Vj

be the local source-to-solution map of (5.55.5). Suppose that the conditions

(1.101.10) and (5.65.6) hold for some pair (g, V ) ∈ C∞(Ω;Rn×n) × C∞(Ω) consisting of
a uniformly elliptic Riemannian metric g and nonnegative potential V , then there
exists a diffeomorphism Ψ: Ω → Ω with Ψ|Γ = IdΓ on Γ such that g1 = Ψ∗g2 and
V1 = V2 ◦Ψ in Ω.

We will reduce the proof of Theorem 5.35.3 to a unique determination problem in
[KOP18KOP18].

Proof of Theorem 5.35.3. Let us start by recalling that by assumption (Ω, g) is a com-
pact, connected, smooth manifold with smooth boundary ∂Ω and we have given
the following data (

Γ, g|Γ, V |Γ, J Γ
g,V

)
,(5.12)

where J Γ
g,V denotes the local source-to-solution map for the wave equation with

zero initial data (see (5.45.4)). Now, we aim to recover (g, V ) in the connected set
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Ω′ := Ω \ Γ up to a diffeomorphism. We divide the proof of Theorem 5.35.3 into two
steps:

Step 1. Source-to-solution data (5.125.12) determines the restricted DN map.

Let us consider the wave equation in the domain Ω′ × (0,∞):

(5.13)


(
∂2t + Pg,V

)
w̃ = 0 in Ω′ × (0,∞),

w̃ = f on ∂Γ× (0,∞),

w̃ = 0 on ∂Ω× (0,∞),

w̃(0) = ∂tw̃(0) = 0 in Ω′.

It is known that the restricted DN map for the wave equation (5.135.13) can be defined
by

(5.14) Λw,∂Γ,T
g,V : f |∂Γ×(0,T ) 7→ ∂νg

w̃f

∣∣
∂Γ×(0,T )

,

for any T > 0, where f ∈ C∞
c (∂Γ× (0, T )) and wf is the unique solution to (5.135.13).

The well-posedness of (5.135.13) can be obtained as follows: First extend the boundary
condition f to a function f̄ ∈ C∞

c (Ω′ × [0,∞)) with f̄ |t=0 = 0, f̄ |∂Ω×[0,∞) = 0 and

set w̃ = ṽ + f̄ . Then ṽ solves a wave equation of the form (5.15.1), which uniquely
exists by Theorem 5.15.1 and hence showing the well-posedness of (5.135.13). By [KOP18KOP18,

Lemma 4.2], it is known that the data (5.125.12) determines the map Λw,∂Γ,T
g,V .

Step 2. Determination of the metric and potential from the restricted DN map.

By Step 1, (1.101.10) and (5.65.6) we have

Λw,∂Γ,T
g1,V1

f = Λw,∂Γ,T
g2,V2

f, for any f ∈ C∞
c (∂Γ× (0, T )),

for any T > 0, where Λw,∂Γ,T
gj ,Vj

stands for the restricted DN map given by (5.145.14), for

j = 1, 2. We may apply [KOP18KOP18, Theorem 1.1] (with Ej = Ω′ × C, Sj = ∂Γ and
ϕ = Id∂Γ×C) to conclude that there exists a hermitian vector bundle isomorphism
Φ: Ω′ × C → Ω′ × C such that Φ|∂Γ×C = ϕ and there holds

Ψ∗g2 = g1 and Φ∗V2 = V1,

where Ψ: Ω′ → Ω′ is the induced diffeomorphism of Φ. Thus, we have

Φ(x, v) = (Ψ(x), c(x)v),

where c : Ω′ → C is smooth scalar function with c(x) = 1 on ∂Γ. Observe that
V1 = Φ∗V2 means nothing else in the scalar case than V1 = V2 ◦Ψ. □

Remark 5.4. Notice that the results in [KOP18KOP18] hold in the more general vector-
valued setting, where the potential V is no longer scalar-valued as in our case.
Moreover, in [KOP18KOP18], the authors even allowed the leading order operator to have
a drift term, which emerges from an additional vector potential A. Thus, in the
present article we do not invoke the full strength of the results in [KOP18KOP18].

5.3. Proof of Theorem 1.11.1. Last but not least, we can show Theorem 1.11.1.

Proof of Theorem 1.11.1. First as the ND data agree (see (1.91.9)), the boundary deter-
mination (Theorem 3.13.1) shows that

(5.15) g1 = g2 and V1 = V2 on Γ.

Furthermore, Lemma 4.54.5 guarantees that

(5.16) SΓ
g1,V1

f = SΓ
g2,V2

f for all f ∈ C∞
c (Γ),

where SΓ
gj ,Vj

is the source-to-solution map for the nonlocal equation

P
1/2
gj ,Vj

v = f in Ω,
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for j = 1, 2. Next, let us fix any extension (g, V ), consisting of a uniformly elliptic
Riemannian metric g and nonnegative potential V , of (g1|Γ, V1|Γ) to the whole
domain Ω. By Lemma 4.74.7 we know from (5.155.15) and (5.165.16) that the Schwartz
kernels of the corresponding heat semigroups agree on Γ, that is

(5.17) e−tPg1,V1 (x, z) = e−tPg2,V2 (x, z) for t > 0 and x, z ∈ Γ.

By Lemma 5.25.2 the conditions (5.155.15), (5.165.16) and (5.175.17) ensure that

(5.18) J Γ
g1,V1

F = J Γ
g2,V2

F for any F ∈ C∞
c (Γ× (0,∞)),

where J Γ
gj ,Vj

denotes the source-to-solution map for the wave equation{(
∂2t + Pgj ,Vj

)
w = F in Ω× [0,∞),

w(0) = w0, ∂tw(0) = w1 in Ω,

for j = 1, 2. Finally, using (5.155.15) and (5.185.18) we can apply Theorem 5.35.3 to establish
the assertion of Theorem 1.11.1. □

Remark 5.5. Let us note that the above proof of Theorem 1.11.1 also establishes
Theorem 1.31.3 and the methods in this work can be used to study more general versions
of it. For example, one can consider the problem{

(−∆g + V )
s
u = f in Ω,

u = 0 on ∂Ω,

where f ∈ C∞
c (Γ), Γ ⋐ Ω is a given smooth domain and 0 < s < 1. If (g|Γ, V |Γ)

and the local source-to-solution map Ss,Γ
g,V : f |Γ 7→ uf |Γ are prescribed, for any

f ∈ C∞
c (Γ), then one could apply similar methods as in this work to determine

simultaneously (g, V ) in Ω up to a diffeomorphism.

Appendix A. Reflection and Poincaré inequality

To derive a suitable Poincaré inequality, we will make use of the following simple
lemma on first-order reflections.

Lemma A.1 (First order reflection). Let Ω ⊂ Rn be an open set. Then for any
function u : Ω× [0,∞) → R, we define its first order reflection ũ : Ω× R → R by

ũ(x, y) :=

{
u(x, y), if y ≥ 0

−3u(x,−y) + 4u(x,−y/2), if y ≤ 0

and set u+ := u|Ω×[0,∞), u− := u|Ω×(−∞,0]. If u ∈ C1
c (Ω× [0,∞)), then there holds

(a) ũ ∈ C1
c (Ω× R),

(b) u+|y=0 = u−|y=0,

(c) ∂yu+|y=0 = ∂yu−|y=0,

(d) ∂xiu+|y=0 = ∂xiu−|y=0 for 1 ≤ i ≤ n

(e) and there exists C > 0 independent of u such that

(A.1) ∥ũ∥L2(Ω×R) ≤ C∥u∥L2(Ω×R+) and ∥∇ũ∥L2(Ω×R) ≤ C∥∇u∥L2(Ω×R+).

If u ∈ H1
0 (Ω× [0,∞)), then ũ ∈ H1

0 (Ω× R) and the estimate (A.1A.1) still holds.

Proof. For the first part of Lemma A.1A.1 dealing with functions in C1
c (Ω × [0,∞)),

we refer to [Eva10Eva10, Section 5.4]. Now, suppose that u ∈ H1
0 (Ω× [0,∞)) and choose

(φk)k∈N ⊂ C1
c (Ω × [0,∞)) such that φk → u in H1(Ω × R+) as k → ∞. By (a)(a)

we know that φ̃k ∈ C1
c (Ω × R). Using (A.1A.1) we deduce that (φ̃k)k∈N is a Cauchy

sequence in H1(Ω×R) and hence there exists v ∈ H1(Ω×R) such that φ̃k → v in
H1(Ω×R) as k → ∞. On the other hand, up to extracting a subsequence we have
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φ̃k → ũ a.e. in Ω× R as k → ∞ and hence v = ũ in Ω× R. Thus, ũ ∈ H1
0 (Ω× R)

as v belongs to this space. Now, by (A.1A.1) we have

∥φ̃k∥L2(Ω×R) ≤ C ∥φk∥L2(Ω×R+) and ∥∇φ̃k∥L2(Ω×R) ≤ C ∥∇φk∥L2(Ω×R+)

for all k ∈ N and hence passing to the limit k → ∞ gives

∥ũ∥L2(Ω×R) ≤ C∥u∥L2(Ω×R+) and ∥∇ũ∥L2(Ω×R) ≤ C∥∇u∥L2(Ω×R+),

which concludes the proof. □

This lemma allows us to establish the following Poincaré inequality.

Theorem A.2 (Poincaré inequality). Let Ω ⊂ Rn be a bounded domain endowed
with a uniformly elliptic Riemannian metric g = (gij) and extension g̃ to Ω× R+.
Then there exists C > 0 such that there holds

(A.2) ∥u∥L2(Ω×R+,dVg̃) ≤ C∥du∥L2(Ω×R+;dVg̃)

for all u ∈ H1
0 (Ω× [0,∞)).

Proof. Let u ∈ H1
0 (Ω×[0,∞)) and denote by ũ ∈ H1

0 (Ω×R) the corresponding first
order reflection of u from Lemma A.1A.1. Then by the classical Poincaré inequality,
we know that there holds

∥ũ∥L2(Ω×R) ≤ C ∥∇ũ∥L2(Ω×R)

for some C > 0 independent of u. Using (A.1A.1), we deduce

∥u∥L2(Ω×R+) ≤ ∥ũ∥L2(Ω×R) ≤ C ∥∇ũ∥L2(Ω×R) ≤ C∥∇u∥L2(Ω×R+).

The uniform ellipticity of g ensures the equivalences (2.32.3) and thus the estimate
(A.2A.2) follows. □

At the end of this section, let us prove Claim 4.64.6.

Proof of Claim 4.64.6. For j = 1, 2, let us set u = ufj , g = gj and V = Vj . By

construction u ∈ H1
0 (Ω× [0,∞)) solves

(−∆g̃ + V )u = 0 in Ω× R+,

u = 0 on ∂Ω× R+,

−∂yu = f on Ω× {0}.

Since f ∈ C∞
c (Γ), we can find F ∈ C∞

c (Γ×R) such that ∂yF |y=0 = f . For example

one can take F (x, y) = yf(x)ρ(y), where ρ ∈ C∞
c (R) is a cutoff function with ρ = 1

in a neighborhood of y = 0. Now, we may observe that v = u−F ∈ H1
0 (Ω× [0,∞))

solves 
(−∆g̃ + V ) v = G in Ω× R+,

v = 0 on ∂Ω× R+,

−∂yv = 0 on Ω× {0}

with G = − (−∆g̃ + V )F .
Next, with ∂yv|Ω×{0} = 0, let us define the even reflection of v by

v∗(x, y) =

{
v(x, y), for (x, y) ∈ Ω× [0,∞)

v(x,−y), for (x, y) ∈ Ω× (−∞, 0)
.

It is well-known that v∗ ∈ H1
0 (Ω× R) with

∂yv
∗(x, y) =

{
∂yv(x, y), in Ω× [0,∞)

−∂yv(x,−y), in Ω× (−∞, 0).
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Then a simple calculation shows that v∗ solves{
(−∆g̃ + V ) v = G∗ in Ω× R,
v = 0 on ∂Ω× R,

where G∗ denotes the even reflection of G. Let η ∈ C∞
c (Ω × R), then w = ηv∗ ∈

H1(Rn+1) (extended by zero outside of Ω) solves

(A.3) (−∆g̃ + V )w = H∗ in Rn+1,

where H∗ := ηG∗ − v∗∆g̃η − 2dv∗ · dη − 2∂yv
∗∂yη ∈ L2(Rn+1). Hence, elliptic

regularity theory implies w ∈ H2
loc(Rn+1) and thus v ∈ H2(ω× [0, R)) for all ω ⋐ Ω

and R > 0. Although in general G∗ is not regular for regular functions G, in our
case close to y = 0 we have G∗ = |y|(−∆g + V )f and therefore G∗ ∈ H1(Rn+1).
This in turn implies H∗ ∈ H1(Rn+1). Thus, by differentiating (A.3A.3) and arguing
as before we get v ∈ H3(ω× [0, R)) for any ω ⋐ Ω and R > 0. Boundary regularity
can be obtained precisely as in [GT83GT83, Theorem 8.12] by using the method of
difference quotients. One obtains that for any x ∈ ∂Ω, there exists r > 0 such that
v ∈ H2(Br(x)× [0, R)) for any R > 0 and hence by a covering ∂Ω with such balls
and taking into account the interior regularity result, we get v ∈ H3(Ω × [0, R))
for any R > 0. Going back from v to our original solution u, the Claim 4.64.6 is
followed. □

Appendix B. Heat semigroup and powers of −∆g + V

B.1. Functional analytic properties of −∆g + V and heat semigroup. Let
us make the following observations, which were used repeatedly throughout this
article.

(a) There holds

(B.1) ∂k|g|±1/2 = ±|g|±1/2

2
gij∂kgji

for all 1 ≤ k ≤ n. Hence, iteratively we get |g|±1/2 ∈ C∞(Ω).
(b) We have φ ∈ H1

0 (Ω) if and only if |g|1/2φ ∈ H1
0 (Ω).

(c) Suppose that u ∈ H1(Ω) (weakly) solves

(B.2) (−∆g + q) = f in Ω

for some f ∈ L2(Ω, dVg) and q ∈ L∞(Ω), that isˆ
Ω

(du · dφ+ quφ) dVg =

ˆ
Ω

fφ dVg

for all φ ∈ H1
0 (Ω). Then by (B.1B.1) we deduce thatˆ

Ω

fφ|g|1/2 dx

=

ˆ
Ω

(
gij∂iu∂j(|g|1/2φ)− (gij∂iu∂j |g|1/2)φ+ qu|g|1/2φ

)
dx

=

ˆ
Ω

(
gij∂iu∂j(|g|1/2φ)−

1

2
(gijgkℓ∂jgℓk∂iu)|g|1/2φ+ qu|g|1/2φ

)
dx.

Thus, by (b)(b) we can replace φ in the previous formula by |g|−1/2ψ with
ψ ∈ H1

0 (Ω) and obtain that u ∈ H1(Ω) solves (B.2B.2) if and only if u ∈ H1(Ω)
solves

(B.3) −div(g∇u) + b · ∇u+ qu = f in Ω,
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where b =
(
b1, . . . , bn

)
∈ C∞(Ω,Rn) is given by

(B.4) bi = −1

2
gijgkℓ∂jgℓk, for i = 1, . . . , n.

Lemma B.1. The operator Pg,V has the following properties:

(a) Pg,V is symmetric meaning that

⟨Pg,V u, v⟩L2(Ω,dVg)
= ⟨u,Pg,V v⟩L2(Ω,dVg)

for all u, v ∈ Dom (Pg,V ) .

(b) Pg,V is maximal monotone, that is there holds
(i) Monotonicity: For all u ∈ Dom (Pg,V ) one has

⟨Pg,V u, u⟩L2(Ω,dVg)
≥ 0,

(ii) Maximality: Ran (1 + Pg,V ) = L2(Ω, dVg).

Furthermore, Pg,V is a self-adjoint operator on L2(Ω, dVg).

Proof. Note that (a)(a) and (i)(i) of (b)(b) follow by a simple integration by parts as
Dom(Pg,V ) = H1

0 (Ω) ∩ H2(Ω) (see Lemma B.2B.2 below). Hence, we only need to
show (ii)(ii). To see this, fix some f ∈ L2(Ω, dVg), then one observes that

ℓf : H
1
0 (Ω) → R, ⟨ℓf , φ⟩ =

ˆ
Ω

fφ dVg

is a continuous linear form on H1
0 (Ω) and as g is uniformly elliptic as well as

0 ≤ V ∈ L∞(Ω) an equivalent inner product on H1
0 (Ω) is given by

⟨u, v⟩g,V =

ˆ
Ω

(
gij∂iu∂jv + (V + 1)uv

)
dVg.

Therefore, by the Riesz representation theorem, there exists a unique u ∈ H1
0 (Ω)

satisfying

⟨u, φ⟩g,V =

ˆ
Ω

fφ dVg for all φ ∈ H1
0 (Ω).

As explained above, using φ = |g|−1/2ψ with ψ ∈ H1
0 (Ω) as a test function, we get

an equation of the type (B.3B.3) and then we can invoke the usual elliptic regularity
theory to deduce u ∈ H2(Ω) (see [GT83GT83, Theorem 8.12]). Hence, an integration by
parts guarantees that u ∈ Dom (Pg,V ) satisfies

(Id + Pg,V )u = f in L2(Ω, dVg)

and this establishes (ii)(ii). Now, we can apply [Bre11Bre11, Proposition 7.6] to infer that
Pg,V is in fact a self-adjoint operator on L2(Ω, dVg). □

Now, we explain the reason for the validity of the identities (4.34.3) and (4.44.4). The
first identity follows by using the orthonormality of (ϕk)k∈N and Pg,V ϕk = λkϕk.
If u ∈ Dom(Pg,V ), then the identity (4.34.3) guarantees the (λkuk)k∈N ⊂ ℓ2(N). Let

Um =

m∑
k=1

ukϕk and Vm =

m∑
k=1

λkukϕk.

By construction, we have Um ∈ Dom(Pg,V ) and Pg,V Um = Vm, for m ∈ N. Then
clearly Um → u in L2(Ω, dVg) and as Vm is a Cauchy sequence in L2(Ω, dVg) it con-
verges to some limit in L2(Ω, dVg). By [Bre11Bre11, Proposition 7.1] maximal monotone
operators are closed and hence we may conclude that Pg,V u =

∑∞
k=1 λkukϕk.

Since Pg,V is a symmetric, maximal monotone operator, [Are06Are06, Theorem 2.3.1]
implies that −Pg,V generates a C0-semigroup of contractive, self-adjoint operators
on L2(Ω, dVg), which we denote as usual by

(
e−tPg,V

)
t≥0

(the heat kernel of ∂t +

Pg,V ). Here, contractive means nothing else than
∥∥e−tPg,V

∥∥
L(L2(Ω;dVg))

≤ 1, where

L(L2(Ω, dVg)) denotes the operator norm from L2(Ω, dVg) to L2(Ω, dVg). More
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precisely, for a given function f ∈ L2(Ω, dVg), the function U(t) := e−tPg,V f is the
unique solution of

u ∈ C([0,∞);L2(Ω, dVg)) ∩ C1((0,∞);L2(Ω, dVg)),

u ∈ C((0,∞);Dom(Pg,V )),

(∂t + Pg,V )u = 0 in (0,∞),

u(0) = f

(B.5)

(see [Bre11Bre11, Theorem 7.7]). In (B.5B.5) the space Dom(Pg,V ) is regarded as a Hilbert
space with an inner product given by

⟨u, v⟩Dom(Pg,V ) = ⟨u, v⟩L2(Ω;dVg)
+ ⟨Pg,V u,Pg,V v⟩L2(Ω;dVg)

.

Furthermore, we have

(B.6) U ∈ L2(0,∞;H1
0 (Ω, dVg))

with

∥U(t)∥2L2(Ω;dVg)

2
+

ˆ t

0

(
∥dU(τ)∥2L2(Ω,dVg)

+
∥∥V 1/2U(τ)

∥∥2
L2(Ω,dVg)

)
dτ

=
∥f∥2L2(Ω,dVg)

2

(B.7)

for all t > 0. To see this let us consider the function φ ∈ C1((0,∞)) given by

φ(t) =
∥U(t)∥2L2(Ω,dVg)

2
.

Using U ∈ C1((0,∞);L2(Ω, dVg)) ∩ C((0,∞);Dom(Pg,V )), we get

φ′(τ) = ⟨U(τ), ∂tU(τ)⟩L2(Ω,dVg)

= −⟨U(τ),Pg,V U(τ)⟩L2(Ω,dVg)

= −∥dU(τ)∥2L2(Ω,dVg)
−
∥∥V 1/2U(τ)

∥∥2
L2(Ω;dVg)

for any τ > 0. Therefore, the fundamental theorem of calculus implies

φ(t)− φ(ϵ) =

ˆ t

ϵ

φ′(τ) dτ

= −
ˆ t

ϵ

(
∥dU(τ)∥2L2(Ω,dVg)

+
∥∥V 1/2U(τ)

∥∥2
L2(Ω,dVg)

)
dτ

for all 0 < ϵ < t < ∞. As U ∈ C([0,∞);L2(Ω, dVg)) and U(0) = f , we obtain in
the limit ϵ→ 0 the energy identity (B.7B.7). But now the energy inequality shows

ˆ t

0

∥dU(τ)∥2L2(Ω,dVg)
dτ ≤

∥f∥2L2(Ω,dVg)

2
<∞

for all t ≥ 0, which in turn implies U ∈ L2(0,∞;H1
0 (Ω, dVg)) and hence establishes

(B.6B.6). Finally, from the fact that U ∈ C((0,∞);Dom(Pg,V ))∩L2(0,∞;H1
0 (Ω, dVg))

it also follows that

(B.8) ∂tU ∈ L2(0,∞;H−1(Ω, dVg)).

Proof of Lemma 4.44.4. First note that by the Galerkin method, using the finite-
dimensional subspaces spanned by (ϕk)k∈N ⊂ H1

0 (Ω, dVg) as the Galerkin approxi-
mation of L2(Ω, dVg), the problem

(∂t + Pg,V )u = 0 in Ω× (0, T ),

u = 0 on ∂Ω,

u(0) = f in Ω

(B.9)
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has a unique (weak) solution

u ∈ L2(0, T ;H1
0 (Ω, dVg)) with ∂tu ∈ L2(0, T ;H−1(Ω, dVg)),

for any T > 0 (see [Eva10Eva10, Chapter 7] or [DL92DL92, Chapter XVIII]). By construction,
the approximate solutions um are given by

um(t) =

m∑
k=1

e−λktfkϕk with fk = ⟨f, ϕk⟩L2(Ω,dVg),

which converge in L2(Ω, dVg) to the solution u, that is

u(t) =

∞∑
k=1

e−λktfkϕk

(see [DL92DL92, Chapter XVIII, Section 3.5, Remark 4]). By uniqueness of the problem
(B.9B.9), (B.6B.6) and (B.8B.8), we deduce that

U(t) =

∞∑
k=1

e−λktfkϕk.

This concludes the proof. □

Next, let us recall that by [AE97AE97, Theorem 3.1] (see also [Aro68Aro68, Section 7])
there exists b, c > 0, ω ∈ R and Kt = Kt(x, z) ∈ L∞(Ω× Ω) such that

(B.10) e−tPg,V φ(x) =

ˆ
Ω

Kt(x, z)φ(z) dVg(z) for a.e. x ∈ Ω

for all t > 0, φ ∈ L2(Ω, dVg) and

(B.11) |Kt(x, z)| ≤ ct−n/2e−b|x−z|2/teωt for a.e. x, z ∈ Ω.

By the above discussion, we have Kt ≥ 0. In the following, we set

e−tPg,V (·, ·) := Kt(·, ·).

B.2. Integer powers of −∆g + V . Next, let us introduce integer powers of our
operator Pg,V = −∆g + V , and recall some regularity results for solutions of (B.5B.5)
for regular initial conditions. For 2 ≤ k ∈ N, we set

(B.12) Dom
(
Pk
g,V

)
=
{
v ∈ Dom(Pk−1

g,V ) ; Pg,V v ∈ Dom(Pk−1
g,V )

}
,

and define

Pk
g,V = Pg,V · · ·Pg,V︸ ︷︷ ︸

k times

.

It is easily seen that the space Dom(Pk
g,V ), k ≥ 1, is a Hilbert space if we endow it

with the inner product

(B.13) ⟨u, v⟩Dom(Pk
g,V ) =

k∑
j=0

〈
Pj
g,V u,P

j
g,V v

〉
L2(Ω,dVg)

.

Lemma B.2. For all k ≥ 1, we have

(B.14) Dom(Pk
g,V ) ↪→ H2k(Ω)

and there holds

(B.15) Dom(Pk
g,V ) =

{
u ∈ H2k(Ω) ; u, Pg,V u, . . . , P

k−1
g,V u ∈ H1

0 (Ω)
}
.
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Proof. Let us prove it via mathematical induction.

Case 1. k = 1:

Let u ∈ Dom(Pg,V ). By (4.24.2), the function u ∈ H1
0 (Ω) solves

Pg,V u = f in Ω

for some f ∈ L2(Ω). Therefore u ∈ H1
0 (Ω) satisfies

(B.16) −div(g∇u) + b · ∇u+ V u = f in Ω,

where b ∈ C∞(Ω;Rn) is defined as in (B.4B.4), but then [GT83GT83, Theorem 8.12] implies
u ∈ H2(Ω) with

∥u∥H2(Ω) ≲ ∥u∥L2(Ω) + ∥f∥L2(Ω).

This in turn shows that

∥u∥H2(Ω) ≲ ∥u∥L2(Ω;dVg) + ∥Pg,V u∥L2(Ω;dVg)
≲ ∥u∥Dom(Pg,V )

(see (B.13B.13)). This establishes (B.14B.14) in the case k = 1. On the other hand by
definition of Dom(Pg,V ) we know u ∈ H1

0 (Ω). Hence, we have

Dom(Pg,V ) ⊂ {u ∈ H2(Ω) ; u ∈ H1
0 (Ω)}.

The reversed inclusion is also true. Thus, (B.15B.15) holds for k = 1.

Case 2. k − 1 7→ k:

Let u ∈ Dom(Pk
g,V ). As Dom(Pk−1

g,V ) ↪→ H2k−2(Ω) and u ∈ H1
0 (Ω) solves (B.16B.16)

with f ∈ H2k−2(Ω), elliptic regularity theory [GT83GT83, Theorem 8.13] implies that
u ∈ Hk(Ω) and

∥u∥Hk(Ω) ≲ ∥u∥L2(Ω) + ∥Pg,V u∥H2k−2(Ω)

≲ ∥u∥L2(Ω,dVg) + ∥Pg,V u∥Dom(Pk−1
g,V )

≲ ∥u∥Dom(Pk
g,V ).

In the second estimate, we used Pg,V u ∈ Dom(Pk−1
g,V ) and Dom(Pk−1

g,V ) ↪→ H2k−2(Ω).

Therefore, we get (B.14B.14). As u ∈ Dom(Pk−1
g,V ), we know already

u,Pg,V u, . . . ,P
k−2
g,V u ∈ H1

0 (Ω).

As Pg,V u ∈ Dom(Pk−1
g,V ), we also have Pk−1

g,V u ∈ H1
0 (Ω) and thus

Dom(Pk
g,V ) ⊂

{
u ∈ H2k(Ω) ; u, Pg,V u, . . . , P

k−1
g,V u ∈ H1

0 (Ω)
}
.

The other inclusion ⊃ is again easily seen by the induction hypothesis. Hence, we
have established (B.15B.15) and can conclude the proof. □

Lemma B.3 (Regularity of heat semigroup). Let the notation be as above and in
particular for given f ∈ L2(Ω, dVg) denote by u = e−tPg,V f the unique solution to
(B.5B.5).

(a) If f ∈ Dom(Pk
g,V ) for some k ∈ N, then there holds

u ∈ Ck−j([0,∞);Dom(Pj
g,V )) for all j = 0, 1, . . . , k.

(b) If f ∈ Dom(Pk
g,V ) for some k > n/4 and 0 ≤ j ≤ k satisfies j > n/4, then

there holds u ∈ Ck−j([0,∞);Cℓj ,αj (Ω)) and

(B.17)
∥∥∂k−j

t u(t)
∥∥
Cℓj ,αj (Ω)

≲
∥∥∂k−j

t u(t)
∥∥
Dom(Pj

g,V )
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for any t ≥ 0. The exponents ℓj ∈ N0, αj ∈ (0, 1] are given by

ℓ =

{
[2j − n/2], if 2j − n/2 /∈ N,
2j − n/2− 1, if 2j − n/2 ∈ N

and

α ∈

{
[0, 2j − [2j − n/2]− n/2], if n/2 /∈ N,
[0, 1), if n/2 ∈ N,

where [x] = max{k ∈ Z ; /, x ≥ k} for x ∈ R.
(c) If f ∈ Dom(Pk

g,V ) for all k ∈ N, then there holds u ∈ C∞(Ω× [0,∞)).

Proof. The statement (a)(a) is an immediate consequence of [Bre11Bre11, Theorem 7.4-

7.5]. Next, let us prove the assertion (b)(b). First, by (a)(a) we know that ∂k−j
t u(t) ∈

Dom(Pj
g,V ) for all t ≥ 0 and thus Lemma B.2B.2 implies∥∥∂k−j

t u(t)
∥∥
H2j(Ω)

≲
∥∥∂k−j

t u(t)
∥∥
Dom(Pj

g,V )
.

Therefore, by the Sobolev embedding, we arrive at the estimate (B.17B.17). The state-
ment (c)(c) is a direct consequence of (b)(b). □

Appendix C. Well-posedness of the wave equation

We next give the proof of the Theorem 5.15.1.

Proof of Theorem 5.15.1. For (a)(a), let us start by rewriting (5.15.1) as a system of first-
order equations {

∂tw − w′ = 0 in Ω× (0,∞),

∂tw
′ + Pg,V w = F in Ω× (0,∞)

or in operator notation as

(C.1) ∂tW + Pg,VW = F̃ ,

where we put W = (w,w′), F̃ = (0, F ) and

(C.2) Pg,VW :=

(
0 −Id

Pg,V 0

)(
w
w′

)
=

(
−w′

Pg,V w

)
.

We aim to apply the Hille–Yosida theory for the evolution problem (C.1C.1). For this
purpose, let us introduce the Hilbert space

H := H1
0 (Ω, dVg)× L2(Ω, dVg)

endowed with the inner product

⟨W1,W2⟩H = ⟨dw1, dw2⟩L2(Ω,dVg)
+ ⟨w′

1, w
′
2⟩L2(Ω,dVg)

,

for Wj =
(
wj , w

′
j

)
∈ H (j = 1, 2), and interpret Pg,V as an unbounded operator on

H with domain

(C.3) Dom(Pg,V ) = Dom(Pg,V )×H1
0 (Ω, dVg).

Let C0 > 0 be the Poincaré constant on Ω, that is there holds

(C.4) ∥u∥2L2(Ω,dVg)
≤ C0∥du∥2L2(Ω,dVg)

for all u ∈ H1
0 (Ω, dVg), and let λ ≥ 0 satisfy

(C.5) λ ≥
∥V ∥L∞(Ω)

2min
(
C−1

0 , 1
) .

This constant will be fixed throughout the whole proof.

Claim C.1. Pg,V + λ is a maximal monotone operator on H.
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Proof of Claim C.1C.1. Let us show the following facts:

(a) Monotonicity: For W = (w,w′) ∈ Dom(Pg,V ), we may calculate

⟨Pg,VW,W ⟩H = ⟨(−w′,Pg,V w) , (w,w
′)⟩H

= −⟨dw′, dw⟩L2(Ω,dVg) + ⟨Pg,V w,w
′⟩L2(Ω,dVg)

= ⟨V w,w′⟩L2(Ω,dVg)
.

Next, observe that by (C.4C.4) we have

∥W∥2H = ∥dw∥2L2(Ω,dVg)
+ ∥w′∥2L2(Ω,dVg)

≥ min
(
C−1

0 , 1
) (

∥w∥2L2(Ω,dVg)
+ ∥w′∥2L2(Ω,dVg)

)
.

This implies

⟨(Pg,V + λ)W,W ⟩H
≥ ⟨V w,w′⟩L2(Ω,dVg) + λmin

(
C−1

0 , 1
) (

∥w∥2L2(Ω,dVg)
+ ∥w′∥2L2(Ω,dVg)

)
≥
(
λmin

(
C−1

0 , 1
)
−

∥V ∥L∞(Ω)

2

)(
∥w∥2L2(Ω,dVg)

+ ∥w′∥2L2(Ω,dVg)

)
≥ 0.

(b) Maximality: Let H = (h, h′) ∈ H. We want to show that there exists
W = (w,w′) ∈ Dom(Pg,V ) such that

(C.6) (Pg,V + (λ+ 1))W = H.

Note that this is equivalent to the condition that W solves{
(λ+ 1)w − w′ = h in H1

0 (Ω, dVg),

Pg,V w + (λ+ 1)w′ = h′ in L2(Ω, dVg).

Inserting the first equation into the second one, we arrive at the following
equation for w:

Pg,V w + (λ+ 1)2w = (λ+ 1)h+ h′ in L2(Ω, dVg).

It follows from Lax–Milgram theorem and elliptic regularity theory [GT83GT83,
Theorem 8.12] that this problem has a unique solution w ∈ H2(Ω, dVg) ∩
H1

0 (Ω, dVg). Hence, by defining

w′ = −(λ+ 1)w + h ∈ H1
0 (Ω, dVg)

we arrive at a solution W = (w,w′) of the original problem (C.6C.6).

This proves the Claim C.1C.1. □

Hence, we have shown that Pg,V + λ, for λ ≥ 0 satisfying (C.5C.5) is a maximal
monotone operator. Therefore, we can use [Bre11Bre11, Theorem 7.4] to see that for any
W0 = (w0, w1) with w0 ∈ H2(Ω, dVg) ∩ H1

0 (Ω, dVg) and w1 ∈ H1
0 (Ω, dVg), there

exists a unique function

Wλ ∈ C([0,∞);Dom(Pg,V )) ∩ C1([0,∞);H)

satisfying {
∂tWλ + (Pg,V + λ)Wλ = 0 for t ≥ 0,

Wλ(0) =W0.

Moreover, we have

(C.7) ∥Wλ∥H ≤ ∥W0∥H.
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But then the function W = eλtWλ satisfies

(C.8) W ∈ C([0,∞);Dom(Pg,V )) ∩ C1([0,∞);H)

and

(C.9)

{
(∂t + Pg,V )W = 0 for t ≥ 0,

W (0) =W0.

It is immediate to see that this solution W is again unique. Now, for each t ≥ 0 let
us define the linear map

Tt : Dom(Pg,V ) → Dom(Pg,V ), W0 7→W (t),

whereW =W (t) is the unique solution constructed above with the initial condition
W (0) = W0. Note that by (C.7C.7) the linear operators Tt satisfy the continuity
estimate

(C.10) ∥Tt∥L(H) ≤ eλt, for t ≥ 0.

As Pg,V + λ is maximal monotone, we can deduce that Dom(Pg,V ) is dense in
H and this in turn allows us to extend the family Tt to maps in L(H) such that
the bound (C.10C.10) still holds. This extension will still be denoted by Tt. It is
not difficult to see that this extension Tt satisfies the semigroup property, and is
strongly continuous. We may estimate

∥TtW0 −W0∥H ≤
∥∥Tt(W0 −W k

0 )
∥∥
H +

∥∥TtW k
0 −W k

0

∥∥
H +

∥∥W k
0 −W0

∥∥
H

≤
(
∥Tt∥L(H) + 1

) ∥∥W k
0 −W0

∥∥
H +

∥∥TtW k
0 −W k

0

∥∥
H ,

for any W0 ∈ H, where W k
0 ∈ Dom(Pg,V ) is any sequence satisfying W k

0 →W in H
as k → ∞. Passing to the limit t→ 0 shows the strong continuity of (Tt)t≥0 on H.
Hence, (Tt)t≥0 is a C0-semigroup. Furthermore, since the solution of (C.9C.9) satisfies

(C.8C.8), we have by construction

∂tW (0) = − lim
t→0

Pg,VW = −Pg,VW0

for any W0 ∈ Dom(Pg,V ). Therefore, −Pg,V is the generator of the C0-semigroup
(Tt)t≥0 (cf. [BS18BS18, Lemma 7.1.17] and [Are06Are06, Exercise 2.6.2]).

Now, we turn our attention to the inhomogeneous problem (C.1C.1). Note that

by the assumptions on F , we have F̃ ∈ C1([0,∞);H) and deduce from [BS18BS18,
Lemma 7.1.14] that

(C.11) WF (t) =

ˆ t

0

Tt−τ F̃ (τ) dτ

is continuously differentiable as a map from [0,∞) to H, WF (t) ∈ Dom(Pg,V ) for
all t ≥ 0. Meanwhile, via the equation (C.1C.1), differentiate (C.11C.11) with respect to t,
then there holds

Pg,VWF (t) + F̃ (t) = ∂tWF (t) = TtF̃ (0) +

ˆ t

0

T (t− τ)∂τ F̃ (τ) dτ

for all t ≥ 0. Thus, [DL92DL92, Chapter XVII, B, §1, Theorem 1] guarantees that for
any W0 = (w0, w1) ∈ Dom(Pg,V ) there exists a function

W ∈ C([0,∞);H) ∩ C1((0,∞);H) ∩ C((0,∞);Dom(Pg,V ))

satisfying the initial-value problem

(C.12)

{
(∂t + Pg,V )W = F̃ for t > 0

W (0) =W0.
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Indeed, the solution W is given by Duhamel’s formula

W (t) = TtW0 +

ˆ t

0

Tt−τ F̃ (τ) dτ

and so it is unique. Note that W0 ∈ Dom(Pg,V ), (C.8C.8) and WF ∈ C1([0,∞);H)
implies W ∈ C1([0,∞);H). Thus, (C.12C.12) shows

Pg,VW = F̃ − ∂tW ∈ C([0,∞);H).

Hence, we can deduce that

(C.13) W ∈ C1([0,∞);H) ∩ C([0,∞);Dom(Pg,V ))

and the PDE (C.12C.12) holds for t ≥ 0.
Next, let us write W (t) = (w(t), w′(t)) for t ≥ 0. By (C.13C.13), (C.12C.12), (C.2C.2),

W0 = (w0, w1) and F̃ = (0, F ), we deduce that w′(t) = ∂t(w) for t ≥ 0,

C([0,∞);H2(Ω, dVg) ∩H1
0 (Ω, dVg)) with

{
∂tw ∈ C([0,∞);H1

0 (Ω; dVg)),

∂2tw ∈ C([0,∞);L2(Ω, dVg)),

(C.14)

and w solves (
∂2t + Pg,V

)
w = F on [0,∞).

Observe that this solution w is unique as if w̃ is another solution, then v = w − w̃
solves the homogeneous problem{(

∂2t + Pg,V

)
v = 0 for t ≥ 0,

v(0) = ∂tv(0) = 0.

As ∂tv ∈ C([0,∞);H1
0 (Ω)) we get〈(

∂2t + Pg,V

)
v, ∂tv

〉
L2(Ω,dVg)

= 0

for any t ≥ 0. By (C.14C.14), we may calculate〈
∂2t v, ∂tv

〉
L2(Ω,dVg)

=
1

2
∂t∥∂tv∥2L2(Ω,dVg)

,

⟨V v, ∂tv⟩L2(Ω,dVg)
=

1

2
∂t
∥∥V 1/2v

∥∥2
L2(Ω,dVg)

,

⟨−∆gv, ∂tv⟩L2(Ω,dVg)
= ⟨dv, d∂tv⟩L2(Ω,dVg)

=
1

2
∂t∥dv∥2L2(Ω,dVg)

.

Hence, we deduce

∂t
(
∥∂tv∥2L2(Ω,dVg)

+ ∥dv∥2L2(Ω,dVg)
+
∥∥V 1/2v

∥∥2
L2(Ω,dVg)

)
= 0.

Therefore, we may conclude that v = 0 as v(0) = ∂tv(0) = 0. This demonstrates (a)(a).

For (b)(b), let w0, w1 and F be given as in the assumption. Recall from Section B.2B.2
that for any k ∈ N the powers Pk

g,V are the unbounded operators

Pk
g,V = Pg,V · · · Pg,V︸ ︷︷ ︸

k-times

on H

with domain

Dom(Pk
g,V ) =

{
U ∈ Dom(Pk−1

g,V ) ; Pg,V U ∈ Dom(Pk−1
g,V )

}
,

which becomes a Hilbert space under the inner product

⟨W1,W2⟩Dom(Pk
g,V ) =

k∑
j=0

〈
Pj
g,VW1,Pj

g,VW2

〉
H,
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for all Wj ∈ Dom(Pk
g,V ) and for j = 1, 2.

Claim C.2. For any k ∈ N the following assertions hold:

(a) We have

Dom(Pk
g,V ) = Qk

g,V ,(C.15)

where Qk
g,V denotes the set{(

w
w′

)
;

w ∈ Hk+1(Ω, dVg) s.t. w, . . . ,P
[k/2]
g,V w ∈ H1

0 (Ω, dVg)

w′ ∈ Hk(Ω, dVg) s.t. w
′, . . . ,P

[(k+1)/2]−1
g,V w′ ∈ H1

0 (Ω, dVg)

}
and there holds

(C.16) Dom(Pk
g,V ) ↪→ Hk+1(Ω, dVg)×Hk(Ω, dVg).

(b) Let P(k)
g,V be defined by

P(k)
g,V : Dom(Pk

g,V ) ⊂ Dom(Pk−1
g,V ) → Dom(Pk−1

g,V ), U 7→ Pg,V U,

then P(k)
g,V + λ is maximal monotone on Dom(Pk−1

g,V ) for k ∈ N, where we

use the convention Dom(P0
g,V ) = H.

Proof of Claim C.2C.2. For (a)(a), note that in the case k = 1 the identity (C.15C.15) holds
by (C.3C.3) and (B.15B.15). Moreover, the embedding (C.16C.16) follows from (B.14B.14). So let
us suppose that the assertions in (a)(a) hold for k − 1 and choose any W = (w,w′) ∈
Dom(Pk

g,V ). In particular, this implies that

(C.17) Pg,VW =

(
−w′

Pg,V w

)
∈ Dom(Pk−1

g,V ) = Qk−1
g,V .

Therefore, we have Pg,V w ∈ Hk−1(Ω, dVg) and w
′ ∈ Hk(Ω, dVg). By elliptic regu-

larity theory, this ensures w ∈ Hk+1(Ω, dVg) with

∥w∥Hk+1(Ω,dVg) ≲ ∥w∥L2(Ω,dVg) + ∥Pg,V w∥Hk−1(Ω,dVg)

≲ ∥w∥L2(Ω,dVg) +

∥∥∥∥( −w′

Pg,V w

)∥∥∥∥
Hk(Ω,dVg)×Hk−1(Ω,dVg)

≲ ∥w∥L2(Ω,dVg) +

∥∥∥∥( −w′

Pg,V w

)∥∥∥∥
Dom(Pk−1

g,V )

≲ ∥dw∥L2(Ω,dVg) +

k−1∑
j=0

∥∥Pj+1
g,V W

∥∥
H

≲ ∥W∥H +

k−1∑
j=0

∥∥Pj+1
g,V W

∥∥
H

≲ ∥W∥Dom(Pk
g,V ).

In the above calculation, we used the Poincaré inequality, the uniform ellipticity,
and the induction hypothesis. On the other hand (C.17C.17) together with

Dom(Pk−1
g,V ) ↪→ Hk(Ω, dVg)×Hk−1(Ω, dVg)

shows

∥w′∥Hk(Ω,dVg) ≲

∥∥∥∥( −w′

Pg,V w

)∥∥∥∥
Dom(Pk−1

g,V )

≲ ∥Pg,VW∥Dom(Pk−1
g,V ) ≲ ∥W∥Dom(Pk

g,V ).
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Hence, we have established the embedding (C.16C.16). Furthermore, by (C.17C.17) and the
induction hypothesis, we know that

w′, . . . ,P
[(k−1)/2]
g,V w′ ∈ H1

0 (Ω, dVg)

w,Pg,V w, . . . ,P
[k/2]
g,V w ∈ H1

0 (Ω, dVg).

Noting that [(k + 1)/2]− 1 = [(k − 1)/2] gives W ∈ Qk
g,V and hence Dom(Pk

g,V ) ⊂
Qk

g,V . Let us next prove the reverse inclusion. If W ∈ Qk
g,V , then by monotonicity

and induction hypothesis W ∈ Qk−1
g,V = Dom(Pk−1

g,V ). Moreover, W ∈ Qk
g,V implies

w′ ∈ Hk(Ω, dVg),

w′, . . . ,P
[(k−1)/2]
g,V w′ ∈ H1

0 (Ω, dVg),

and

Pg,V w ∈ Hk−1(Ω, dVg),

Pg,V w, . . . ,P
[k/2]−1
g,V (Pg,V w) ∈ H1

0 (Ω).

Note that Pg,V w ∈ Hk−1(Ω, dVg) followed from w ∈ Hk+1(Ω). Thus, we get

Pg,VW =

(
−w′

Pg,V w

)
∈ Qk−1

g,V = Dom(Pk−1
g,V )

and so we can conclude the proof of the inclusion Qk
g,V ⊂ Dom(Pk

g,V ).

For (b)(b), we already know that it holds in the case k = 1 (see Claim C.1C.1), so let us
suppose that it holds for k − 1. Then we may calculation

〈(
P(k)
g,V + λ

)
U,U

〉
Dom(Pk−1

g,V )
=

k−1∑
j=1

〈
Pj
g,V (Pg,V + λ)U,Pj

g,V U
〉
H

=

k−1∑
j=1

〈
(Pg,V + λ)Pj

g,V U,P
j
g,V U

〉
H ≥ 0

for any U ∈ Dom(Pk
g,V ). Above we used the case k = 1 and that U ∈ Dom(Pk

g,V )

implies Pj
g,V U ∈ Dom(Pk−j

g,V ) ⊂ Dom(Pg,V ) for j = 0, 1, . . . , k − 1.
Next, let us prove the range condition. For this purpose suppose that H =

(h, h′) ∈ Dom(Pk−1
g,V ). Then we wish to solve(

P(k)
g,V + (λ+ 1)

)
U = H

in Dom(Pk
g,V ). By induction hypothesis there exists U ∈ Dom(Pk−1

g,V ) such that

(Pg,V + (λ+ 1))U = H.

In particular, u, u′ ∈ H1
0 (Ω, dVg) satisfy(

Pg,V + (λ+ 1)2
)
u = (λ+ 1)h+ h′ and u′ = −(λ+ 1)u+ h.

Since (λ+ 1)h+ h′ ∈ Hk−1(Ω, dVg), elliptic regularity theory guarantees that u ∈
Hk+1(Ω, dVg). However, as h ∈ Hk(Ω, dVg), we know u′ ∈ Hk(Ω, dVg). Moreover,

by U ∈ Dom(Pk−1
g,V ) and H ∈ Dom(Pk

g,V ) we know that

Pg,V u = −(λ+ 1)2u︸ ︷︷ ︸
∈Hk+1(Ω,dVg)

+(λ+ 1)h︸ ︷︷ ︸
∈Hk(Ω)

+ h′︸︷︷︸
∈Hk−1(Ω)

∈
{
v ∈ Hk−1(Ω, dVg) ; v, . . . ,P

[(k−2)/2]
g,V v ∈ H1

0 (Ω, dVg)
}
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and

u′ = −(λ+ 1)u+ h ∈
{
v ∈ Hk(Ω, dVg) ; v, . . . ,P

[(k−1)/2]
g,V v ∈ H1

0 (Ω, dVg)
}

=
{
v ∈ Hk(Ω, dVg) ; v, . . . ,P

[(k+1)/2]−1
g,V v ∈ H1

0 (Ω, dVg)
}
.

The first identity implies

Pg,V u, . . . ,P
[k/2]
g,V u ∈ H1

0 (Ω, dVg)

and thus
U ∈ Qk

g,V = Dom(Pk
g,V ).

So, we have shown the range condition and hence P
(k)
g,V + λ is maximal monotone.

This shows Claim C.2C.2. □

Next, we aim to show:

Claim C.3. If W0 = (w0, w1) ∈ Dom(Pk
g,V ), F̃ = (0, F ) with F ∈ C∞

c (Ω× (0,∞)),

then the above constructed unique solutionW ∈ C1([0,∞);H)∩C([0,∞);Dom(Pg,V ))
of (C.12C.12) satisfies

(C.18) W ∈ Ck−j([0,∞);Dom(Pj
g,V )) for j = 0, 1, . . . , k.

Proof of Claim C.3C.3. For k = 1 there is nothing to prove and hence let us consider
the case k = 2. Arguing as in the case k = 1, we can conclude from Claim C.2C.2 that

−P(2)
g,V generates a C0-semigroup (T

(2)
t )t≥0 on Dom(Pg,V ). As F ∈ C∞

c (Ω×(0,∞)),

we have F̃ = (0, F ) ∈ C1([0,∞);Dom(Pg,V )). Relying on the same arguments as
for k = 1, we obtain a unique solution

W ∈ C1([0,∞);Dom(Pg,V )) ∩ C([0,∞);Dom(P2
g,V ))

of {
(∂t + Pg,V )W = F̃ for t ≥ 0,

W (0) =W0.

In particular, we see that this solution coincides with the unique solution con-
structed for k = 1. We next assert that W ∈ C2([0,∞);H). By definition
of the norm ∥ · ∥Dom(Pg,V ), we see that Pg,V ∈ L(Dom(Pg,V )). Hence, W ∈
C1([0,∞);Dom(Pg,V )) implies

Pg,VW ∈ C1([0,∞);H) with ∂t (Pg,VW ) = Pg,V (∂tW ) for t ≥ 0.

Therefore, we get ∂tW = F̃ − Pg,V ∈ C1([0,∞);H) and thus W ∈ C2([0,∞);H)
as asserted. Moreover, this implies that ∂tW solves

(C.19)

{
∂tW̃ + Pg,V W̃ = ∂tF̃ for t ≥ 0,

W̃ (0) = F̃ (0)− Pg,VW0 = −Pg,VW0.

Next, we prove the general case k ≥ 3 by induction. Suppose that the result holds
for k − 1. By the case k = 2, we know that the unique solution W satisfies (C.18C.18)
for k = 2 and

∂tW ∈ C([0,∞);Dom(Pg,V )) ∩ C1([0,∞),H)

solves (C.19C.19) with W̃0 := −Pg,VW0 ∈ Dom(Pk−1
g,V ). By induction hypothesis this

implies
∂tW ∈ Ck−1−j([0,∞);Dom(Pj

g,V )) for j = 0, 1, . . . , k − 1

and hence
W ∈ Ck−j([0,∞);Dom(Pj

g,V )) for j = 0, 1, . . . , k − 1.

Therefore, it remains to prove that W ∈ C([0,∞);Dom(Pk
g,V )). As

∂tW ∈ C([0,∞);Dom(Pk−1
g,V )),



50 Y.-H. LIN, G. NAKAMURA, AND P. ZIMMERMANN

the PDE for W shows

Pg,VW = F̃ − ∂tW ∈ C([0,∞);Dom(Pk−1
g,V )).

Thus, we get W ∈ C([0,∞);Dom(Pk
g,V )) as we want. This proves Claim C.3C.3. □

Hence, if the assumptions of (b)(b) hold, then the Claims C.2C.2 and C.3C.3 guarantee
that for all k ∈ N we have

W ∈ Ck−j([0,∞);Hj+1(Ω, dVg)×Hj(Ω, dVg)) for j = 0, 1, . . . , k.

But then the corresponding solution w of the wave equation (5.15.1) belongs to
C∞(Ω× [0,∞)) and we can conclude the proof of (b)(b).

Finally, for (c)(c), suppose that the conditions of (a)(a) hold, let w ∈ C2([0,∞);L2(Ω, dVg))
be the unique solution of (5.25.2) and set

wk
i = ⟨wi, ϕk⟩L2(Ω,dVg)

, wk = ⟨w, ϕk⟩L2(Ω,dVg)
, and Fk = ⟨F, ϕk⟩L2(Ω,dVg)

for i = 0, 1 and k ∈ N, where w0 and w1 are the initial data in the wave equation
(5.15.1). By the C2-regularity of w in time, we see from (5.25.2) that there holds

(C.20)

{
∂2twk + λkwk = Fk for t ≥ 0

wk(0) = wk
0 , ∂twk(0) = wk

1

for all k ∈ N. Note that ωk ∈ C2([0,∞)) given by

ωk(t) = cos(tλ
1/2
k )wk

0 +
sin(tλ

1/2
k )

λ
1/2
k

wk
1 +

ˆ t

0

sin((t− τ)λ
1/2
k )

λ
1/2
k

Fk(τ) dτ

solves (C.20C.20).
On the other hand, if uj ∈ C2([0,∞)), j = 1, 2, solve (C.20C.20), then v = u1 −u2 ∈

C2([0,∞)) satisfies {
∂2t v + λkv = 0 for t ≥ 0

wk(0) = ∂twk(0) = 0.

Observe that
η(t) = |∂tv(t)|2 + |v(t)|2 ∈ C1([0,∞))

satisfies
∂tη(t) ≤ (1 + λk) η(t)

and hence η(0) = 0 as well as Gronwall’s inequality guarantees that η(t) = 0 for
all t ≥ 0. This in turn implies that v(t) = 0 for all t ≥ 0. Therefore, we may
conclude that wk = ωk and we get the first formula in (5.35.3). The second formula
in (5.35.3) follows by Fubini’s theorem. In fact, for any h =

∑
k≥1 hkϕk ∈ L2(Ω, dVg),

we obtain by the first formula

⟨w(t), h⟩L2(Ω,dVg) =
∑
k≥1

(
cos
(
tλ

1/2
k

)
wk

0hk +
sin
(
tλ

1/2
k

)
λ
1/2
k

wk
1hk

)

+
∑
k≥1

ˆ t

0

sin
(
(t− τ)λ

1/2
k

)
λ
1/2
k

Fk(τ)hk dτ

=
〈
cos
(
tP

1/2
g,V

)
w0, h

〉
L2(Ω,dVg)

+

〈
sin
(
tP

1/2
g,V

)
P
1/2
g,V

w1, h

〉
L2(Ω,dVg)

+
∑
k≥1

ˆ t

0

sin
(
(t− τ)λ

1/2
k

)
λ
1/2
k

Fk(τ)hk dτ.
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As the quotient under the integral is uniformly bounded in k, we can invoke Fubini’s
theorem to get

⟨w(t), h⟩L2(Ω,dVg) =
〈
cos
(
tP

1/2
g,V

)
w0, h

〉
L2(Ω,dVg)

+

〈
sin
(
tP

1/2
g,V

)
P
1/2
g,V

w1, h

〉
L2(Ω,dVg)

+

ˆ t

0

∑
k≥1

sin
(
(t− τ)λ

1/2
k

)
λ
1/2
k

Fk(τ)hk dτ

=
〈
cos
(
tP

1/2
g,V

)
w0, h

〉
L2(Ω,dVg)

+

〈
sin
(
tP

1/2
g,V

)
P
1/2
g,V

w1, h

〉
L2(Ω,dVg)

+

ˆ t

0

〈
sin
(
(t− τ)P

1/2
g,V

)
P
1/2
g,V

F (τ), h

〉
L2(Ω,dVg)

dτ

and hence the second formula in (5.35.3) holds. This concludes the proof of Theorem
5.15.1. □
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