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ABSTRACT. In this work, we study the partial data Calderén problem for the
anisotropic Schrédinger equation

(0.1) (=A5+V)u=01in Q x (0,00),

where Q C R™ is a bounded smooth domain, § = g;j(z)dz’ ® dz? + dy ® dy
and V is translationally invariant in the y direction. Our final goal is to show
that both the metric g and the potential V' can be recovered from the (partial)
Neumann-to-Dirichlet (ND) map on I' x {0} with I' € Q. Our approach can
be divided into the following steps:

Step 1. Boundary determination. We establish a novel boundary determi-
nation to identify (g, V) on I' with the help of suitable approximate solutions
for (0.1) with inhomogeneous Neumann boundary condition.

Step 2. Relation to a nonlocal elliptic inverse problem. We relate inverse
problems for the Schrédinger equation with the nonlocal elliptic equation

(0.2) (—Ag+WV)2p = finQ,

via the Caffarelli-Silvestre type extension, where the measurements are en-
coded in the source-to-solution map. The nonlocality of this inverse problem
allows us to recover the associated heat kernel.

Step 3. Reduction to an inverse problem for a wave equation. Combining
the knowledge of the heat kernel with the Kannai type transmutation formula,
we transfer the inverse problem for (0.2) to an inverse problem for the wave
equation
(0.3) (02 — Ay + V)w = F in Q x (0,0),
where the measurement operator is also the source-to-solution map. We can
finally determine (g, V) on Q \ I by solving the inverse problem for (0.3).
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1. INTRODUCTION

In this paper, we investigate an inverse boundary value problem for a certain
class of elliptic partial differential equations (PDEs) on the transversal domain
2% (0,00). The nowadays prototypical example of an inverse problem for an elliptic
PDE was introduced by Calderén [Cal06], in which the objective is to recover the
conductivity v in the conductivity equation

(1.1) div(yVu) =0 in Q

from the (full) Dirichlet-to-Neumann (DN) map A,. From a physical point of
view, this corresponds to inducing a voltage f on the boundary and measuring the
resulting (normal) current j = v0,uy|,, across it, where uy is the solution of (1.1)
with uy = f on 02 and v denotes the outward pointing normal vector field along
09). A closely related problem is the determination of an unknown potential ¢ in
the Schrodinger equation

(1.2) (—A+q)v=0in

from the DN map Ayg = 0,vy|yq, which was resolved in [SU87] for n > 3 and
[Buk08] for n = 2. The solutions of (1.1) and (1.2) are connected via the Liouville
reduction v = v*/2u, which also gives a precise relation between A, and A, only
involving v|sq and d,7|aq, and by the boundary determination result of Kohn and
Vogelius [KV84], the solution of the inverse problem for the Schrédinger equation
directly resolves the Calderén problem under suitable regularity assumptions on +.
Let us note that the result of Kohn and Vogelius is a local boundary determination
result, that is to recover v and 0,7 at a boundary point zy € 0f2, one only needs
to know A, in a small neighborhood of zy. For a more comprehensive account
of these results, we refer the readers to the survey article [Uhl09]. Inverse prob-
lems in transversally anisotropic geometries with full data or partial data have also
been considered in various models, such as [DSFKSU09, DSFKLS16, DSFKL™'20,
KSU07, LLLS21, FO20, FLL23, KU18J.

Recently, the above type of inverse problems has been extended to nonlocal
models like

(1.3) (L+q)u=0inQ,

where L is, for example, an elliptic nonlocal operator, and one again aims to re-
cover the potential ¢ and possibly some coefficients on which L may depend from
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the related DN map A ,. The first model studied in the literature [GSU20] is
the case of the fractional Laplacian L = (—A)?®, having Fourier symbol [£]?*, and
the resulting equation (1.3) is by now usually called fractional Schrédinger equa-
tion. If one assumes that the nonlocal operator L in (1.3) satisfies the unique
continuation property (UCP), implying the Runge approximation, then one can
show that the inverse problem related to (1.3) is uniquely solvable (see, for exam-
ple, [RZ L723]). Two classical examples of nonlocal operators having the UCP
are the fractional Laplacran [GSU20] and the Bessel potential operator (D)® with

Fourier symbol (1 + |¢|? ) [KPPV20]. Let us note that in both cases proving the
UCP for these operators rests on the existence of a nice extension problem related
to these operators, but unfortunately, up to now, there is no characterization of
nonlocal operators having this property.

More precisely, Caffarelli and Silvestre [CS07] characterized the fractional Lapla-
cian (—A)? as the Dirichlet-to-Neumann operator for the associated extension prob-
lem. This point of view of the fractional Laplacian is commonly referred to as
the Caffarelli-Silvestre extension in the literature. The UCP for this extension
problem was shown in [Riil15]. For general variable coefficients nonlocal elliptic
operators of order s € (0,1), Stinga and Torrea [ST10] demonstrated analogous
results such that this type of nonlocal operators can be also characterized via
the related extension problem. Based on this, the authors of [GLX17] solved the
Calderén problem for variable coefficients nonlocal operators, whereas the analo-
gous result for their local counterpart remains open in dimensions n > 3. Indeed,
there are several uniqueness results for nonlocal inverse problems, which are still
open for their local counterparts and maybe even not true, such as the drift prob-
lem [CLR20], the obstacle problem [CLL19], the inverse source problem [LL23],
and the characterization via monotonicity relations [HL19, HL20]. Hence, one can
regard the nonlocahty as a tool that helps solve inverse problems. Recently, the
works [CGRU23, LLU23, Riil23, LZ24] provide interesting connections between the
nonlocal and local Calderon type inverse problems for both elliptic and parabolic
equations. We also refer readers to several related articles for nonlocal operators,
such as [CRZ22, KRZ23, K1.Z24, CRTZ24, 1723, 1'T724] and the references therein.
Very recently, the recovery of the geometrlcal information (M, g) and potential V
simultaneously has been investigated by [FKU24] on closed Riemannian manifolds,
and we also refer readers to [Fei24, FGKU24] as the potential V' = 0.

Based on this observation, we study in this article a class of inverse problems
for (local) elliptic PDEs having a similar form as the ones emerging in the re-
lated extension problems for the aforementioned operators. In the next section, we
introduce the considered model in more detail.

Q,‘/,

1.1. Mathematical formulation. Let © be a bounded smooth domain' in R®
with n > 2. Suppose that we have given on Q a (smooth) Riemannian metric
9= (9ij)1<; j<n satisfying the uniform ellipticity condition

(14) MeP < gy ()6 <ATHgl" in @,
for some constant A € (0, 1) and for any vector £ = (51, e ,f") € R™. Throughout

the whole article, we impose the Einstein summation convention. Let A, be the
Laplace-Beltrami operator given by

Agu:=1g|"20;(lg|" 9" D;u),
where |g| = det g, g/ denotes the components of the inverse matrix g—! and 0; =

Oyi -

1Throughout this work we say D C R" is a domain if it is an open connected set.



4 Y.-H. LIN, G. NAKAMURA, AND P. ZIMMERMANN

To formulate the PDE problem, let us extend g to a Riemannian metric g on
0 x Ry, where R} = (0,00), by setting
(1.5) g = gi;de' @ da? +dy @ dy

or equivalently in matrix form

(16) 0= ("5 9).

In equation (1.5) and below, we denote the coordinates in 2 x Ry by (z,y) or

(xt,..., 2" 2" "1) and the range of the indices about we sum will always be clear
from the context. Then the induced Laplace—Beltrami operator on {2 x R becomes
2
A=A, +0,.

Next, let us consider the following mixed boundary value problem for an anisotropic
Schrodinger equation

(—Ag—‘y—V)u:O inQXR+7
(1.7) —Oyu=f on  x {0},
u=0 on 00 x Ry,

where V' = V(x) is a given bounded nonnegative potential, which is translation
invariant in the y-direction.

With the well-posedness result of equation (1.7) (see Section 2) at hand, we can
define for any domain I' C 2 the related (partial) Neumann-to-Dirichlet (ND) map

ALy cH7VAT) - HY2),  for uglp,

where we identify I’ with I' x {0} and uy € Hg (2 x [0,00)) is the unique solution to
(1.7). The involved function spaces will be introduced in Section 2. Now, we can
formulate the considered inverse problem.

(IP1) Inverse problem for the elliptic equation. Can one uniquely determine

the metric g and potential V' in Q by using the knowledge of the partial
ND map AI;)V?

If T' = Q, this inverse problem (IP1) can be viewed as the boundary determina-
tion problem for both g and V| since both g and V' depend only on the z-variable.
This can be proved by introducing suitable approzimate solutions (see Section 3)
so that both g and V' can be recovered. Because of this, we assumed that I' # Q.

Theorem 1.1 (Global recovery). Let Q@ C R™, n > 2, be a bounded smooth do-
main, and T' € Q be a domain with smooth boundary OT, so that T and Q\ T are
connected. Let g1,g2 € C®(Q;R™ ") be two Riemannian metrics satisfying the
uniform ellipticity condition (1.4) (extended to Q x Ry wia (1.5)). Assume that the
two potentials 0 < Vi, Vo € C*(Q) are translation invariant in the y-direction. Let
Agj,vj be the partial ND map of

(=Ag, +Vj)u; =0 in Q xRy,

(1.8) —0yu; = f on Q x {0},

u; =0 on 00 x Ry,
for j =1,2. Suppose that
(1.9) Agl,vlf = AZQ,VQf on T for any f € C(T),

then there exists a diffeomorphism W : Q — Q with Ulpr = Idy such that
g1 =T"ginQ and Vi=Vo0U inQ,

where Idr denotes the identity map on T.
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Note that we have the following uniqueness result in the case V = 0.

Corollary 1.2. Suppose all assumptions of Theorem 1.1 hold and let Agj,o be the
local ND map of

Agu;j =0 inQ xRy,
—0yu; = f  on Q x {0},
u; =0 on 0 x Ry,

for 3 =1,2. Suppose that

Agl,of = Ag%()f for any f € Hil/z(f),

holds, then there exists a diffeomorphism U: Q — Q with Ulg =Idy in T such that
g1 = V*gs in .

The preceding results are related to the Calderén problem on transversally
anisotropic geometries. In the work [DSFKLS16], the authors investigated similar
problems by using lateral boundary Cauchy data, under appropriate geometrical
conditions for the manifold. However, in this work, we utilize the measurement
from the bottom of the domain, which makes the problems treated in these two
papers essentially different. In addition, Corollary 1.2 can be viewed as a special
case of the anisotropic Calderdén problem (1.1), where the scalar conductivity ~y is
replaced by a conductivity matrix (7;;) and incorporates the physical situation in
which the medium has a directional dependent resistivity p = v~!. This implies
that the current j does not necessarily flow into the direction of the electrical field
E, as they satisfy the relation j = pE, and such behavior is met in various materi-
als. On the one hand, both the metric and the potential are y-independent, which
means that g and V' depend on n variables. On the other hand, the (localized)
ND map A;V is 2n-dimensional, which is different from the classical Calderén type
inverse problems that n-variables with (2n —2) boundary measurements. Hence, we
have 2-dimensional more boundary measurements that can be used in our study.

Let us point out that even if g is isotropic (i.e. g;; = 00;; for some scalar function
0), it is impossible to determine both g and V' in general, due to the natural ob-
struction from the Liouville reduction. More concretely, let us use the forthcoming
classical example to demonstrate why the result fails in general. Consider a positive
scalar function o € C°(Q) with ¢ = 1 near 99, and q € L>(Q2). Then the DN
data of

A
-V - (oVu) + qu =0 and —Aw—!—( ﬁ+q>w=O
1%

Nz

Liouville’s reduction: v=+/cw

are the same, that is, (u|aq, Oyulyg) = (W]aq, Oywl|yg), where we used o = 1 near
09 and v is the unit outer normal on 0€2. However, it is easy to see that their
coefficients could be different. This type of inverse problem is usually referred to
as the diffuse optical tomography problem in the literature, which was investigated
in [Arr99, AL98, Har09]. Therefore, one would not expect that the injectivity for
the previously described Calderén problem (1.7) can be achieved.

As we mentioned before, in our model (1.7), g and V are transversally dependent,
but independent of the vertical variable. A typical example is graphite, which is
composed of multiple layers of graphene possessing, microscopically, a honeycomb
lattice. The directionally different conducting properties of graphite rests on the
fact that the layers are held together via the relatively weak Van der Waals forces,
whereas one observes delocalized m-systems in each graphene layer. Based on this,
the conductivity is much smaller in the transversal direction and the m—system is
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mostly responsible for the planar conduction. As a first approximation, one may
regard the conductivity as being constant, as we do it in the problem (1.7), but the
planar part of the conductivity matrix still depends on the y-coordinate as there
are different forms of stacking of the graphene layers and the layers have a nonzero
distance to each other. For a more detailed account of the physical properties of
such materials we refer to the specialized literature (see e.g. [AM76, CFFT18]).
Models having a non-trivial y-dependence will not be studied in this work.
Finally, let us mention that in the course of proving Theorem 1.1, we also es-
tablish the following unique determination result for an elliptic nonlocal inverse
problem, which is a generalization of [FGKU24, Theorem 1.1].
Theorem 1.3. Assume that Q, T, (g;,V;) for j = 1,2 are given as in Theorem
1.1 and let (g, V) € O®(Q;R™ ") x C®(Q) be any pair of a uniformly elliptic
Riemannian metric g and nonnegative potential V' such that

(1.10) (91lp . Vilp) = (g2lp» Valr) = (glr, VIr) .-

Let ng,vj CPM) s fe v{\p € L%(T) be the local source-to-solution map of

(—Ag, + V)20 =f inQ,
v=20 on 0f)

for 3 =1,2. Suppose that

(1.11) Sghvlf = ng,vzf for any f € C2(I),

then there exists a diffeomorphism ¥: Q — Q with Vg = Idy such that
g =Y*gs and Vi =Vo0W inQ.

1.2. Strategy of proof. Next, let us explain our approach to prove Theorem 1.1
(cf. (IP1)).

Step 1. Boundary determination. In the first step, we establish a novel bound-
ary determination result, which shows that the ND map on I', denoted by A;V,
determines the metric g and the potential V on I'. To achieve this goal, we will
construct suitable approximate solutions for the anisotropic Schrédinger equation
(1.7) with inhomogeneous Neumann boundary condition on the bottom 2 x {0} and
homogeneous Dirichlet boundary condition on the lateral boundary 92 x (0, c0).

Step 2. Relation to a nonlocal elliptic inverse problem. In the next step, we relate
via the Caffarelli-Silvestre type extension technique [CS07, ST10] (see Section 4.2)
the inverse problem for the Schrodinger equation with an inverse problem for the
nonlocal elliptic equation

(1.12) (=D, + V)20 =finQ,

where the measurements are encoded in the source-to-solution map. The nonlocality
of this inverse problem allows us to recover the associated heat kernel of the heat
operator 0y —Ay+V on I'x (0, 00). This is partially inspired by the work [FGKTU24]
and will be utilized in the proof of our main result (cf. (IP2)).

Step 8. Reduction to an inverse problem for a wave equation. In the third step,
by combining the knowledge of the heat kernel with the Kannai type transmutation
formula, we relate the nonlocal inverse problem for (1.12) to an inverse problem for
the wave equation

(1.13) (07 = Ay +V)w=F in Q x (0,00),

where the measurement operator is again the source-to-solution map and the wave
w vanishes on the lateral boundary 9 and has zero initial conditions (cf. (IP3)).
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By relating this measurement map with a restricted Dirichlet-to-Neumann (DN)
map for the wave equation (1.13) and using existing uniqueness results for wave
equations (cf. [KOP18]) we can finally determine (g, V) on Q\ T

Finally, let us remark that for Calderén type inverse problems, many research
articles establish unique determination results by using complex geometrical optics
(CGO) solutions. For example in the classical Calderén problem for the Schrodinger
equation —A+gq, they can be used together with a suitable integral identity to show
that the Fourier transform of the difference of the potentials vanishes. The above-
outlined approach does not require these special solutions, but let us emphasize that
the boundary determination result also relies on oscillating approximate solutions
(Lemma 3.2) and appropriate integral identities (Theorem 3.1).

1.3. Organization of the paper. The paper is organized as follows. In Section
2, we define the function spaces used throughout this work and prove the well-
posedness of (1.7), so that the corresponding localized ND map can be defined
rigorously. In Section 3, we show that the localized ND map AF determines both
g and V on the open set I', which can be viewed as a boundary determination
result. We give a characterization of the anisotropic Schrodinger equation and the
associated nonlocal elliptic equation in Section 4. We also transfer our local inverse
problem to a nonlocal inverse problem in this section and show that the correspond-
ing heat kernel is determined. In Section 5, we use a Kannai-type transmutation
formula together with the known heat kernels to transfer the information from the
elliptic nonlocal inverse problem to an inverse problem for a wave equation. This
inverse problem is eventually solved by using existing unique determination results
for wave equations. Furthermore, in the Appendices A, B and C we collect some
proofs of necessary background material, which we used throughout the article.

2. PRELIMINARIES

In this section, we collect some fundamental material that will be utilized through-
out our work.

2.1. Function spaces. If U is an open subset of some Euclidean space R™, we
denote by L?(U) and H*(U) the usual Lebesgue and Sobolev spaces concerning the
Lebesgue measure. These are Hilbert spaces, carry the norms

1/2
Hu||L2(U) = </ |u‘2 dz) ,
U

1/2
lullirs @ = (lallew) + IVulE)

and the related inner products are defined via the polarization identity. Here V
denotes the usual gradient concerning the Euclidean metric h;; = d;5. If U has a
Lipschitz boundary, then clearly we have a well-defined (bounded) trace operator
HYU) 3 u = ulpy € L*(0U,dH™ 1), where dH™~ ! is the (m — 1)-dimensional
Hausdorff measure, and its image coincides with the Slobodeckij space H/2(dU),
that is the space of functions v on QU such that

) ) 1/2
(2.1) lollar 2wy = (1083200 + W3 mom) <o
where [-]1/2(9p) 18 the Gagliardo seminorm given by
/2
[0(2) = 0@ 4asm1 gzt )
(22) [U]H1/2(6U) = (/ T om d% 1( )d% 1(y) .
ouxou |z =yl

The dual space of H'/2(9U) is denoted by H~'/2(9U). For any open set I' C 9U,
the spaces H'/?(T') are defined exactly as in (2.1) and (2.2) up to replacing OU by
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I Ifue H /2 (QU) is supported in T', where I' C U is a given open set, then we
say u belongs to the space H 1/ 2(T'). Next, let us observe that the trace operator
is bounded as a map from H'(U) to HY/?(dU). Furthermore, for any open set
U C R™ we define

H}(U) := closure of C°(U) in HY(U),

and if U is a Lipschitz domain, then H}(U) coincides with the kernel of the trace
operator.

Next, we introduce some relevant notations for the Riemannian setting. If U C
R™ is a given open set with coordinates (;xl, e ,xm), Riemannian metric h = (h;;)
and inverse h~! = (hij ), then we denote the induced Riemannian measure by

dVy, = |n|}?dzt .. da™
with |h| = det(h) and the inner products of vector fields and 1-forms by
X Y i=hi i XY w-ni=hYwm;,

where X = X'0;, Y = Y79, w = w;dz’ and n = n;da?. The latter definition
is consistent with the musical isomorphism between the tangent and cotangent
space, which reads in coordinates X; = ¢;;X7. As usual we set |X| = VX - X
and |w| = v/w-w, when X is a vector field and w a 1-form. We believe that these
notations will not lead to any confusion as it is always clear from the context to
which we are referring. In particular, if u,v are functions on U and d denotes the
exterior derivative, we have

du-dv=h"79ud;v and du-&=h" (9;u)§;,
for any £ = (&1,...,&,) € R™. Furthermore, we set

1/2
lullL2avy) = (/ u|2th)
U

/
s wraviy = (e iavsy + ldulaam, )

and

for functions u on U. Note that if the (smooth) Riemannian metric h = (h;;) is
uniformly elliptic (fulfilling the condition (1.4)), then one clearly has

(2.3) lull2@y ~ lullz@wiavi)  and - [[VollLzw) ~ lldv]l 2 wsavi)

for all u € L?(U) and v € HY(U), where ~ indicates equivalence of norms. In other
words, there are positive constants ¢, C' independent of u such that

cllull zwsaviy < lullzzwy < Cllullzw;avs,)-

Similar statements hold for the higher order spaces H*(U) and H*(U,dV;) for
keN.

Finally, we introduce a function space consisting of functions with vanishing trace
on part of the boundary, which is adapted to our problem (1.7). For this assume
that 2 C R" is a Lipschitz domain carrying a uniformly elliptic Riemannian metric
g = (g:j) with canonical extension g to  x R (see (1.5)). Moreover, let dV,, dV;
be the Riemannian measures on 2 and 2 x R, respectively. Then we define

Hj (9 x [0,00)) := closure of C}(Q x [0,00)) in H*(Q x [0, 00)).

This function space will play on the one hand the role of the solution space and on
the other hand the space of test functions in the weak formulations for our mixed
boundary value problems.
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2.2. Well-posedness for the elliptic equation. Let us start by defining the
bilinear form related to the PDE

(A7 +V)u=0 inQ xR,
(2.4) —Oyu = f on Q x {0},
u=0 on 02 x R

Proposition 2.1 (Bilinear form). Let @ C R™ be a Lipschitz domain endowed
with a uniformly elliptic Riemannian metric g = (g;;) and extension g to Q x Ry.
Suppose that V > 0 is a bounded potential. Then the map By : H} (2 x [0,00)) x
HY(Q x [0,00)) = R given by

(2.5) Bgv(u, ) = / (du - dp + Vup) dV
QxR

is bounded, coercive bilinear form.

Proof. The bilinearity is obvious and the boundedness is an immediate consequence
of the uniform ellipticity of g, the equivalence (2.3) and Holder’s inequality. The co-
ercivity on the other hand follows by V' > 0, the Poincaré inequality (Theorem A.2)
and again the uniform ellipticity of g as well as the equivalence (2.3). (]

Now, by the Lax—Milgram theorem we can easily establish the following well-
posedness result.

Lemma 2.2 (Well-posedness). Let Q@ C R™ be a Lipschitz domain endowed with a
uniformly elliptic Riemannian metric g = (g;;) and extension g to Q x Ry given by
(1.6). Suppose that V > 0 is a bounded potential. Then for any f € H1/2(Qx{0}),
there exists a unique solution uw=uy € H} (2 x [0,00)) of (2.4), that is there holds

(26) Bg,V(uv 90) - <f7 |g|1/290‘9><{0}>

for allp € HY(Q2x[0,00)), where (-,-) denotes the duality pairing between H'/?(Q x
{0}) and H='/2(2 x {0}). Moreover, the unique solution u satisfies the estimate

(2.7) lullzroxryy < Clflg-1/2@x g0y
for some C > 0 independent of u and f.
Proof. First of all let us observe that the map £¢: H} (2 x [0,00)) — R defined via
Cr(p) = (£ 191" *eloxoy)
for p € HE(Q x [0,00)) is a bounded linear map. There holds
s (@) < Clf Il g-12@x {0y ||<P|Qx{0}||H1/2(szx{o})
< CHf||H—1/2(§X{o})H‘PHHl(Qxﬂh)

for all ¢ € H}(Q2x [0, 00)), where we used the trace theorem. By Proposition 2.1 we
can apply the Lax-Milgram theorem and can conclude that there exists a unique
u € HYH(Q x [0,00)) satisfying (2.6) and

||“HH1(Q><]R+) <C ||€f||(Hé(Q><[0’oo))* < CHf”H—l/?(ﬁx{o}y
This proves the assertion. U
One has the following elliptic estimate:

Proposition 2.3 (Elliptic estimate). Let Q& C R™ be a Lipschitz domain endowed
with a uniformly elliptic Riemannian metric g = (g;;) and extension g to @ x Ry
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given by (1.6). Suppose that V > 0 is a bounded potential, G € L*( x Ry) and
fe HYV2(Qx{0}). If ve H}(Q x [0,00)) solves

(A7 +V)v=G inQxRy,
(2.8) -0y =f on Q x {0},

v=0 on 002 x Ry,
then there holds
(2.9) ol xryy < C(1G]L2@xry) + 1l -12@xq0y))
for some constant C > 0 independent of v, G and f.
Proof. Note that by assumption there holds

Byv(v,0) = (G, @) r2axr.avy) + {f+ 19" *¢lax o)

for all p € H(2 x [0,00)). Using ¢ = v as a test function, then the coercivity of
By v (Proposition 2.5) and the trace theorem imply

C||U||%11(anh) < By (v,v)
< |Gllzzxry avy) IVl L2 @xr, avy)
+ ||fHH—1/2(§x{o})|||9|1/20||H1/2(Qx{o})
< C(||G||L2(Q><R+) + ||f||H—1/2(ﬁx{0}))||U||H1(QxR+),
for some C' > 0. Hence, we can conclude the proof. O

We also define the alternative bilinear form

Bg,V(ua ¢) = Bg,V(u7 |g|71/2¢)

2.10 _
R /Q (G Ve Vg + 1912 g7V g% - Vup + Vup)dady,
XR+

where g is given by (1.6) and the matrix g—! has coefficients ¢/ for 1 < i,j < n.

In terms of this bilinear form, a solution v € Hg (2 x [0,00)) of (2.8) satisfies
Bg,V(U? 90) = <G7 50>L2(Q><R+) + <fa <p|Q><{O}> )

for all ¢ € H} (2 x [0,00)). Here (and in the definition of B, ) we are using that

our Riemannian metric g belongs to the class C°°(£; R"*").

2.3. Neumann-to-Dirichlet map. With the well-posedness of (2.4) and defini-

tion (2.10), we can define the partial ND map.

Proposition 2.4 (Partial ND map). Let Q C R™ be a Lipschitz domain endowed
with a uniformly elliptic Riemannian metric g = (g;5), and extension g to Q x Ry
given by (1.6). Suppose that 0 < V € L®(Q), and T’ € Q is an open set with
Lipschitz boundary. Then the partial ND map A;V is given by

Agy: HTAT < {0}) = HYV2( % {0}), [ uglp, oy
where ug € H}(Q x [0,00)) is the unique solution to
(—A;+V)u=0 inQ xRy,
(2.11) —Oyu=f on Q x {0},
u=20 on 02 x Ry

(see Lemma 2.2), is a well-defined bounded map. Moreover, for any F € H~'/?(T x
{0}) there holds

(2.12) (F Ay v f) =By (up,ug),
where up € HY(Q x [0,00)) is the unique solution to (2.11) with Neumann data F.
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Proof. First note that A;V is a well-defined map by the inclusion H~1/2(Tx{0}) <

H~2(Q x {0}), Lemma 2.2 and the mapping properties of the trace operator. It
is bounded by the trace estimates and the continuity estimate (2.7). The identity
(2.12) is a direct consequence of the fact that up solves (2.11) and uy € H}(Q x
[0,00)). This concludes the proof. O

Remark 2.5. Similar to the identity (2.12), we can also derive the identity

(F\g|"? ALy f) = By v (up,uy),

for any f,F € H-Y2(T x{0}), where uy and up € H(Qx[0,00)) are the solutions
to (2.11) with Neumann data f and F, respectively, and By v (-, -) is defined by (2.5).

Lemma 2.6 (Integral identity). Let Agj,vj be the partial ND maps of (1.8) for
j =1,2 and suppose that (1.9) holds. Then we have

1) (2
(2.13)  (fulg|"P AL o f) = (FolgelV2AL L f) = (Byyvi — BM)(u; )7U§ M,
for any f € C2(T'), where By, v, is given by (2.10) as g = g; and V =V; (j =1,2),
and u}j) is the solution to (1.8), for j =1,2.
Proof. Recall that Agjyjf = ugcj)|px{0}, for j = 1,2. Then by (2.6), one has

(Pl PAL, v f) = (folon VAL, v, f)
2
= (£, g *uPIr)
1) (2
= By, v, (u}, ul?).
By the same argument we have
2) (1
<.f7 |92|1/2A52,V2f> = B927V2 (u‘(f ),u; ))
Using the symmetry of By, v,, j = 1,2, we arrive at the formula (2.13) after sub-
tracting the previous two identities. O
3. BOUNDARY DETERMINATION

The main goal of this section is to prove that the partial ND map (1.9) implies
that the Riemannian metrics and potentials coincide in I'. Suppose the partial ND
data (F, q,V, A;V) satisfies the assumptions of Theorem 1.1, and we want to prove:

Theorem 3.1 (Local boundary determination). Let us adopt all assumptions and
notations from Theorem 1.1. Suppose (1.9) holds, then we have

g1=¢g2 and Vi=VyinT.
To show this, we next introduce suitable approrimate solutions of
(A7 +V)u=0 inQ xR,
—Oyu = f on Q x {0},
u=0 on 02 x R
3.1. Approximate solutions. Let us mention that the subsequent construction is

inspired by the works [KY02, LN17]. For this purpose, let us consider the sequence
of Neumann data

(3.1) ¢ (2) = NeM (),

where n € C2°(Q) is an arbitrary test function, and i = /—1 is the imaginary
unit, and N > 1. Here x = (z,...,2"), £ = (&1,...,&,) € R™ is a fixed co-vector
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and z - { = 27¢; stands for the standard inner product in the Euclidean space.
Throughout this section, we will use the following notation

(3.2) €l = \/9"&&;

to distinguish it from the ususal Euclidean norm |{| and we may notice that the
uniform ellipticity of g implies that v/X|¢| < €], < VATL[E], where A > 0 is the
ellipticity constant given in (1.4). Using the above notation we have the following
lemma.

Lemma 3.2 (Approximate solutions). For any N > 1, there exists a smooth ap-
proximate solution @y of the form

2
ir-£— x _
(3.3) O (,y) = N7t 'é'g”(”( iy ’“wk«c,zvy)),
‘§|g k=1
such that

5.0 {—aych —¢n  onQx {0}

Oy =0 on 002 x Ry,

where \§|g is given by (3.2) and ¢y is given by (3.1). Here vy (x, Ny) is a polynomial
in the variable Ny, whose coefficients are bounded in x. Moreover, we have the error
estimate

(3.5) (A5 +V)on| < CN7YP(z, Ny)e NIy,

forx € T,y > 0 and some constant C > 0 independent of N > 1, where P(x, Ny) =
Q(x)P(Ny) with P(Ny) being of polynomial growth and Q(z) compactly supported
in the x variable. Furthermore, if n is supported in I' € €, then ®y is supported
i I' as the functions 1,19 are.

Proof. Unless otherwise stated all differential operators in this proof act only on
the = variable. The construction of approximate solutions is based on the Wentzel—
Kramers—Brillouin (WKB) construction concerning the parameter N > 1. Let us
first consider the function @y (z,y) of the form

(3.6) Oy(x,y) = eiN““"g\Il(ac7 Ny),
where £ = (&1,...,&,), ©- & =2 = gi;2"¢. We may calculate
A0y = lg|~120; (9] 2" (INE;W + 0;)eV)
iNEGY (INEW + 0, W) eVers
+ g7 [IN&0; U + 0,0 + div (g71) (INGY + 0;0)] eV e
= [-N?|E20 +iN(2¢ - dV + divg ™" - €T)
+97": D*U +divg™! - V] €NV

where we denote [div (g’l)]i = |g|=%20; (|9|'/2¢"7), D*¥ = (9;;%) and

A: B is the contraction AYB;;. Taking into account Ag = Ay + 82, nglggtgn
(A5 +V)On = [N? (€20 — 920) —iN (26 - d¥ + (divg™" - £)T)
(3.7) —(g7': D2V +divg ' - VU + V)] eNE
If we insert the ansatz

(3.8) U(z, Ny) = > N (2, Ny).
k=0
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into (3.7), then we obtain
(A5 +V)oN
= [N2(1€240 — 0240) + N (11201 — 024 + (I&]242 — D24)2) €N
— N (26 - dijo + (divg ™! - €)hg) eV
— (26 - dipy + (divg ™" - )ty )N
—iNTY(28 - dipy + (divg ™" - €)ha)e Ve
— (97" : D*o + divg ™" - Vo + Vb eV
- N_l(g_l . D2y + divg ™! - Vi + ViZl)ﬁiN%5
—~ N72(g7! : Dy + divg™" - Viby + Vihp) eV
= N*(€l500 — Do) NS
+ N (€201 — 0241 —i(2€ - difg + (divg ™" - £)th)) ™™
+ (11202 — 024ba — (26 - dijy + (divg™" - €)i1)
— (g7 : DX +divg ™" - Vg + Vi) ] N
= N7 = i(26 - i + (divg " - €)s)
+97: D%y +divg" - Vi + Vil]ewx'f
— N2 (971 . D*y 4 divg ™! - Vs + V{/Jvz)ewx'g-

The above identity is written in terms of the orders of N.
Next, let us set

Lo = =0, + [¢]3,
(3.9) Ly :=2¢-d+divg™! €,
Ly:=g ' :D?+divg™' -V +V.
Then the conjugate equation of ¥y becomes
e INTE (LA 4V (eiNacf\I,N)
(3.10) = N2Lotpo + N(Lo{/;l - iLﬂZl) + (Loi/;z — Ly — Lz{/;o)
—~ N7Y(—=iLytpo + Loth1) — N™2Lohs.

13

In order to prove (3.5), we aim to solve the following system of ordinary differential

equations (ODEs) in the y-variable

Loigo =0, B
(3.11) Lo’é@ = iL17£0a B
Lot = iL11 + Lot

with the boundary conditions

_ay{/}v0|y=0 = n(x)v {/;O —0asy— oo,

(3.12) —8y¢1|y=0 =0, Y1 — 0 as y — oo,
fﬁyz/}2|y:0 =0, Yo — 0 as y — oo.

Notice that if (3.11) holds, then (3.10) is of order N~!. Furthermore, the coefficient
V(z) only appears in the operator Ly and so it enters only into 5. Similarly as in

[KY02, Lemma 2.1], we can solve the system (3.11), (3.12) iteratively.
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First, observe that a solution of the first ODE in (3.11) with the desired boundary
conditions is

(3.13) Jo(x’y) = 7(x)e €leY  with 7(z) = T{ér)

By the definition of Ly and v (see (3.9) and (3.13)), we may calculate
iLiy =i [26-dij + (divg ™" - €)7] e ¥lo¥ 4 2i77(¢ - de™€1s)

(3.14) =i [2¢ - dif + (divg ™" - ©)7] e Elov + iﬁ(a’cgligﬁffi%eflgy
g
= fi(z)e ElaY 4 fo(z)yeIElay.
Next note that for k& € N, there holds
05 (y*e 1l = 0, [(ky* =t — lelgy*)e 1]
= [k(k — 1)y" 2 = 2k|¢]gyF " + |2y*] e IElov
and thus we obtain
(3.15) (=05 + IEl3) (v ) = [2higlgy* T — (k= 1)yt 3] e7lel,

Now, we make the ansatz

Pro(z,y) = ho(w)e1€lav

3.16) Y1 =vio+ Y11 with
(316) 91 =Yu0+ 1 {w1,1<x,y> = ((a)y + ho(a)y?) 6oy,
Using (3.15), we deduce that

Loim(%y) = [2h1[€|g + h2 (4€]gy — 2)] e~ l€lgy
= (2 (haé]y — ha) + 4ha €] gy] e €10V

Comparing with (3.14) infers that 12171 solves the second ODE in (3.11), if we choose

Moreover, 1;1,1 satisfies
—8y{/1v1’1}y=0 = —h; and 1:/;171 — 0 as y — oo.
On the other hand, from (3.15) we know that

(3.18) P1o(x,y) = ho(z)e™€1sY  with  ho(z) = h|1§(x)

solves

Lolzl,o =0 and - yizl,0|y:0 =M

and hence 1, with hg, ki, ho as in (3.17) and (3.18) is the desired solution of the
second ODEs in (3.11) with the right boundary conditions (3.12).

Next, let us compute L1y and Lotpg. The first one is easily seen via
Lythy = 2¢ - duy + (divg ™" - €) ¥
2
= y¥[26 - dhy + (divg™" - &) hy] e ISl
k=0
2

_ Zyk+1hk (2¢ - d|¢],) e~ l€loy.

k=0
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For the second one, let us observe that
Ok (7je™1€12¥) = (47 — yiiox|¢,) el
(3.19) 97 (me1¥19v) = {0Feii — y [(97el€l) T+ (O1)) (Del€lg) + (D) (Dn€]g)]

4 (Bklely) (Brlely) 7} e 1€l
for 1< £,k < n. This implies

Loty = g1 - D*g + divg™" - Vg + Vo
— (g7 : D+ divg™" - Vij+ Vij) e lov
—y gt D2le]y + 2477 - dE]y + Tidivg ™" - V[g],] e IElov
+ 2 |d|€| |2 e 1oy,
Therefore, we can write
iL1th1 + Latho = (Fy + yFs + y2Fs + y* Fy) e 1¥lov,

for appropriate functions F}, Fy, F3 and Fy. As we want to find 122 solving

(3.20) Loo = (Fi + yFo + y2F3 + y°Fy) e 1€lav,
the identity (3.15) suggests the ansatz

(3.21) Uy = 1;2,0 + 152,1

with

7%z,o(év,y) = Hy(z)e 1&lsy,
Yo1(z,y) = (H1(at)y + Ho(z)y? + H3(x)y> + H4(x)y4) e~ l€lay,

where again we use the zeroth order term to correct the Neumann data. Using
(3.15) we can write

Lo{/;z,l = [2¢]4Hy + Ho (4)¢|gy — 2) + H3 (6|§\gy2 — 6y)
+Hy (8|¢]4y® — 12y%)] e~ I€lov
= [2(|¢|gH1 — Ha) + (4/§|4H2 — 6H3) y
+ 6|y Hs — 12Ha) y? + 8[€| g Hay®] e IElav.
By comparing this expression to (3.20) in terms of the order of the y-variable, we
see that if the algebraic system
Py =2([¢|gH1 — H2),
Fy = 4|¢|,Hy — 6H3,
F3 =6|¢|,Hs — 12Hy,
Fy = 8[¢|gHa,

holds true, then J2,1 solves the ODE (3.20). Thus, the coefficients are given by

41813 Fr+2|¢|3 Fo+2|¢| o F3+3Fy

Hy =

8E1 '
20€[5 F2+2(€|o F5+3Fs
(3.22) H 8ef3 ’
' H. — 2EloFs+3F
37T TTLER
_ _F
Ha = 5l

The function 1:1;2,1 has Neumann data —H; and hence as above we choose

(3.23) Po0(z,y) = Ho(x)e €lsY  with Ho(x):hE'(m),
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Then 9, given by (3.21), (3.22) and (3.23) solves the last equation in (3.11) with
the correct boundary conditions (3.12).
Now, since v, j =0,1,2 solve (3.11), the identity (3.10) implies

(A5 +V) Py = —eN"E [Nfl(*Ll% + Lothy) + N72L21F/1v2}-

To further simplify this identity, we next calculate the operators. Using the expan-
sions (3.16), (3.21) and the identity (3.19), we get

4
Ly = Zy (LyHy) ety = 37 y4 1 (2 - dlg]) Hye ™€y,
k=0

LQ{/;l Zy (Lahg) e \£\gu+zykhk 20 \€|Jy+dlvg I v \ﬁ\gy)

+ Z y*dhy, - de™|ElsY
k=0

2
=y (Lohy)e €l
k=0

2
=2y [ (g7t s Dely + divg ™ - Vigly) + 2dhy - dg] e €
k=0
2
+ 3y 2 hgd|g|,Pe ey,
k=0

and

Loty = Z’y (LoHy)e™llav

4
= yFT [He (971 D2y + divg ™" - VIE]g) + 2dH - d|€] 4] e 1EloY
k=0
4
+ yk+2Hk|d|£|g|2€7|§|gy-
k=0

Therefore, we can write
(324) (A5 + V) ey = —eNs=ltloy) [N“Lo(2) Ps(Ny) + N~2B(2) Ps(Ny)]

where «, 8 € C2°(12) and P; is a polynomial of degree at most j. The representation
(3.24) immediately implies the estimate (3.5). Next, observe that the constructed
function @y (z,y) = eNTES2_ N=Hyy (2, Ny) has by (3.6), (3.8) and (3.12), the
Neumann data

~0,®n(,)|,_g = N 'N“ZN —0y Ui (@,0)) = NeV"S(z) = ¢ (2).

Finally, the error estimate (3.5) and the assertion on the support are direct con-
sequences of the above construction. Theref(ire, we have constructed approximate
solutions, if we define 1; for j = 0,1,2 via ¢); = ¥je"I¢ls¥ (see (3.13), (3.16) and
(3.21)), and from the above considerations we can conclude the proof. (]



THE CALDERON PROBLEM FOR AN ANISOTROPIC SCHRODINGER EQUATION 17

3.2. Proof of Theorem 3.1. With the approximate solutions (3.3) at hand, we
can prove Theorem 3.1.

Proof of Theorem 8.1. For the ease of notation, let us set g = g; and V = V; for
either j =1 or 5 = 2. Let uy be the solution of

(A7 +V)un =0 in Q xRy,
—8yuN = (bN on () x {0},
uy =0 on 00 x Ry,

where ¢y is given by (3.1). Clearly, the same reasoning as in Section 2 works,
if the Neumann data and related functions are complex-valued. Let ®p be the
approximate solution of uy with —8y<I)N|y:0 = ¢n. Note that we have

(3.25) Oyun = 0,®n and dyry =0 in Q x {0},
where 7y is the remainder term given by ry = uy — ®x. Via (2.12), one has
(dn, Ay yvoN) = By v (un,un),

where B,y is the bilinear form given by (2.10) and ¢ denotes the complex con-
jugate of ¢n. Thus, using the decomposition uy = ®n + ry, we get

(bn: AL By = / )

+ 192 gV g7 Vun iy + V |un | | dady
=Iny+ Iy,

[gilvm,yuN . Vm,yW

where we set

Iy = / G VPN -V, On drdy,
QxR

Iy = [ [ Re (Vo VoT¥) 45 Vo VaTm
QOxR4

+ gl g7V g Vun T + V uy [ | dedy.

Here Re(f) stands for the real part of the complex-valued function f. Let us next
estimate Iy and Iy separately.

Step 1. Estimate of Iy .

Let us first compute the L?-norm of ®x. By (3.3) and the change of variables
z = Ny one easily obtains the bound

_ U
L P R
L2(QxR+) €lg | z2(0xr )
2
3.26 - -
( ) +ZN kHe nglgy'l/’k("Ny)HL%QxRJr)
=1
< N-1/2

for N > 1. Again using the representation formula (3.3), a direct computation
yields that

(327) V., &y = {N< i€ — yVIEl, )77 +q(x7Ny)} NGo-lel,)
7 - &l €],
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where ¢(x, Ny) is of polynomial growth in Ny and a bounded function x. Similarly
as for the L2 norm of @, the identity (3.27) and the change of variables z = Ny
imply the following gradient estimate

7N g
HV:E,?J(I)N||L2(Q><]RJr = H( |£‘ ) ISTG 1€lgy
(3.28) g L2(QxRy)
' + lldta, Ny)e M€Y | 2y
< N1/2

for N > 1, where ¢ is of polynomial growth in Ny and bounded in z.
On the other hand, with the representation formula (3.27) at hand, a direct
computation ensures that

(3.29)
Iy = / G 'Vey®n -V, On drdy
QOxR4

_ N2 ~—1 i{—yV\fIQ >< fiffyvli\g )772 —2Nlg],
N -/FX]RJF q ( _ ‘€|g . |§‘g ‘5@6 Y dxdy

+N p(x, Ny)e 2NVIELY drdy
I'xR4

:]V{A R(QKF44dKIF y) e 2Nl dedy + O(1)
XIS+

€13

2
= 2N2/ e 2Ny 2 dudy + N1 [l |
I'xR4

rxr, (€[

y*n?e 2189y dudy
+0(1)
=N [ 16l e d+ o)

for & # 0, where p(x, Ny) is of polynomial growth in Ny and a bounded function
in x. Moreover, in the last equality we used the fundamental theorem of calculus
and the notation O(1) or more generally O(N®) for some a € R means that the
term has growth N® as N — oo. Multiplying (3.29) by N~!, one can see that

(3.30) lim N~y = Jim {/|§| *dr+O (N } /|§|

N—oc0

Step 2. Estimate of Il.

Notice that
IIN = / |:2§_1Re (vx,y@N . vm,ym) + §_1VI,yTN : vz,ym
QOxR4

(331) 1ol g7V 1l -V (@ ) (@ )
+V |0y +ry|? |dz

where we used uy = ®n + rn again. By the construction of @, (3.4) and (3.25),
we see that ry is a solution to

(—Ag"‘v‘V)TN:—(—Ag-FV)(PN ianR+,
—0yry =0 on  x {0},
ry =0 on 00 x Ry.
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By the elliptic estimate (2.9) and the change of variables z = Ny, there holds
Il oxry) S 18 V) Nl 12 oxr,)

(3.32) < N*1||77(:E,Ny)e*lelng
< N73/2

L2(QxRy)

for N > 1. Using Hélder’s inequality, (3.26), (3.28) and (3.32), we can estimate
(3.31) as

1IN| S IVay®nl 2 @x) [Vayrnll 2 @xe,) + IrnlF0 oxe, )
+ Ve ®nlzzxr ) (1PN 22 (xr,) + PN 22 (xRS ))

(3.33) 2
I Vayrnllzz@xr [Nl Lz@axry) + 1 2N]72(0xR )

<1
for all £ # 0 and N > 1. Multiplying (3.33) by N~! and passing to the limit
N — o0, we get
(3.34) lim N~'IIy =0.
N —oc0

Combining (3.30) and (3.34), we get

. -1 T 7T\ _ 71: -1 _ -1, 2
(335)  Jim N7'(on, AT Ox) = lim N7 (Iy + Ily) = /F el n? da

Step 3. Recovery the metric g on T.

Now, suppose the condition (1.9) holds, then one can determine the metric (g;;(z))
on I’ by varying 0 # £ = (&1, ..., &) € R™. More precisely, let u(J) @S\],) + 7"5\],) be
the solutions to

(—Ay, —02)uf) + Vi) =0 in Q xRy,

~0yuy (2,0) = o (2) on Q x {0},
ug\J,) =0 on 00 x Ry,

where ¢x is given by (3.1), @%) stands for the approximate solution constructed

by Lemma 3.2, and r%) is the remainder term, for 7 = 1,2 and N > 1. With these
approximate solutions at hand, by using (3.35), we have

/F €17 P de = Jim N (on, AT 3v)

N—o00

= lim N~'(¢n,A} 0 Va®N)

N—o00

= [ ity o e

for any test function n € C2°(I"), and for any 0 # & = (&1, . ..,&,) € R™. Thus, after
polarization of test functions, we deduce |{|g, = [£]4, on T, for any £ = (&1,...,&,) €
R™. Therefore, we deduce that ¢gF¢une = g5°Cume on T, for all ¢, n € R™ and hence

g1 =gz onl.

Step 4. Recovery the potential V' on T.

First, let us note that by (2.12) and the fact that all coefficients (g;, V;) for j = 1,2
are real-valued one has (¢, |g;|"/2AL v, on) € R, for j =1,2. Next, observe that
in the complex-valued case formula (2 13) in Lemma 2.6 becomes

Folgrl > AL i f) = (Folgal /AL, 1 ) = (Byyvs — Byawa) (ul, u?).
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Thus, by g1 = g2 in T and (1.9), there holds that

0= <¢7Nv |g1|1 g1, V1¢)N> <¢Na |92|1/2A92 V2¢N>
1 2
= (thvl - Bgz,Vg) (ug\/')’ug\/'))

(3:36) - / (9112 g7 — 1022 g5 Vul?) - VuD dady
QXR+

+/ (|91|1/2 Vi— |g2|1/2 Vz)’uN uN) dzxdy.
QxR
for 7 =1,2. As in Step 3, we expand

(3.37) |20 vl Vi = g 297 (VoD + vr D) - (Vo + vi?)
for k = 1,2. Next, inserting (3.37) into (3.36) and using g1 = g2 in I" as well as
(4)

supp @’ C I, we get

0:/ (oo g7t = lgal 2 g3 ) Ory) - vr? dzdy

(3.38) R

F L ol Vi Ll 2 va) @) 5 0) (@ 4 D) dody
QxR

Applying the error estimate (3.32) of r%) for 7 = 1,2 and Hélder’s inequality, we
have

(3.39) ‘/ (lo1] 2 97" = 19?95 1) Vr Y - V1P dady| S N2,
QX]R+
On the other hand, for the second term in (3.38), one can see that

/Q]R (191> Vi = g2 Vo) (@) + ) (@) + 1)) dewdy

(3.40) S

= [ ol a2 v) o 8 dady + 0 (V).
QxR

where we used (3.26) and (3.32). Hence, (3.38), (3.39) and (3.40) imply

N ( |91|1/2 Vi— |92|1/2 Vg)‘I’(l)@ dedy = O (Nfl) ,
QXR+

which gives

(3.41) lim N (1o Vi = ga|"* V) 'V @) dwdy = 0.
N—oo QXR+

Thus, from the representation formula (3.3) and the change of variables z = Ny we
can conclude that

/ ( ‘91‘1/2 Vi — g2 |1/2 VQ) 1)<I>(2)d:cdy
QxR4

:/ (\91\1/2 V1 — |92|1/2 Vz)(NﬂglmHglg?) da:dy+(’)( )
QxR \€|g1 1€l
2
— N1 |g1|1/2 (V1—V2)6_2|£|g1y7772 dxdy+O(N_2),
xRy ‘gbl
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where we used in the last equality that g1 = go on T and n € C2°(T"). Inserting this
into (3.41) and using the fundamental theorem of calculus, we deduce that

2
0= / 1|2 (Vi = Va) 672‘5“‘“117772 dxdy
FXR+ |£|g1
2

:/|gl|1/2<v1fv2> T o
T

21¢]3,
for any n € C¢°(T"). This shows by the usual polarization argument that
Vi=Voonl.
This concludes the proof. O

4. INVERSE PROBLEM FOR NONLOCAL EQUATIONS

We start by reviewing in Section 4.1 the definition of fractional powers of ellip-
tic operators. In Section 4.2 we recall the extension property of elliptic variable
coefficient nonlocal operators. This helps us in Section 4.3 to relate the Neumann
derivative with the square root of an elliptic operator. Finally, in Section 4.4 we
show that the ND map uniquely determines the heat kernel of the operator —A,+V'.

4.1. Fractional powers of —A, + V. As usual, let @ C R™ denote a bounded
smooth domain. For any uniformly elliptic Riemannian metric g € C°°(Q; R"*")

and potential 0 <V € C*°(12), we introduce the operator

(4.1) Povi=—A,+V
on L?(§, dV,) with homogeneous Dirichlet condition on 9, that is, it has domain
(4.2) Dom (Pyv) = {u € Hy(Q,dV,); Py yvu € L*(Q;dV,)},

where P, vu € L?(£2;dV,) has to be understood in the weak sense. Below, we will
show that? Dom(P, ) = H}(Q) N H%(). Arguing as in [Brell, Theorem 8.22,
Theorem 9.31], one deduces that there exists a Hilbert basis (¢x),cny C Hg () of
L*(Q,dV,) and a sequence (\)ken C Ry with Ay — 0o as k — oo such that

Povor = Akgr  inQ,
¢k =0 on 39,
for all k € N. Moreover, by [Brell, Theorem 9.25, Remark 24| it follows that
o €C OO(Q)
Next observe that any u € Dom(P, y) with spectral decomposition u =), < urdp
satisfies B

2 2
(4-3) HPQVVUHL%Q,CIVQ) = Z Ai |uk| < o0
E>1
and there holds
(4.4) Pyvu= Z AU P
k>1
The identities (4.4) and (4.3) suggest a natural definition for the fractional powers
P¢,, 0 < s < 1 (more details are given in Appendix B). To define it, let us
9,V g

introduce the spaces Hgsv(ﬂ) consisting of all u € L?(§, dV,) such that

Z A28 ug|” < o0,

k>1

2Here and in the following, we make repeatedly use of the fact that H*(Q) = H*(Q, dV,) with
equivalent norms by the ellipticity (1.4) of g (see Section 2.1).
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where u has the spectral decomposition u = 21@1 ugdr in L2(Q,dV,) (ie. uy =
(u, dx) L2(0,av,) for k € N). Note that Hgfv (Q) equipped with the inner product
(45) <u, U>H§,Sv(9) = Z Aisuk'l)k

E>1

for u,v € flg%v(ﬂ) becomes a Hilbert space. This is true for any s > 0. Similarly,
for s < 0, we denote by H;‘z,s (2) the set of all u =}, updy satisfying

_ —2s 2
lull =200y = DA™ [usl* < o0
k>1
If one defines the inner product similarly as in (4.5), then H;‘Q/S(Q) becomes a

Hilbert space and one can identify the dual space (ﬁg%v (©))* and H;‘Q/S (Q) with
equivalent norms.
Hence, for u € ngfv (Q), we can define

(4.6) Py vu=>_ MNupdy € L*(Q,dV,)
E>1

and Dom (PZ,V) = flgév(Q) By construction we have
||PZ7VUHL2(Q;qu) = Hu”ﬁﬁfv(ﬂ)’ for all u € H_% ().

Lemma 4.1. We have

(4.7) Dom (Pg,v) <+ Dom (P; )
and
(4.8) H;(Q) = H} v (9).

forall0 <t <s < oo.

Proof. To see (4.7), let kg € N be the smallest natural number such that Ay, > 1.
Then for u = Zk21 ur @ we have

SOl < DT AP+ ) Al

E>1 1<k<ko—1 k>ko
<Yl + D Al
k>1 k>1

< HUHQL?(Q,dVg) + ”PQ,V’U’HZLQ(Q,dVg) < 0.
We only prove (4.8) for ¢ = 0, that is
(4.9) HZ(Q) = LX(Q,dVy),

and the general result is followed by a simple modification. A direct calculation

shows
lulZzav,y < D lul+ Y Jul?

1<k<ko—1 k>ko
Ais 2 2 2
< D Seshul YD Al
1<k<ko—1 K k>ko
<A fun?
E>1
= ”uHﬁ;"?V(Q)’

where we used the first eigenvalue \; > 0. O
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Remark 4.2. Let us remark that in the special case g;; = 6;5 and V = 0, the
operator defined via (4.6) is called the spectral fractional Laplacian, and for more
details, in particular an alternative characterization of H(%i_j) 0(Q), we refer the
interested reader to [CT10] and [BSV14, Section 3.1.3].

The following integration by parts formula holds.

Lemma 4.3. For all u,v € ];'g%v(Q), we have

s o o s/2 s/2
(410)  (Povt ) ag.ar,) = (0 Pov ) agar,) = (Povt: Povt) aaan,
Proof. The proof can be easily seen by using (4.6) and straightforward computa-
tions. (]

It is easily seen that the last expression in the integration by parts formula (4.10)
is precisely the inner product in H; ,(€2). Because of this, for given f € (H 1,(R2))",
we say u: 2 — R (weakly) solves

Povu=/f inf,
u=20 in 09,

ifue ﬁ;V(Q) and
(411) <u7 U)f[;’v(g) = <fv U>a

where (-, ) denotes the duality pairing between ﬁ;V(Q) and (ﬁ;V(Q))* In fact,
it is not hard to see that (H , (Q2))* = H, 7,(€2) and
(fo) =" fuon
k>1
for f € (fI;V(Q))* and v € I;T;V(Q) (see [BSV14, Section 7.9]).
Next, we want to relate the fractional powers P31 given by (4.6) with the asso-

ciated heat semigroup e~tPs

Lemma 4.4. There holds
(4.12) e Pavy = Z e~ My

k>1

Vot > 0. First, we have the next lemma.

for any u € L*(Q,dV,).
The proof of the above lemma is in Appendix B. Furthermore, note that the
uniform ellipticity (1.4) of g, V' > 0 and the Poincaré inequality imply

(4.13) e <e <1,

Pov ||L(L2(Q,dvg))

for all ¢ > 0 and some v > 0 (cf. e.g. [Are06, Theorem 3.4.3]). Additionally, by
[Are06, Example 9.2.2] we have e~tPs.v >0 for ¢ > 0.
Recall that the Gamma function is defined by

o
I'(s) ::/ ettt at,
0

and one has

. I dt
(4.14) A _F(_S)/O (e7™ —1) TTs

for A > 0 and 0 < s < 1. Then using fundamental properties of Py (see
Lemma B.1) and (4.14), one can show that there holds

s 1 > —tPy
(4.15) Povu = 7I‘(—s) /0 (e 9V — u) el
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for u € H 25(Q), which is called semigroup formula for P2 v. It is well-known
that this holds in a very general setting, but in our case, the argument is more
elementary.

In fact, first of all taking in (4.14) A = A\g, multiplying by ur¢ and summing k
over {1,...,m} we get

R 1 i dt
Pg’V;Uk(bk = m/o Z b - Ulc¢k s

for all m € N. Here, we used ¢, € Dom(P,v), (4 7), (4.6) and (4.12). By construc-
tion the left hand side converges to P;’Vu in L2(£2,dV,) and hence passing to the
limit m — oo gives

dt
s —tA
= i g [ D

in L2(Q,dV,). Hence, for all v € L?(Q2,dV,) there holds

(Pyvu, U>L2(Q av,)

dt
= lim </ _t)‘k - Uk¢k >
m=voo I'(= kzzl trs L2(Q,dV,)

m

(4.16) . > _ex dt
=i g (D )

-1 L2(Q,dVg)t +
1 «— /°° —ta dt
= ——r e — 1) upvr ——
I'(—s) ; 0 ( ) ti+s

where we set v, = (v, ¢k>L2(Q av,)- Next, note that
2: A
/ 1—et k |uk||vk|tl+9
ZO" 1/“ dt o dt
—tA g 1 o —tA g
</ - ) tits * /1/>\k, (1-e ) t1+s)|w€”vk|'

(4.17)

Now, the second integral in the right-hand side of (4.17) can be bounded as

[ e fa [T gy,

whereas the change of variables 7 = Ay in the first integral yields

1/ 2 _ dt e . dr .\
A (1_€t>\k)t1+S:Ak/O‘ (1—6 )ﬁgAk

Inserting these estimates into (4.17) gives

dt
> [0 e e 55 S Sl

k=1

Z 2s|uk|2 + Z "Uk|2

=1 k=1

8

HuIIstv(Q) + ||’UH%2(Q,dVg) < o0.
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Therefore, we can invoke Fubini’s theorem in (4.16) to get

. 1 EC dt
<Pg,Vu7’U>L2(Q,dVg) = F(—S) /(; Z (6 e — 1) UV tl?
k=1
1 o dt

= F(is) /0 <(e—tPg»V — 1) u, ’U>L2(Q,dvg) m,

where we used (4.6) and (4.12). Hence, we have established (4.15).
Next, let us introduce the negative powers of P, y. For fixed 0 < s < 1, we set

—S8 —S8
ngvu = E /\k ukgbk,
k>1

which is well-defined for u € L?(2,dV,) as Ar, > 0. One easily verifies by a direct
calculation that Py i, is an isomorphism as a map from H;év(ﬂ) to L?(2) and there
holds

(418) P;’;P;,V = Idﬁﬁbv(m and P;’VP;; = IdL2(Q,dVg)~

Let us remark here that through the integration by parts formula (4.10), the oper-
ator Py 1, can be extended to a continuous map from H () to H, 7, (2) and its
again an isomorphism with inverse P_{,. Furthermore, if one uses the identity

1 [ dt
)\‘3:—/ e A>0,
I'(s) Jo th-s

then there holds

. L[> e dt
(4.19) ngu:@/o oo 2

for u € L?(,dV,). Note that the right-hand side of (4.19) converges in L?($, dV,)
due to (4.13). In fact, (4.13) implies

o dt > dt
—_tP -t
/ He gyquLz(Qﬂng) tl—s S (/ e’ t1_5> HUHLQ(Q*dVQ)
0 0

_TGs)

=T

(4.20)

[ullL2(0,av,)-

Again to see the identity (4.19) one can rely on the abstract theory or argue similarly
as for (4.15) via an expansion in eigenfunctions and using the identity (4.12).

4.2. The Neumann derivative and the nonlocal equation. We start by re-
calling that, in a similar vein as the fractional Laplacian (—A)® [CS07], a wide
class of nonlocal operators can be recovered as Neumann derivatives of solutions to
suitable extension problems. For example in [ST10, Theorem 1.1] it is shown that
if u is a (o-finite) nonnegative measure on Q@ C R™, £ is a nonnegative, densely
defined, self-adjoint operator on L?(£), du) with domain Dom(£) and w € Dom (L£*)

for some 0 < s < 1, then

1 > 2 dt
4.21 - —tL (s —y?/at_0t
(421) W) = g [ e () (@
solves
(4.22) LW — %ayw —2W =0 inQxRy,
' W=w on  x {0}

and one has
(4.23) — lim y""%0,W = ¢;L%w on Q x {0},

y—0t
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where ¢s; > 0 is a constant depending only on s. The previous limit has to be
understood in the L?(Q, du) sense.

In particular, as s = 1/2, we can connect (1.7) to a nonlocal equation. Let us
make a few remarks.

(a) We observe that actually in our special case s = 1/2 and £ = Py =
—Agy + V, the above result follows by a more elementary argument for
smooth functions. More precisely, let g € C®(Q;R™"), V € C*(Q) be
independent of y, and €2 has smooth boundary, then one can easily see,
arguing as in [CS07], that the operator

Tf= —0yu|

y=0~

where u € H}(Q x R.) uniquely solves

(-Ag+V)u—-3ju=0 inQxRy,
u=0 on 02 x Ry,
u=f on 2 x {0},

which is a positive operator with 72 f = (—A, + V') f. Therefore, we have
Tf= (=0, +V)V2f

for f € C*(Q) vanishing on Q. The identity T?f = (—A, + V) f, for
f € C>(Q) with f =0 on 99, which can be seen as follows

T?f=T (—8yu|y:0) = 3§u|y:0
= (-Ay+V) u|y:0 =(-As+V)f,

since both g and V' are y-independent.
(b) Furthermore, in our case £ = Py, we get from [Stil0, Section 3] that
under the additional boundary condition at infinity

lim W(x,y) = 0 weakly in L*(Q,dV,)
Yy—o0

that W given by (4.21) is the unique solution of (4.22) and in particular
coincides with the one obtained via the Fourier method, i.e. making the

ansatz W(z,y) = > 451 ck(y)dr-

4.3. ND map and source-to-solution map. We next transfer the ND map of
(1.7) to the source-to-solution map for the nonlocal elliptic equation

(4.24) PV/ov=finQ

By (4.7) and our notion of weak solutions to (4.24) (see in particular (4.11)), we

know that for any f € C2°(£2) there exists a unique solution v € ];'91/5 (Q) of (4.24).
Hence, taking into account (4.9), for a given open subset I' C Q we can define

the local source-to-solution map corresponding to (4.24) by
Sy C2(I) = LXT),  fwr ol

for any f € C2°(T), where v/ € ﬁ;/‘g(Q) is the solution to (4.24). Clearly, the

source-to-solution map could be defined on a larger space like H;‘l,/ ? (Q) by our
notion of weak solutions, but C2°(T") is for our purposes enough. This naturally

leads to the following inverse problem:

(IP2) Inverse problem for the nonlocal elliptic equation. Can one deter-
mine the metric g and potential V' in €2 by using the knowledge of the local
source-to-solution map S;V?
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Recalling that with the boundary determination at hand, we know the informa-
tion of both g and V on the measured open subset I' € {). We next assert that
measurements in the inverse problem (IP1) determine the measurements in (IP2).

Lemma 4.5. Let Q, T', (g1,V1) and (g2, V2) be given as in Theorem 1.1. Suppose
(1.9) holds, then one has

(4.25) Sy f =84, v, f for any f € CZ(D),

91,V1

where Sg; v, : C(T) 3 f vﬂr € L2(T") is the local source-to-solution map of
/2 f .
ng)vjvj = fin Q.
forj=1,2.

Proof. Let us start by recalling that the boundary determination result established
in Section 3 ensures that

g1 =gzand V1 =VoonT.

Next, we show (4.25). For a given f € C°(T"), we denote by uf € H}(Q x [0,00))
the unique solutions of (1.8) for j = 1,2 (see Lemma 2.2).
Claim 4.6. For j = 1,2, we have u{ € H3(Q2 x [0, R)) for any R > 0.

Let us offer the proof of Claim 4.6 in Appendix A. By using the previous
claim and suitable trace theorems, we know that ujf\yzo € H(Q) N H?(Q) and
hence u5|y:0 € Dom(Pg 1) by (4.7). In fact, Claim 4.6 ensures that u; €
H(0,R; H2(2)) for fixed R > 0 and so by the trace theorem we have u/] €
C([0, R]; H*(£2)), which gives u;|y=0 € H?(Q). Next, let us note that uj; €
HYQ x [0,00)) < L2(0,00; Hi()) ensures uf(-,y) € Hi(Q) for ae. y > 0.
Thus, we can deduce from uf € C([0, R]; HY(Q)) that uf\yzo € HE () as HY(Q) is
a closed subspace of H'(Q2). Let p € L*(Q,dV,) be fixed and consider the function
U;: Ry — R defined by

Rt

s

Ul W)= [ ul @)@ dv; o).

Using u; € HY(Q x [0,00)) — H'(Ry; L*(Q;dV,)) we know that Ujf € H'(R,)
and hence the Sobolev embedding ensures the uniform continuity of U Jf on [0, 00).
But then we get

Ujf — 0 as y — oo.

Thus, we can invoke the uniqueness statement (b) of Section 4.2 to see that qu- is
the unique solution of the extension problem

(-Ag+V)u—-0Ju=0 inQxRy,
u=0 on 002 x Ry,
! on Q x {0},

u = u}

J ‘y:O
for j = 1,2. Thus, from (4.23) with £ = Py, v, and s = 1/2, we get that vg; = ufc|y:0
satisfies

1/2 .
(4.26) {Pg]/»vj” =f g,

v=20 on O0f2.
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Now, U; is indeed the unique solution to this problem by ’U; € Hi(Q)NH*(Q)
for j = 1,2, (4.7) and the discussion at the beginning of the section. Combining
(4.26) with the condition (1.9), we have

vlf = vg inI', for any f € C°(T),
or stated alternatively (4.25). This proves the assertion. O

4.4. Determination of heat kernel. The purpose of this section is to show that
if (g;,Vj) is is prescribed on the measurement set I' and the source-to-solution
maps ngyj coincide on I, then the Schwartz kernels e oy (+,-) of the semigroup
e~ P9 related to 9, + Py,.v; in 2x(0,00) (see Appendix B for more details) agree
on I'. More precisely, we have the following lemma.

Lemma 4.7. Assume that Q, T', (g;,V;) for j = 1,2 are given as in Theo-
rem 1.1 and let (g,V) € C®(Q;R™") x C=(Q) be any pair of a uniformly el-
liptic Riemannian metric g and nonnegative potential V' such that (1.10) holds. Let
ng,vj :CPM) s fe v{|p € L2(T") be the local source-to-solution map of (4.26) for
j=1,2. Suppose that (1.11) holds, then we have

(4.27) e Parvi (g, 2) = e Po2va(z, 2) for x, 2 €T and t > 0.

Notice that the conditions (1.10) and (1.11) are the conclusions of Theorem 3.1
and Lemma 4.5.

Proof of Lemma 4.7. Fix any nonempty open subset O1 € I'and let f € C°(04) C
Dom(Pg,V) for all k € Ng = NU{0} (see Lemma B.2). Using (1.10), we deduce the
identity

(~8g + V1) f = (g, +V2)" [ = (=0, + V)" [ € CZ(0)
for any k € Ng. Therefore, using the preceding identity, (4.18) and (1.11), we can
deduce that

P2 (A, + V) f=P 2 (=A,+ V)" fonT.

91,V1 92,V
Then (4.19) ensures that
P, v —tPy v ko, dt
(4.28) ; (e™M9iVi — e M9uVi) (=Ag+ V) fm:OOHF

for k € Ny (see (4.20)). We also recall that by Lemma B.3, (c) we have
e Fuvi (=0 + V)" f € (@ x [0,00))

for j =1,2.

Next, we follow arguments from [FGKU24, Section 2] (see [GU21, Proposition
3.1] for nonlocal elliptic operators and [LLU22, Section 4] for nonlocal parabolic
operators). We first note that by the semigroup property of etV ¢ > 0, we have
the commutativity

(120) e (28, +1) g = (g, 1) g
and
(4.30) (e g) = (-1 (-3, + 1) e P

for all g € Dom(P’g‘“,V) (see (B.12) and Lemma B.3, (a)). Thus, inserting (4.29) and
(4.30) into (4.28), we have

% k(- - dt
(4.31) /0 oF (e tPorvi _ o tsz»Vz) bi yo i Oon T, for all £ € Np.
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We claim that there are no boundary contributions when performing in (4.31) an
integration by parts. Using the above relations, Lemma B.3, (b), (B.13), (4.13) and
(B.14), we get

H(‘)’“ (e_tP91vV1 — Pgs, V2) f”LOO(Q
2
5 ; Hafe_tpghwfHDom(P;:TVki)
m—k

N
Mm

Z HP{ Ope o f“m(n davy)

1

~
Il
o

.
Il

(4.32)

kol

3

N
M)

—tP Vi +k
He ! Pgi,Vi ‘

L2(Q,dVy)

,_.
o~
I

0
m—k
e~ it ‘

N
o I

f-i-k
QL7V1

2
— — L2(9,dV,)

.

S azm v, e,

where v = min (y1,72) > 0. In the calculation above m is chosen such that m —
k > n/4. Note that formula (4.32) shows that for ¢ — oo there are no boundary
contributions.

To proceed, we want to estimate the left-hand side of (4.32) for ¢t > 0 and z € Oa,
where O is a nonempty open subset of I' such that O; N Oy = ). Indeed, by (B.10)
and f € C2°(0;) we may write

af [(e_thLVl — e_th2~V2) f] (:I,')
_ - k

gy = DM o) (A, V) fl(e)

= (—1)k/ [ (e_tPal«Vl (x, z) — e tPoa vy (33, Z)) (—Ag + V)k f(z)] dVg(z),

Oy

for € Oy, where e "9V (1, 2) > 0 is the (bounded) Schwartz kernel of e~ "9V
for j = 1,2. Via (4.33), we have

ok [(e= s e P) 1] 0)

<
Oy

< He_tpfnw‘ﬁ (.7 ) —e —tPyg,, V2

(e*th,Vl (LE, Z) — eitPQQ’VQ (1'7 Z)) (_Ag + V)k f(Z)‘ dVg(z)

HLOO OgXOl H Ag + V)kaLl(Ol,qu)7

for z € Oy and any k € Ng. Moreover, we can use a Gaussian upper bound for the
kernel e P23 (-, ) (see (B.11)) to obtain

ok (e — e Pa2) £] o)

4.34 :
(4.34) < Ct—n/ze—b(dlst(ol,Oz))z/te“’tH (—A, +V)* fHL1(01 v,

for x € Oy, any k € Ny and t > 0, where b,c > 0, w € R only depend on the heat
kernel e P9 Vi (cf. (B.11)) and dist(Oy, O5) := inf {|z1 — x| ; 21 € O1, 25 € Os}.
This shows that we also do not have a boundary contribution at ¢ = 0 as by
assumption dist(O1,0s) > 0.

Therefore, using e 7% f € C®(Q x [0,00)) for j = 1,2, (4.32) and (4.34), an
integration by parts (k times) with respect to the ¢t-variable in (4.31) yields that

* —tPg V- —tPg Ve dt _
/0 [(e Vi — e zwz)f](x)m—o,
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for x € Os and any k € Ng. In particular, by using the change of variables ¢ = %,
we obtain

(4.35) /0 " 6a(O)CH dC =0,

for ¢ € Oy and any k € Ny, where introduced for fixed z € Oy the function
¢z (0,00) = R by

(e_%PglvVl _ e_%P%V?)f(x)

¢w(§) = 41/2

Claim 4.8. The functions (¢x)xe(92

(a) ¢z € C((0,00)) N L*((0,00))
(b) and for some o > 0 we have L(¢;)(s) = 0 for0 < s < a, where L: L?((0,00)) —
L?((0,00)) is the Laplace transform defined by

Lf(s) = /000 ft)e st dt

for f € L*((0,00)) and s > 0.

have the following properties

Proof of Claim 4.8. The smoothness assertion follows immediately from Lemma B.3,
(c). To see ¢, € L?((0,00)), we use the change of variables ( = 1/t to write

9 o0 ’(ef%P!?lvVl _ ef%vaVz)f(x)‘Q
||¢7;||L2((07oo)) :/0 1§ ¢
1
:/O |(e_tpy1wV1 — e_tpgszz) f($)|2 ?
e dt
+/1 (7 Pmm — etPoa) fla)[* =

The second integral is finite as e =% Vi f € L2(0, 00; HE () for j = 1,2 (see (B.6))
and using (4.34) the first integral can be estimated as

1
[l - e g &
0

<71 Lenszgan &t
' LL(O.aVy) [ 7

P oy [, ¢TI dr

Sd 2 11121 (04,av,) T(1/2) <00

for some constant d > 0. This establishes ¢, € L?((0,00)) and hence completes the
proof of assertion (a).
First, recall that we have

N

—s (_SC)k
=D (N + 1)

k=0

et N+1

for any N € N, ¢ > 0, s > 0 and some fixed £ € (0,(). As the Laplace transform is
a bounded operator from L?((0,00)) to itself, we know that £(¢,)(s) makes sense
for s > 0 (up to a set of measure zero). By (4.35), we have

N

> —s _ > —s (754)16
| e@eac= [ o0 (e <Z(N+1)!> @,

k=0
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for any N € N and s > 0. Therefore, we may estimate

~ (50
/0 ¢2(¢) <€_S< - Z (N‘f'l)'> dg
GN+1

k=0

/0 160(O)] N dg

<
5N+1

- T (/01 162(0)] ¢V dc+/1m 62(0)] ¢V dc)

5N+1

< vy (el + [ 10:(01¢¥ ).
The last integral can be controlled by using the Gaussian bound (4.34) as

/Oo |¢E(C)|<N+1 dC S /OO efaCew/CCNJrn/QJrl/Q d(
! 1

< /OO €7a§CN+n/2+1/2 dC
1

~

— a—(N+n/2+3/2) /OO e—ppN+n/2+1/2 dp
d
< o WNHn/243/DD(N 4 n /2 + 3/2).

for some « > 0. Next, let us recall that for any 8 € C we have the asymptotics
(4.37) [(z+ B) ~T(z)z? as z — oc.

Inserting this into (4.36) and using (4.37), we arrive at the estimate

> o (="
e ¢ — >
/ asz(o( > (N+1)!> ac
8N+1

k=0

S oyt el ooy + " CTEATN 402+ 3/2))
< gN+1 . SN D(N 4 n/2 +3/2)
~(N+1)! T aN+tn/2+3/2 T(N +2)

3N+1 S N .

N+1

< 5 + (E)NN(nfl)/Q
YN+ \a
=0
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as N — oco. Here, we used that as N — oo the first term goes to zero for all s > 0

and the second term as long as 0 < s < a. Hence, we deduce that
L(p)(s)=0for 0 < s <
and this concludes the proof of (b). Hence, Claim 4.8 is proved.

O

Since ¢, € L?((0,00)) its Laplace transform can be extended analytically to the
right half plane of C and thus (b) of Claim 4.8 together with the identity theorem
for analytic functions guarantee that L£¢$, = 0 for s > 0. Now, we can invoke the

inversion formula to deduce ¢,(¢) = 0 for ¢ > 0. This in turn implies
[(e_tpgl"’l - e_tpgz"@) f] (@) =0, for t >0 and z € O,.
On the other hand, via the condition (1.10), the function

V= (e_tpgl:vl — e_tpgzwvz) f
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is a solution to

(4.38) {(@ +Pyv)v=0 inT x (0,00),

v=0 in Oy x (0, 00),

where we utilized the notation g = g1 = g2 and V' = V; = V5 on the open subset
I' € Q. We may deduce from the fact that v solves (4.38), I" is connected and
the unique continuation property of solutions to heat equations (see, for example,
[Lin90, Sections 1 and 4]) that

(4.39) [(e7Porvi — e Po2va) f](z) =0, fort >0 and z € T

Let us also note that for any given f € C°(T") we can always choose open sets
01,05 C T such that supp f € O; € I' and O, N O = (). Hence, by (4.39) there
holds

(4.40) e Pav f‘r = ¢ Pa v f|r’ for ¢t > 0,
for any f € C°(T'). Finally, (4.40) and (B.10) yield that
e Pavi(z 2) = e o2V (g, 2) for t >0and 2,2 €T,

which implies that the condition (4.27) holds. This completes the proof. O

5. INVERSE PROBLEM FOR WAVE EQUATIONS

In this section, we introduce another key tool — the Kannai type transmutation
formula (see [Kan77]). This will transfer solutions of wave equations to solutions of
heat equations, via time integration against suitable kernel functions (see eq. (5.9)).
Using Lemma 4.7 allows us to relate the inverse problem (IP2) to an inverse source
problem for the associated wave equation

(5.1) {(83 +Pyv)w=F in Q x [0, 00),

w(0) = wg, Ow(0)=w; in Q.

By establishing a unique determination for this inverse problem, we will prove in
Section 5.3 our main result, Theorem 1.1.

Before proceeding, let us collect some relevant well-posedness and regularity
results for the Cauchy problem (5.1), whose proof is presented in Appendix C for
completeness.

Theorem 5.1. Let Q@ C R” be a smoothly bounded domain, g € C™(Q;R™ ") a
uniformly elliptic Riemannian metric, V. € C°(Q) be a nonnegative potential and
let Py v be the unbounded operator introduced in (4.1)-(4.2).
(a) Suppose that wy € H?(Q,dV,) N HY (2, dV,), w1 € H}(Q,dV,) and F €
C*([0,00); L*($2,dV,)). Then there exists a unique function w satisfying

w € C([0,00); Dom(Pg,v)),
(5.2) dyw € C([0,00); HL(Q;dV,)),
Ofw € C([0,00); L*(2,dV,))

and solving the Cauchy problem (5.1).

(b) If wj € Nyen Hk(Q,dVy) satisfy P’;vaj € H}(Q,dV,) for k € Ny, j =0,1
and F € C(Q2 x (0,00)), then the unique solution w of (5.1) belongs to
C> (02 x [0,00)).
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(c) Under the assumptions of assertion (a), the unique solution w of (5.1) has
the representation formula

(5.3)
sin(t\L/? tsin((t — 7)N2
w(t) = Z cos(t)\,lﬁm)wéc + 7( 1/’2“ )w’f + / —(( 1/2) k )Fk(T) dr| o
k>1 Ak 0 Ak
sin(tPl/Q) tsin((t — T)Pl/z)
= cos(tP;{‘%)wo + 71/“;"/ wy + / — i 8.V F(r)dr,
g9,V 0 Pg7V

where Fi(t) = <F(t)v¢k>L2(Q,dvg) and wf = <wj7¢k>L2(Q,dVg) for k € N,
t>0,j=0,1.

From now on, for any source F € C'([0,00); L%(2,dV,)), we denote by w!" €
C([0,00); Dom(P, v)) the unique solution to the Cauchy problem for the wave equa-
tion with zero initial data

(0} +Pgv)w=F inQx(0,00),
w(0) = dw(0) =0 in Q.

Next, using this notation, we introduce the (local) source-to-solution map by
Tgv+ CH([0,00); L*(T, dVy)) — C([0, 00); H*(T)),

(5.4) F—w

F‘I‘X[O,oo)’

where I' € Q and L?(T,dV,) denotes the collection of functions G € L?(§,dV,)
with suppG C T. Observe that by Theorem 5.1, (b) we know that ng,VF €
C>(T x [0,00)), whenever F' € C°(Q2 x (0,00)). The above considerations lead
naturally to the following inverse problem.

(IP3) Inverse problem for the wave equation. Can one uniquely determine
the metric g and potential V' from the local source-to-solution map jgljv?

The rest of this section is structured as follows. In Section 5.1 we show that the
inverse problem (IP2) can be related to (IP3), and in Section 5.2 we establish an
affirmative answer to the question (IP3) and finally in Section 5.3 we proof our
main result, Theorem 1.1.

5.1. Kannai type transmutation and relation between (IP2) and (IP3).
The following lemma is similar to the one in [FGKU24, Section 3] and we offer the
proof for the sake of completeness.

Lemma 5.2. Let Q, T, (g1, V1) and (g2, V2) be given as in Theorem 1.1. Consider
the local source-to-solution map jglz,vj of

(5.5) {(0,?+ng’w)wj—F in Q x (0,00),

w;(0) = yw;(0) =0 inQ,
for j = 1,2 and suppose that the conditions (1.10) and (4.27) hold for some pair

(g,V) € C®(; R™™) x C(Q) consisting of a uniformly elliptic Riemannian met-
ric g and nonnegative potential V. Then there holds

(5.6) jgrl,vlF = jgl;VVQF, for any F € C°(T x (0,00)).

Proof of Lemma 5.2. First note that via the Fourier inversion formula, we have

—t)\2 1 * _¢2 o\ 1 * _¢2
(6.7) N = — e” TN ¢ = e~ 4 cos(C\)d¢, t>0.
Vart J o Vart J
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For A # 0, an integration by parts in (5.7) yields that

—ia2 2 > _g bln(C/\)
W /O CerTw
00 : 1/2
_ 1( / e_%SlIl(T /\)d
4\/t3/2 |, A
Here we used that the sine function is odd and the change of variables T = (2. For
any f € L*(Q,dV,), Lemma 4.4, (5.8) and Fubini’s theorem ensure that the Kannai
type transmutation formula holds, that is

(5.8)

T.

. 1/2
1 o sin(rY/2P,/ Vi)
(5.9) e Puvif= ﬁ/ e T ——— I fdrin L2(Q,dV)
4y/mt3/2 [ g;’vj

for j =1,2. If f € C°(T), then (B.10), (4.27) and (5.9) imply

o sin(71/2P;{?Vl)
; et [ (x)dr

n%
(5.10) .

il

. 1/2
oo sin (71/2P921V2)
= e — f1 (z)dr,
0 P92,V2
for t > 0 and € I'. This holds in the sense that we test in the L2-sense the

expression under the integral against any h € C°(T"). Applying the inverse Laplace
transform in (5.10), we obtain

sin (7_1/2P!1]1/72V1) sin (Tl/QP}]fVZ)
2 ) (@)= [
91,V1 g2,V

(5.11) z),

for 7 > 0 and z € T'. Therefore, with the representation formula (5.3) and F €
C(T x (0,00)), by using (5.11), one can conclude
wl (z,t) = wl (z,t) in T x [0, 00),

which proves (5.6). This proves the assertion. O

5.2. Simultaneous determination for wave equations. The goal of this sec-
tion is to prove the following affirmative answer to the inverse problem (IP3).

Theorem 5.3. Let Q, T, (g1,V1) and (g2, Va2) be given as in Theorem 1.1. Let
ng,Vj be the local source-to-solution map of (5.5). Suppose that the conditions
(1.10) and (5.6) hold for some pair (g,V) € C=(Q;R™*™) x C>(Q) consisting of
a uniformly elliptic Riemannian metric g and nonnegative potential V', then there
exists a diffeomorphism U: Q — Q with U|x = Idg on T such that g1 = V,.go and

We will reduce the proof of Theorem 5.3 to a unique determination problem in
[KOP18].

Proof of Theorem 5.3. Let us start by recalling that by assumption (€2, g) is a com-
pact, connected, smooth manifold with smooth boundary 92 and we have given
the following data

(512) (Fa g|F7 V|F7 jgl—:V) )

where ng: v denotes the local source-to-solution map for the wave equation with
zero initial data (see (5.4)). Now, we aim to recover (g,V) in the connected set
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Q= Q\T up to a diffeomorphism. We divide the proof of Theorem 5.3 into two
steps:
Step 1. Source-to-solution data (5.12) determines the restricted DN map.
Let us consider the wave equation in the domain ' x (0, c0):
(0} +Pyv)w=0 inQ x(0,00),
w=f on 9" x (0, 00),
w=0 on 99 x (0,00),
w(0) =0w(0) =0 in .
It is known that the restricted DN map for the wave equation (5.13) can be defined
by
(5.14) A;’\?F’T: Fflorx.r) = 6Vgaf|arx(0,T) ’

for any T > 0, where f € C°(0T x (0,T)) and wy is the unique solution to (5.13).
The well-posedness of (5.13) can be obtained as follows: First extend the boundary
condition f to a function f € C®(QY x [0,00)) with f|;—¢ = 0, f|39x[0,oo) =0 and
set @ = ¥+ f. Then ¥ solves a wave equation of the form (5.1), which uniquely
exists by Theorem 5.1 and hence showing the well-posedness of (5.13). By [KOP18,
Lemma 4.2], it is known that the data (5.12) determines the map Az‘?r r

(5.13)

Step 2. Determination of the metric and potential from the restricted DN map.
By Step 1, (1.10) and (5.6) we have

AT F = AVST f, for any f € C2°(AT x (0,7)),

for any T' > 0, where A‘;;’?};’T stands for the restricted DN map given by (5.14), for
j = 1,2. We may apply [KOP18, Theorem 1.1] (with E; = / x C, S; = 9I' and
¢ = Idaorxc) to conclude that there exists a hermitian vector bundle isomorphism
®: Q' x C — ¥ x C such that ®|srxc = ¢ and there holds
U*gy = g1 and "V, = V1,
where ¥: Q' — ' is the induced diffeomorphism of ®. Thus, we have
(I)(‘T> v) = (W($)7 C(:L‘)’U)7

where ¢: @/ — C is smooth scalar function with ¢(z) = 1 on 9. Observe that
V1 = ®*V5 means nothing else in the scalar case than V; = V5 0 U. O

Remark 5.4. Notice that the results in [KOP18] hold in the more general vector-
valued setting, where the potential V' is no longer scalar-valued as in our case.
Moreover, in [KOP18], the authors even allowed the leading order operator to have
a drift term, which emerges from an additional vector potential A. Thus, in the
present article we do not invoke the full strength of the results in [KOP18].

5.3. Proof of Theorem 1.1. Last but not least, we can show Theorem 1.1.

Proof of Theorem 1.1. First as the ND data agree (see (1.9)), the boundary deter-
mination (Theorem 3.1) shows that

(5.15) g1 =g and Vi = Vo on I.
Furthermore, Lemma 4.5 guarantees that
(5.16) gl,Vlf Sy, VZf for all f € C°(T),

where S IV is the source-to-solution map for the nonlocal equation

P;J/?Vv—finﬂ7
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for j = 1,2. Next, let us fix any extension (g, V'), consisting of a uniformly elliptic
Riemannian metric ¢ and nonnegative potential V', of (gi1|r, Vi|r) to the whole
domain . By Lemma 4.7 we know from (5.15) and (5.16) that the Schwartz
kernels of the corresponding heat semigroups agree on I', that is

(5.17) e Pavi(g 2) = e Po2v2(z,2) for t >0 and 2,2 €T
By Lemma 5.2 the conditions (5.15), (5.16) and (5.17) ensure that

(5.18) Ty F =7, v, F for any F € C*(T' x (0,00)),

where J, ql; v denotes the source-to-solution map for the wave equation

(07 + Py, v,)w=F in Q x [0, 00),
w(0) =wo, Qw(0)=wy inQ,

for j = 1,2. Finally, using (5.15) and (5.18) we can apply Theorem 5.3 to establish
the assertion of Theorem 1.1. O

Remark 5.5. Let us note that the above proof of Theorem 1.1 also establishes
Theorem 1.8 and the methods in this work can be used to study more general versions
of it. For example, one can consider the problem

(A +V)u=f inQ,
u=20 on 052,

where f € CX(T), T' € Q is a given smooth domain and 0 < s < 1. If (9r, V|r)
and the local source-to-solution map S;:‘F/: flr — wuglr are prescribed, for any
f € CP (), then one could apply similar methods as in this work to determine
stmultaneously (g, V') in Q up to a diffeomorphism.

APPENDIX A. REFLECTION AND POINCARE INEQUALITY

To derive a suitable Poincaré inequality, we will make use of the following simple
lemma on first-order reflections.

Lemma A.1 (First order reflection). Let Q C R™ be an open set. Then for any
function u: Q x [0,00) = R, we define its first order reflection u: O x R = R by

dlz.y) = u(z,y), if y=0
T 3w, —y) + dule,—y/2), i y<0

and set uy = Ul x[0,00), U— = Ulax(—oc0,0- Ifu € CL(Qx[0,00)), then there holds
(a) € CLHQ x R),
(b) uyl,—o = vy,
(c) Dyurl,_o = Oyu_| _o,
(d) Opiutl|,—g= Opiu_|,_o for 1 <i<n
(e) and there exists C > 0 independent of u such that

(A.1) ”ﬂHLZ(QxR) < Cllull2(oxry)  and ||Va||L2(Q><1R) < CVullz2@axry)-
If u € H} (2 x [0,00)), then u € HE (2 x R) and the estimate (A.1) still holds.

Proof. For the first part of Lemma A.1 dealing with functions in C}(Q x [0, 0)),
we refer to [Eval0, Section 5.4]. Now, suppose that u € H{ (2 x [0,00)) and choose
(Pr)pen C C2(2 x [0,00)) such that ¢ — uin H'(Q x Ry) as k — oo. By (a)
we know that @ € C2(Q x R). Using (A.1) we deduce that ($r),cy is a Cauchy
sequence in H' (2 x R) and hence there exists v € H!(Q x R) such that gy — v in
HY(Q xR) as k — co. On the other hand, up to extracting a subsequence we have
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Pr — wa.e. in QxR ask — oo and hence v =4 in Q x R. Thus, 4 € H}(Q x R)
as v belongs to this space. Now, by (A.1) we have
||§5k||L2(QxR) < C”SDkHL?(QxRJr) and ||V¢k||L2(QxR) < C||V<Pk||L2(Q><JR+)
for all £ € N and hence passing to the limit k — oo gives
[l L2 xry < Cllull2xry)  and [Vl 2 qupy < CllVull2@xry),

which concludes the proof. O
This lemma allows us to establish the following Poincaré inequality.

Theorem A.2 (Poincaré inequality). Let & C R" be a bounded domain endowed
with a uniformly elliptic Riemannian metric g = (g;;) and extension g to Q x Ry.
Then there exists C > 0 such that there holds
(A.2) [ullz2(@xry.avy) < ClldullL2(@xr,avy)
for all u € HY(Q x [0,00)).
Proof. Let u € H}(Qx[0,00)) and denote by u € Hg (€2 x R) the corresponding first
order reflection of u from Lemma A.1. Then by the classical Poincaré inequality,
we know that there holds
]l L2 xry < C IVl L2 ok
for some C > 0 independent of u. Using (A.1), we deduce
[ullL2@xry) < (Ul p2oxr) < ClIVEllL2(0xry < ClVUllL2(@xRy)-
The uniform ellipticity of g ensures the equivalences (2.3) and thus the estimate
(A.2) follows. O
At the end of this section, let us prove Claim 4.6.

Proof of Claim 4.6. For j = 1,2, let us set u = u;, =g; and V = V;. By
construction u € HE(Q x [0,00)) solves

(*A§+V)’U,:0 iHQXRJ’_,

u=0 on 002 x Ry,

—Oyu=f on 2 x {0}.
Since f € CZ°(I'), we can find F' € C2°(I' x R) such that 9, F|, _, = f. For example
one can take F'(z,y) = yf(x)p(y), where p € C(R) is a cutoff function with p =1

in a neighborhood of y = 0. Now, we may observe that v = u—F € H (2 x [0, 0))
solves

(A3 +V)v=G inQxRy,
v=20 on 01 x Ry,
—0yv =0 on 2 x {0}

with G = — (=Az; + V) F.
Next, with 3yv|ﬂx{0} = 0, let us define the even reflection of v by

. v(x,y), for (z,y) € Q x [0, 00)
v*(z,y) = .
v(z, —y), for (z,y) € 2 x (—00,0)
It is well-known that v* € Hg(Q x R) with

0,0 () = Oyv(z,y), in  x [0, 00)
Y W= —0yv(z,—y), in Qx (—00,0).



38 Y.-H. LIN, G. NAKAMURA, AND P. ZIMMERMANN

Then a simple calculation shows that v* solves

(A7 +V)v=G* inQxR,
v=20 on 0N x R,

where G* denotes the even reflection of G. Let n € C°(Q x R), then w = nv* €
HY(R"*1) (extended by zero outside of ) solves

(A.3) (—Ag+V)w=H* in R""1,

where H* := nG* — v*Agn — 2dv* - dn — 20,0*9,n € L*(R"*1). Hence, elliptic
regularity theory implies w € HZ_(R""1) and thus v € H?(w x [0, R)) for all w €

loc
and R > 0. Although in general G* is not regular for regular functions G, in our

case close to y = 0 we have G* = |y|(—A, + V) f and therefore G* € H'(R"*1).
This in turn implies H* € H'(R"*!). Thus, by differentiating (A.3) and arguing
as before we get v € H3(w x [0, R)) for any w € ©Q and R > 0. Boundary regularity
can be obtained precisely as in [GT83, Theorem 8.12] by using the method of
difference quotients. One obtains that for any z € 0€2, there exists r > 0 such that
v € H%(B,(x) x [0, R)) for any R > 0 and hence by a covering 9 with such balls
and taking into account the interior regularity result, we get v € H3(Q x [0, R))
for any R > 0. Going back from v to our original solution u, the Claim 4.6 is
followed. U

APPENDIX B. HEAT SEMIGROUP AND POWERS OF —A, + V

B.1. Functional analytic properties of —A, 4V and heat semigroup. Let
us make the following observations, which were used repeatedly throughout this
article.

(a) There holds
(B.1) Oxlgl*1/? = £ —
for all 1 < k < n. Hence, iteratively we get |g|*1/2 € C>(Q).

(b) We have ¢ € H}(Q) if and only if |g|'/2p € HE(Q).
(c) Suppose that u € H(Q) (weakly) solves

(B.2) (-A,+q) = finQ

for some f € L?(Q,dV,) and g € L>°(Q), that is

/(du~d<p+quap) dVy = / fedV,
Q Q
for all ¢ € H}(Q). Then by (B.1) we deduce that
/ Folgl? du
Q
= [ (s700,191"20) ~ (400,191 ) + qulgl* ) do
ij L. ij
= [ (a2 0:u0,(11'/20) = (65" Dygdi0)lal' ¢ + aulgl 2 ).
Thus, by (b) we can replace ¢ in the previous formula by |g|~'/%¢ with

Y € H}(Q) and obtain that u € H!(Q2) solves (B.2) if and only if u € H'(£2)
solves

(B.3) —div(gVu) +b-Vu+qu= f in Q,
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where b= (b!,...,b") € C=(Q,R") is given by
A 1. ‘
(B.4) b= f§g“gk£8jggk, fori=1,...,n.

Lemma B.1. The operator Py v has the following properties:
(a) Py v is symmetric meaning that

(Pg.vu, ”>L2(sz,dvg) = (u, Pg,vv>L2(Q,qu) for all u,v € Dom (P, v).

b) P is maximal monotone, that is there holds
( g,V
(i) Monotonicity: For all u € Dom (P, ) one has

<Pg,VUa U>L2(Q,dvg) >0,

(ii) Mazimality: Ran (1 + Py v) = L*(Q,dV}).
Furthermore, P, v is a self-adjoint operator on L?(§2,dV,).

Proof. Note that (a) and (i) of (b) follow by a simple integration by parts as
Dom(P,v) = H(Q) N H?(Q) (see Lemma B.2 below). Hence, we only need to
show (ii). To see this, fix some f € L?(£2,dV,), then one observes that

fHYQ) SR, (.p) = /Qf@dVg

is a continuous linear form on HE(Q) and as g is uniformly elliptic as well as
0 <V € L*>®(Q) an equivalent inner product on H}(f2) is given by

(u,v)gv = /Q (9”7 0iudjv + (V + Duv) dV.

Therefore, by the Riesz representation theorem, there exists a unique u € Hg (£2)
satisfying

(u, P)g,v = / fedVy for all p € Hé(Q)
Q

As explained above, using ¢ = |g|~'/%¢ with ¢ € HJ(Q) as a test function, we get
an equation of the type (B.3) and then we can invoke the usual elliptic regularity
theory to deduce u € H?(2) (see [GT83, Theorem 8.12]). Hence, an integration by
parts guarantees that u € Dom (P /) satisfies

(Id+Pyv)u= fin L*(Q,dV,)

and this establishes (ii). Now, we can apply [Brell, Proposition 7.6] to infer that
P,.v is in fact a self-adjoint operator on L?((2,dV,). O

Now, we explain the reason for the validity of the identities (4.3) and (4.4). The
first identity follows by using the orthonormality of (¢)ren and Py vér = A\poy.
If u € Dom(P, ), then the identity (4.3) guarantees the (Apug),cy C £2(N). Let

m m
Un =) upd and Vi = Y Aoy
k=1 k=1
By construction, we have U,, € Dom(P, ) and P, v U,, = Vi, for m € N. Then
clearly U,, — u in L*(Q2,dV;) and as V,, is a Cauchy sequence in L?(2, dV,) it con-
verges to some limit in L?(§2,dV,). By [Brell, Proposition 7.1] maximal monotone
operators are closed and hence we may conclude that P, yu = 220:1 AUk Pk -
Since P, v is a symmetric, maximal monotone operator, [Are06, Theorem 2.3.1]
implies that —P, v generates a Cy-semigroup of contractive, self-adjoint operators
on L?(2,dV,), which we denote as usual by (e~*Ps:V) _ - (the heat kernel of 9, +

Pg.v). Here, contractive means nothing else than He_tpgv‘/ ||L(L2(Q,dv ) <1, where
) g

L(L*(2,dV,)) denotes the operator norm from L*(,dV,) to L?(£2,dV,). More
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precisely, for a given function f € L?(Q2,dV}), the function U(t) := e~ 'Ps.v f is the
unique solution of

u € C([0,00); L2(2,dVy)) N CH((0,00); L2(2, dVy)),

u € C((0,50); Dom(Py.v)),

(O + Py v)u=01in (0,00),

u(0) = f

(see [Brell, Theorem 7.7]). In (B.5) the space Dom(P, ) is regarded as a Hilbert
space with an inner product given by

(B.5)

(U V) Dom(Py.v) = <U7U>L2(Q;dvg) + (Pg,vu, P97VU>L2(Q;dVg) :
Furthermore, we have
(B.6) U € L*(0,00; Hy(Q,dV,))
with

U7 2(0uav, t
% +/0 <||dU( ol av,) T V72U (r) ||L2(Q dV))dT

11y,
B 2
for all + > 0. To see this let us consider the function ¢ € C*((0,00)) given by
B 1T 0,av,)
-

Using U € C1((0,00); LA(Q, dV,)) N C((0, 50); Dom(P,,1)), we get
U

(1) =(U(r ) WU(T) L2 (0,av,)

=_ <U(T) PovU(T)) 12 q, dV,)

= —[ldU ()2 @.av,) = V2O 2 v,

for any 7 > 0. Therefore, the fundamental theorem of calculus implies

() — ple) = / o (7) dr

t
=~ [ (10 e @y + VU a0 ) 47

€

forall 0 < e <t <oo. AsU € C([0,00); L*(£2,dV,)) and U(0) = f, we obtain in
the limit € — 0 the energy identity (B.7). But now the energy inequality shows

t 171
[ WU a0, dr < =22 <
(

for all t > 0, which in turn implies U € L?(0, co; H} (€2, dV})) and hence establishes
(B.6). Finally, from the fact that U € C((0,00); Dom(P,v))NL2(0, 00; H} (2, dV;))
it also follows that

(B.8) U € L*(0,00; HH(Q,dV})).
Proof of Lemma 4.4. First note that by the Galerkin method, using the finite-
dimensional subspaces spanned by (¢x)ken C HE(S2,dV},) as the Galerkin approxi-
mation of L?(§, dV,), the problem

(O +Pgv)u=0 inQx(0,7T),
(B.9) u=0 on 0§,

u(0) = f in Q
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has a unique (weak) solution
u e L*(0,T; Hy (Q,dV,)) with dyu € L*(0,T; H1(Q,dVy)),

for any T' > 0 (see [Eval0, Chapter 7] or [DL92, Chapter XVIII]). By construction,
the approximate solutions u,, are given by

m

U (t) = Zef’\ktfmk with f. = (f, ¢x)L2(0,av,)

k=1

which converge in L?(€2,dV}) to the solution u, that is
u(t) = e froy
k=1

(see [DL92, Chapter XVIII, Section 3.5, Remark 4]). By uniqueness of the problem
(B.9), (B.6) and (B.8), we deduce that

Ut) =Y e ™ fror.

oo
k=1

This concludes the proof. O

Next, let us recall that by [AE97, Theorem 3.1] (see also [Aro68, Section 7))
there exists b,¢ > 0, w € R and K; = K;(z,z) € L>( x Q) such that

(B.10) e Povip(r) = | Ki(z,2)p(z) dVy(2) for ae. x € Q
Q

for all t > 0, ¢ € L*(Q,dV,) and
(B.11) | K¢ (x, 2)| < et/ 2e ble—F /bWt for a6 2,z € Q.
By the above discussion, we have K; > 0. In the following, we set
ePov () 1= Ky, ).
B.2. Integer powers of —A, + V. Next, let us introduce integer powers of our

operator P, v = —A, + V, and recall some regularity results for solutions of (B.5)
for regular initial conditions. For 2 < k € N, we set

(B.12) Dom (Py ) = {v € Dom(P; )5 Pgvv € Dom(Py 1)},
and define
Pg,v =P,v-Pyy.
k ti

It is easily seen that the space Dom(P’;V), k > 1, is a Hilbert space if we endow it
with the inner product

k
(B13) <ua U>Dom(P’g‘”,V) = Z <P?],Vu’ P§7VU>L2(Q,dVy).
5=0

Lemma B.2. For all k > 1, we have

(B.14) Dom(P¥ 1) < H**(Q)

and there holds

(B.15) Dom(P ) = {u € H**(Q); u, Pyyu,..., Pyylu e Hy(Q)}.
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Proof. Let us prove it via mathematical induction.
Case 1. k=1:
Let u € Dom(Py ). By (4.2), the function u € H}(£2) solves

Pgvu=fin Q
for some f € L?(Q). Therefore u € H}(Q) satisfies
(B.16) —div(gVu) +b-Vu+Vu= fin Q,

where b € C>°(Q;R") is defined as in (B.4), but then [GT83, Theorem 8.12] implies
u € H%(Q) with

lullz2 @) S llullzz) + 122 @)
This in turn shows that
||UHH2(Q) S ||UHL2(Q;dV_q) + HPQ,VUHB(Q;dVy) S ”uHDom(Pg,v)

(see (B.13)). This establishes (B.14) in the case k¥ = 1. On the other hand by
definition of Dom(P, ) we know u € H} (). Hence, we have

Dom(P, v) C {u € H*(Q); u € Hy(Q)}.
The reversed inclusion is also true. Thus, (B.15) holds for k = 1.
Case 2. k—1—k:

Let u € Dom(Pk /). As Dom(P: ') — H?~2(Q) and u € H{(Q) solves (B.16)
with f € H?~2(Q), elliptic regularity theory [GT83, Theorem 8.13] implies that
u € H*(Q) and

”uHHk(Q) N ||u||L2(Q) + HPg,VUHszfz(Q)
S ||u||L2(Q,dVg) + HPg,VUHDom(P’;f‘})
S ||u||Dom(P’;1V)'

In the second estimate, we used Py v u € Dom(Plg“;/l) and Dom(P’;;}) — H?k=2(Q).
Therefore, we get (B.14). As u € Dom(P];;/l), we know already

u, Py vu,...,Ph2u e Hy(Q).
As Pgvu € Dom(PSf‘,l), we also have P’;f‘,lu € H}(9) and thus
Dom(Pf ) C {u € H*(Q); u, Pyyu,..., Pyylue Hy(Q)}.

The other inclusion D is again easily seen by the induction hypothesis. Hence, we
have established (B.15) and can conclude the proof. O

Lemma B.3 (Regularity of heat semigroup). Let the notation be as above and in
particular for given f € L*(Q,dV,) denote by u = e~ Pov f the unique solution to
(B.5).

(a) If f € Dom(P’g“y) for some k € N, then there holds

u € C*7([0,00);Dom(P 1)) for all j=0,1,....k.

(b) If f € Dom(P’g“,V) for some k > n/47and 0 < j <k salisfies j > n/4, then
there holds u € C*~7([0,00); C%+(Q)) and

B17) 1080ty gy S 100 ey

v)
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or any t > 0. The exponents {; € Ny, a; € (0,1] are given by
J J

, {[23‘ —nf2,  if2j-n/2¢N,

) o and
2j—n/2—-1, if2j—n/2€N

Lo (0.2 - 25— n/2 = n/2d, ifn/2¢N,
0,1), ifn/2 €N,

where [z] = max{k € Z;/,x > k} for x € R.
(c) If f € Dom(P’;V) for all k € N, then there holds u € C°°(Q x [0, 00)).

Proof. The statement (a) is an immediate consequence of [Brell, Theorem 7.4-
7.5]. Next, let us prove the assertion (b). First, by (a) we know that O u(t) e
Dom(P} /) for all ¢ > 0 and thus Lemma B.2 implies
k—j k—j
iy S 10540 e
Therefore, by the Sobolev embedding, we arrive at the estimate (B.17). The state-
ment (c) is a direct consequence of (b). O
APPENDIX C. WELL-POSEDNESS OF THE WAVE EQUATION

We next give the proof of the Theorem 5.1.

Proof of Theorem 5.1. For (a), let us start by rewriting (5.1) as a system of first-
order equations

{@ww’() in Q x (0, 00),
Ow' +Pyyw=F inQx(0,00)
or in operator notation as

(C.1) OW + P,y W =F,

where we put W = (w,w’), F = (0, F) and

(0 —Id\[w) [ —u
(©2) Pov V= (Pg,V 0 ) (w’) B (Pg,V“’) .

We aim to apply the Hille-Yosida theory for the evolution problem (C.1). For this
purpose, let us introduce the Hilbert space

H == Hy(,dV,) x L*(Q,dVy)
endowed with the inner product
(W1, Wa)y, = (dwi, dws) 2 gv,) T (W5, W5) r2(0,av,) -

for W; = (wj, wg) € M (j =1,2), and interpret Py v as an unbounded operator on
‘H with domain

(C.3) Dom(P,v’) = Dom(P,v) x Hy (2, dV,).
Let Cp > 0 be the Poincaré constant on €2, that is there holds
(C4) [ullZ20,av,) < ColldullZ2(0,av,)

for all uw € H(Q,dV,), and let XA > 0 satisfy

[Vliz= (@)
" 2min (C’O_l, 1) '
This constant will be fixed throughout the whole proof.

(C.5)

Claim C.1. P, v + A is a mazimal monotone operator on H.
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Proof of Claim C.1. Let us show the following facts:
(a) Monotonicity: For W = (w,w’) € Dom(Pgy ), we may calculate

(Pgy W, W)y, = (', Pgyw), (w,uw'))y,
= —(du’, dw) 12(0,qv,) + <P9’Vw7wl>L2(Q,dVg)
= <Vw7w/>L2(Q,dVg) :
Next, observe that by (C.4) we have
W3 = ||dw||2L2(Q,dvg) + Hw/”%?(ﬂ,dvg)
> min (G5, 1) (I3 2@.av,) + 10132 0av;) )
This implies
(P + ) W, W)y,

> (Vw,w')r2(q,qv,) + Amin (Cy ', 1) (||w||2L2(Q,dvg) + Hw/H%?(Q,dvg))

o IVl
= (/\ min (G, 1) — 9 (Hw”QL?(QdVg) + ||w/||2L2(Q,dvg)>
> 0.

(b) Mazimality: Let H = (h,h') € H. We want to show that there exists
W = (w,w’) € Dom(Pgy ) such that

(C.6) (Pgv+(A+1))W =H.
Note that this is equivalent to the condition that W solves
A+ Dw—w' =h in H}(Q,dVy),
Povw+ A+ Dw' =h" in L2(Q,dV).
Inserting the first equation into the second one, we arrive at the following
equation for w:
Povw+ (A +1)%w=(A+1)h+h in L*(Q,dV,).
It follows from Lax—Milgram theorem and elliptic regularity theory [GT83,
Theorem 8.12] that this problem has a unique solution w € H?(,dV,) N
H}(Q,dV,). Hence, by defining
w = —(A+ Dw+ h € Hy(Q,dV,)
we arrive at a solution W = (w, w’) of the original problem (C.6).
This proves the Claim C.1. O

Hence, we have shown that Py + A, for A > 0 satisfying (C.5) is a maximal
monotone operator. Therefore, we can use [Brell, Theorem 7.4] to see that for any
Wo = (wo,w1) with wg € H?(Q,dV,) N H}(2,dV,) and w; € H{(Q,dV,), there
exists a unique function

Wi € C([0, 00); Dom(Py,v)) N C([0, 00); H)
satisfying
Wy + (’Pg,v + )\) Wyx=0fort>0,
W (0) = Wy.
Moreover, we have

(C.7) IWll3 < [Woll-
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But then the function W = e W, satisfies
(C.8) W e C([0,00); Dom(Py,v)) N CH([0,00); H)

and

©9) {(at+7>g,v)w—0fortzo,

W(0) = W.

It is immediate to see that this solution W is again unique. Now, for each t > 0 let
us define the linear map

T;: Dom(P,v) — Dom(Py v ), Wy — W(t),

where W = W (t) is the unique solution constructed above with the initial condition
W(0) = Wy. Note that by (C.7) the linear operators T; satisfy the continuity
estimate

(C.10) T 30y < €, for t>0.

As P, v + A is maximal monotone, we can deduce that Dom(Pg /) is dense in
H and this in turn allows us to extend the family 7; to maps in L(H) such that
the bound (C.10) still holds. This extension will still be denoted by Ti. It is
not difficult to see that this extension T} satisfies the semigroup property, and is
strongly continuous. We may estimate

ITsWo — Wolly < || T2 (Wo — WéC)HH + HTtVV(;C - W(;CHH + HVV(;C - WOHH
< (1Tl + 1) W5 = Wolly, + [ TWs = Wy,

for any Wy € H, where W§ € Dom(P, ) is any sequence satisfying WF — W in H
as k — oo. Passing to the limit £ — 0 shows the strong continuity of (7});>0 on #.
Hence, (7}),~ is a Co-semigroup. Furthermore, since the solution of (C.9) satisfies
(C.8), we have by construction

W (0) = — lim Py v W = Py Wi

for any Wy € Dom(P, ). Therefore, —P, v is the generator of the Cyp-semigroup
(Tt)t>o0 (cf. [BS18, Lemma 7.1.17] and [Are06, Exercise 2.6.2]).

Now, we turn our attention to the inhomogeneous problem (C.1). Note that
by the assumptions on F, we have F € C([0,00); ) and deduce from [BS18,
Lemma 7.1.14] that

(C.11) Wp(t) = /O t T, F(r)dr

is continuously differentiable as a map from [0, 00) to H, Wg(t) € Dom(Py,v) for
all t > 0. Meanwhile, via the equation (C.1), differentiate (C.11) with respect to ¢,
then there holds

t
ParWe(t) + F(0) = 0We(t) = TLF©O) + [ T(¢ =10 F(r)r
0
for all ¢ > 0. Thus, [D1.92, Chapter XVII, B, §1, Theorem 1] guarantees that for
any Wy = (wo,w1) € Dom(Py ) there exists a function
W € C([0,00);H) N C*((0,00);H) N C((0, 00); Dom(Py,v))
satisfying the initial-value problem

{(at+7>g,v)w—ﬁfort>o

(C.12) W) — e
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Indeed, the solution W is given by Duhamel’s formula
t
W(t) = T,Wo + / T, F(r)dr

0
and so it is unique. Note that Wy € Dom(Py, v ), (C.8) and Wr € C([0,00); H)
implies W € C*([0,00); H). Thus, (C.12) shows

PyyW =F —8,W € C([0,00); H).

Hence, we can deduce that
(C.13) W e C1([0,00); H) N C([0,00); Dom(Py v))

and the PDE (C.12) holds for ¢ > 0.
Next, let us write W(t) = (w(t),w'(t)) for t > 0. By (C.13), (C.12), (C.2),
Wy = (wo,w;1) and F = (0, F'), we deduce that w'(t) = d;(w) for t > 0,
(C.14)
. 7lQ-
C([0, 00); H (€, V) 0 HL(2, dVy)) with | 20 € O U0 00): Ho (V).
atw € C([07 OO), L (Q7 dV‘]))’

and w solves

(07 +Pgv)w=F on [0,00).
Observe that this solution w is unique as if w is another solution, then v = w — w
solves the homogeneous problem

{(8,52 + Pg,v) v =

0
v(0) = dyv(0) = 0.
As 9w € C([0,00); HE () we get
(07 +Pgv) v,000) 12 vy =0
for any ¢t > 0. By (C.14), we may calculate

for t > 0,

1
(970,000) 120 .av,) = 5001001 L2 (0.av,):

1
(V,000) 12(0,av,) = iatHVl/szi?(Q,dVg)’

1
<_A9U7atv>L2(Q,dVg) = <dv’datv>L2(Q,dVg) = iat”dv”%z(sz,dvqy
Hence, we deduce

0 ( Hatv||i2(9,dvg) + ||dU||2LZ(Q,dvg) + HVU%H;(Q’WEI)) =0.

Therefore, we may conclude that v = 0 as v(0) = 9;v(0) = 0. This demonstrates (a).

For (b), let wg,w; and F be given as in the assumption. Recall from Section B.2
that for any k € N the powers 735", are the unbounded operators

Pryv="Pgv-Pyv onH
———

k-times
with domain
Dom(P} ) = {U € Dom(Pt!); Py vU € Dom(P; 1)},
which becomes a Hilbert space under the inner product
k

<W17W2>Dom(77§1v) = <,P31,VW1a,P;,VW2>H7
=0
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for all W; € Dom(PF ;) and for j =1,2.
Claim C.2. For any k € N the following assertions hold:

(a) We have
(C.15) Dom(P} ) = Q; v,

where QZ,V denotes the set
(w> C we HMNQ,dV) stow,... PR Pw e HY(Q,dV,)

w') ' e HHQ,dVy) st w',. .. PV e 1E(Q,av)

and there holds

(C.16) Dom(Py ) — H*(Q,dV,) x H*(Q,dV}).

(b) Let P") be defined by
P Dom(PE ) € Dom(PFyY) — Dom(PETY), U v Py U,

then P;{c‘), + X is mazimal monotone on Dom(P;“;,l) for k € N, where we
use the convention Dom(P) ) = H.

Proof of Claim C.2. For (a), note that in the case k = 1 the identity (C.15) holds
by (C.3) and (B.15). Moreover, the embedding (C.16) follows from (B.14). So let
us suppose that the assertions in (a) hold for & — 1 and choose any W = (w,w’) €
Dom(P§7V). In particular, this implies that

!

(C.17) PyvW = <P_“’

E—1y _ k-1
g,vw) IS Dom(’ng )= Qg,v-

Therefore, we have P, yw € H*1(Q,dV,) and w’ € H*(Q,dV,). By elliptic regu-
larity theory, this ensures w € H*1(€, dV,) with

lwll grsr@,av,) S lwllzz@.av,) + [IPg,vwll mr-1(a.av,)

<t (2

<
= ||wHL2(Q,dVg) + H <Pg’vw>
k-1

S lldwl c2.av,) + Y IPIVW ],
j=0

HH}C(deVq)XHkl(Q’qu)

Dom(PF 1)

k—1
SUIW e+ > [P,
j=0

S ”W”Dom(’/’;‘/)'

In the above calculation, we used the Poincaré inequality, the uniform ellipticity,
and the induction hypothesis. On the other hand (C.17) together with

Dom(PF ') — H*(Q,dV,) x H*(Q,dV,)

shows

o le@avyy < || (0%
R CRUARSE A

< W 1 < |W .
Dom(p?;/l) ~ ||PQ,V ||Dom('PZ;’V1) ~ || ||D0m(73;v)
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Hence, we have established the embedding (C.16). Furthermore, by (C.17) and the
induction hypothesis, we know that

w', . Py e B, dvy)
w,Pgyw,...,PrAw e HY(Q,dV,).

Noting that [(k+1)/2] —1=[(k —1)/2] gives W € Q v and hence Dom(ngv) -
Qk .v- Let us next prove the reverse inclusion. If W € Qg v, then by monotonicity
and induction hypothesis W € ngc, Dom(P% Y. Moreover, W € Q’;,V implies

w' € H*(Q,dV,),
w', .. ,Pg{ U2y e Hy(Q,dVy),
and

Py € HEL(Q,dV,),
Povuw,...,PrA T Py yw) € HA(Q).
Note that Py yw € H*1(Q,dV,) followed from w € H**1(Q). Thus, we get

l

Pt = (47} 5 = Dom(Piz)

quw
and so we can conclude the proof of the inclusion Q;V C Dom(’P;V).

For (b), we already know that it holds in the case k = 1 (see Claim C.1), so let us
suppose that it holds for £k — 1. Then we may calculation

k—1

(P& + 0, D)pom(piyy = 2 (Pow (Pov + N UPyU),y,
, =

_Z (Pyv +A) PQVUPQVU>

for any U € Dom(P% /). Above we used the case k = 1 and that U € Dom(PFy,)
implies P’ ,,U € Dom(P¥\7) C Dom(Pyv) for j =0,1,....k— L.

Next, let us prove the range condition. For this purpose suppose that H =
(h,h) € Dom(P;;,l). Then we wish to solve

(PR + A +1)U=H
in Dom(P;V). By induction hypothesis there exists U € Dom(P;{/l) such that
(Pgv+(A+1)U=H.
In particular, u,u’ € H}(Q,dV,) satisfy
(Pov+ A+ 1)) u=A+1h+h" and v = —(A+ 1)u+ h.

Since (A + 1)k + h' € H*=1(Q, dV,), elliptic regularity theory guarantees that u €
HFT1(Q,dV,). However, as h € H*(Q,dV,), we know u’' € H¥(2,dV,). Moreover,
by U € Dom(P;;/l) and H € Dom(P;V) we know that
Povu= —A+1)%u+\+1Dh+ N
CHM1(Q,dV,)  eHk(Q)  €HFTH(Q)

e {ve H* 1 (Q,dV,); v,..., P72y e HE(Q,av,))
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and
u'=—(A+Du+he{ve H(Q,dVy);v,..., Py e HY(Q,av,)}
= {ve HMQ,dV,); v,...,P A € m(Q,av,)).
The first identity implies
Povu,....PEPu e HE(Q,dV,)

and thus

Ue Qg,v = Dom(P§7V).
So, we have shown the range condition and hence Pélf‘)/ + A is maximal monotone.
This shows Claim C.2. 0

Next, we aim to show:

Claim C.3. If Wy = (wo,w:) € Dom(Pk ), F' = (0, F) with F € C=(2 x (0,0)),
then the above constructed unique solution W € C([0, 00); H)NC([0, 00); Dom(P, v))
of (C.12) satisfies

(C.18) W e C*9([0,00); Dom(P? ) for j =0,1,... k.

Proof of Claim C.3. For k =1 there is nothing to prove and hence let us consider
the case kK = 2. Arguing as in the case kK = 1, we can conclude from Claim C.2 that
—735(7,2‘)/ geEerates a Cp-semigroup (Tt(Q))tZO on Dom(P, ). As F € C°(Q2x (0, 00)),
we have F' = (0, F) € C*([0,00); Dom(P,v)). Relying on the same arguments as
for k = 1, we obtain a unique solution
W € C'(]0,00); Dom(Py,v/)) N C([0,00); Dom(P? y,))
of B
(0¢ +Pgv)W = F for t >0,
W(0) = Wp.
In particular, we see that this solution coincides with the unique solution con-
structed for k& = 1. We next assert that W € C?([0,00);H). By definition
of the norm | - [|pom(p, ), We see that P,y € L(Dom(P,v)). Hence, W €
C*([0,00); Dom(P,, /) implies
P,vW € C'([0,00); H) with 9; (PyvW) =P,y (3;W) for t > 0.
Therefore, we get ;W = F — Py v € CH([0,00); 1) and thus W € C?([0,00); H)
as asserted. Moreover, this implies that 0;W solves
(.19 OW + PyyW = O,F for t >0,
. W(0) = F(0) — PgvyWo = =Py v Wo.
Next, we prove the general case k > 3 by induction. Suppose that the result holds
for k — 1. By the case k = 2, we know that the unique solution W satisfies (C.18)

for k =2 and
W € C([0,00); Dom(Py.1/)) N C*([0,00), H)

solves (C.19) with W, := P, v Wy € Dom(’/);“;,l). By induction hypothesis this
implies
W € CF19([0, 00); Dom(ngv)) for j=0,1,...,k—1
and hence
W e C*([0,00); Dom(P;’V)) for j=0,1,...,k—1.
Therefore, it remains to prove that W € C([0, o0); Dom(P;V)). As

W € C([0,00); Dom(PF 1)),
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the PDE for W shows
PovW = F — 8, € C([0,00); Dom(PF 1)),
Thus, we get W € C([0, 00); Dom(Pg,V)) as we want. This proves Claim C.3. [
Hence, if the assumptions of (b) hold, then the Claims C.2 and C.3 guarantee
that for all £k € N we have
W e CF9([0, 00); HITH(Q, dV,) x HI(Q,dV)) for j =0,1,..., k.

But then the corresponding solution w of the wave equation (5.1) belongs to
C>(Q x [0,00)) and we can conclude the proof of (b).

Finally, for (c), suppose that the conditions of (a) hold, let w € C?([0, 00); L?(£2, dV,))
be the unique solution of (5.2) and set

wy = <wi7¢k>L2(Q,dVg)’ W = <w7¢k>L2(Q,dvg) , and Fy = (F, ¢k>L2(Q,dvg)

for i = 0,1 and k € N, where wg and w; are the initial data in the wave equation
(5.1). By the C%-regularity of w in time, we see from (5.2) that there holds

(C.20) 02wy, + Mywy, = F, for t >0
' wi(0) = wh,  ywi(0) = wf

for all k € N. Note that wy, € C%([0,0)) given by

51n(t)\1/2) . /t sin((t — T))\Ilc/2>
0 A

wi(t) = cos(t)\l/z) wg + T2 Wi 7
Ak k

Fy(r)dr

solves (C.20).
On the other hand, if u; € C?%([0,0)), j = 1,2, solve (C.20), then v = u; —us €
C?([0,00)) satisfies
O2v+ A\ =0fort >0
wk(()) = 8twk(0) =0.
Observe that
n(t) = 0O + [o(t)]* € C'([0, 00))
satisfies
O(t) < (14 A)n(t)
and hence 7(0) = 0 as well as Gronwall’s inequality guarantees that 7(t) = 0 for
all ¢ > 0. This in turn implies that v(¢t) = 0 for all ¢ > 0. Therefore, we may
conclude that wy, = wy, and we get the first formula in (5.3). The second formula

in (5.3) follows by Fubini’s theorem. In fact, for any h = >, -, hidr € L*(Q,dV,),
we obtain by the first formula B

sin t)\l/2
(w(t), )2 (@uav,) = D (cos (A wh g + il/;)wfhk)
k

E>1
1/2
sm t . ’7'
—i—Z/ —1/2 k ) k(T)hde
E>1
1/2
B 1/2 sin (tP )
= <cos (tngv)wo,h>L2(Q,dVy) * <pl/2w1, h
g,V L2(Q,dV,)
1/2
sin t -7
+Z/ 1—/2)Fk(7')hk dr.

k>1
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As the quotient under the integral is uniformly bounded in %, we can invoke Fubini’s
theorem to get

1/2
1/2 (tP )
<w(t), h>L2(Q,dVg) = <COS (tPg,/V)wo, h’>L2(Q,dVg) + 7P1/2 w1, h
sm )\1/2
/ > 1/2 )Fk( Vhy dr
0 k>1
1/2
B 1/2 sin (tP )
= (cos (tPQ,V)wO’h’>L2(Q,dVg) + p1/2 wi, h
9,V L2(Q,dVy)
tfsin((t—T1 pl/2
—|—/ (( 1/2) g’V) F(1),h dr
0 Pg,V L2(Q,dVy)

and hence the second formula in (5.3) holds. This concludes the proof of Theorem
5.1. O
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