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Abstract. We examine inverse problems for the variable-coefficient nonlocal parabolic operator
(∂t −∆g)

s, where 0 < s < 1. This article makes two primary contributions. First, we introduce a
novel entanglement principle for these operators under suitable smoothness conditions. Second, we
prove that lower-order perturbations can be uniquely determined from the associated Dirichlet-to-
Neumann map using this principle. However, due to insufficient solution regularity, direct application
of the entanglement principle to the inverse problem is not feasible. To address this, we derive a
modified entanglement principle, enabling the effective resolution of related inverse problems.
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1. Introduction

Inverse problems for space-fractional equations have garnered considerable attention in recent
years, not only due to their distinctive mathematical features, but also because of their wide range
of applications in physics, biology, finance, and related fields.

A pioneering breakthrough in this direction is the resolution of the Calderón problem for the
fractional Schrödinger equation (see [GSU20GSU20]), which concerns the recovery of an unknown bounded
potential from exterior measurements. One of the key contributions in [GSU20GSU20] is the establishment
of the unique continuation property (UCP) for the fractional Laplacian operator (−∆)s, 0 < s < 1,
which states that

u = (−∆)su = 0 in a nonempty open subset of Rn =⇒ u ≡ 0 in Rn.
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This fundamental property leads to the Runge approximation property, which asserts that any L2-
function on a given open set can be approximated by solutions of the fractional Schrödinger equation(
(−∆)s+q

)
u = 0. Either UCP or Runge approximation can then be used to show that a lower-order

perturbation q can be uniquely determined from exterior data, under suitable regularity conditions
on q.

Following this seminal work [GSU20GSU20], a substantial body of research has emerged on inverse
problems for various space-fractional models. For example, simultaneous recovery results for multiple
parameters were obtained in [CLL19CLL19, CLR20CLR20], while the determination of bounded potentials for
anisotropic nonlocal Schrödinger equations was investigated in [GLX17GLX17]. These problems remain
open in the local case s = 1 for dimensions n ≥ 3, suggesting that nonlocality appears to provide
significant advantages in addressing such inverse problems. For further developments on both linear
and nonlinear nonlocal inverse problems in various settings, we refer the reader to the following
articles [HL19HL19, HL20HL20, LL22LL22, GRSU20GRSU20, CMRU22CMRU22, RS20RS20, RS18RS18, GRSU20GRSU20, LLR20LLR20, LZ23LZ23, GU21GU21] and
the references therein.

In particular, owing to the close connection between nonlocal and local settings, interior coeffi-
cients can be recovered either via reductions based on the Caffarelli–Silvestre extension (see, e.g.,
[CGRU23CGRU23, Rül25Rül25, LLU23LLU23, LZ24LZ24]) or by employing heat semigroup methods on closed Riemannian
manifolds (see, e.g., [FGKU25FGKU25, Fei24Fei24, FKU24FKU24, Lin24Lin24]). Both approaches share a similar philosophy:
they transfer certain nonlocal information to its local counterpart, or to the associated heat equa-
tion. In contrast, a local-to-nonlocal reduction was studied in [LNZ24LNZ24] for the classical Schrödinger
equation in transversal anisotropic geometry.

More recently, the study of perturbation by nonlocal operators has gathered interest because
of their intrinsic mathematical properties and potential applications. The corresponding unique
continuation property, referred to as the entanglement principle, was established in [FKU24FKU24] for
the fractional Laplace–Beltrami operator and in [FL24FL24] for the fractional Laplacian. Its remarkable
capacity to disentangle contributions from each fractional power in a nonlocal operator is expected
to inspire further developments in nonlocal inverse problems. For a comprehensive survey of this
rapidly evolving field, we refer the reader to the recent monograph [LL25LL25].

1.1. Mathematical formulations and main results. In this work, we focus on inverse prob-
lems associated with fractional nonlocal parabolic operators. Let’s begin by defining the parabolic
operator

Hg := ∂t −∆g,

where the Laplace–Beltrami operator ∆g is defined as follows:

∆g =
1√
|g|

n∑
j,k=1

∂

∂xj

(√
|g|gjk ∂

∂xk

)
.

Here the metric g = (gjk(x))1≤j,k≤n ∈ C∞(Rn;Rn×n) satisfies the ellipticity condition, i.e., there

exists a constant λ ∈ (0, 1) such that

(1.1) λ|ξ|2 ≤
n∑

j,k=1

gjk(x)ξjξk ≤ λ−1|ξ|2,

for any x ∈ Rn and for any ξ = (ξ1, . . . , ξn) ∈ Rn. Also, |g| stands for the absolute value of the
determinant of g, and gjk are the components of the inverse of g = (gjk(x))1≤j,k≤n.

The fractional powers of the parabolic operator Hg is defined by

Hsgu := (∂t −∆g)
su, s > 0,
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of a function u = u(x, t) : Rn+1 → R, n ∈ N. These space-time nonlocal operators are found in
various applications, including continuous-time random walks and mathematical biology. In contrast
with the operators like ∂tu+ (−∆g)

s, the space and time variables in Hsg are coupled together with
order s in time t and order 2s in space x.

To define such operators, when g = In (the n×n identity matrix), we simply write H := ∂t−∆ as
a heat operator, where ∆ denotes the classical Laplace operator. In this case, since the coefficients
of H are constants, the operator Hs can be defined via the Fourier transform as follows:

(̂Hsu)(ξ, ρ) = (iρ+ |ξ|2)sû(ξ, ρ), for (ξ, ρ) ∈ Rn × R,

for u ∈ S(Rn+1), which is the Schwartz space of smooth, rapidly decreasing functions in Rn × R.

Here f̂ denotes the Fourier transform of f in both space and time variables (x, t). For the latter
purpose, we also use Fx(f) and Ft(f) to denote the Fourier transform of f with respect to x and
t, respectively. However, using the method of the Fourier transform to define the operator Hsg with
variable coefficients is not directly applicable. Fortunately, another more flexible approach through
the parabolic language of semigroups is available to handle Hsg, see for instance, [ST17ST17] and also
the discussion in Section 22. In particular, it can also provide the explicit formula for Hsg at the
space-time point (x, t).

1.1.1. Previous work on nonlocal parabolic inverse problems. Let us revisit inverse problems re-
lated to nonlocal parabolic operators. We consider the Calderón-type problem for the equation(
Hsg + V

)
u = 0 with a time-dependent potential V = V (x, t). The goal is to recover V from exterior

measurements ΛV defined below.
Let uf be the solution to the problem

(1.2)


(
Hsg + V

)
u = 0 in ΩT ,

u = f in (Ωe)T ,

u = 0 in Rn × {t ≤ −T},

where we use the standing notations

Ωe := Rn \ Ω,

and

AT := A× (−T, T ),

for any subset A ⊂ Rn and a fixed real number T > 0 throughout this work. Notice that our initial
condition in (1.21.2) is needed due to the natural nonlocality of the operator Hsg.

To study inverse problems for (1.21.2), we require an additional eigenvalue condition: Suppose that
{0} is not a Dirichlet eigenvalue of (1.21.2) in the sense that

(1.3)


If u ∈ Hs(Rn+1) solves


(
Hsg + V

)
u = 0 in ΩT ,

u = 0 in (Ωe)T ,

u = 0 in Rn × {t ≤ −T},
then u ≡ 0 in RnT .

Here the space Hs(Rn+1) is defined in Section 22. It is well-known that for all bounded potentials
V ≥ 0, (1.31.3) is satisfied automatically. Since the condition (1.31.3) ensures unique solvability of the
forward problem for (1.21.2) (see Section 22), we can formally define the Dirichlet-to-Neumann (DN)
map ΛV of (1.21.2) by

ΛV : H̃s((Ωe)T )→ H−s((Ωe)T ), f 7→ Hsguf
∣∣
(Ωe)T

.
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By using the DN map ΛV , it has been shown in [LLR20LLR20, BS24BS24] that the time-dependent potential
V can be recovered uniquely.

We would also like to point out that in the works [LLU22LLU22, LLU23LLU23], the authors show the nonlocal-
to-local reduction with respect to both the heat semigroup and the Caffarelli-Silvestre extension
approaches. More precisely, they demonstrated that the nonlocal DN map for nonlocal parabolic
equations can determine their local DN map for local parabolic equations.

1.1.2. Main results. In this article, we extend our study to the models with the fractional poly-
parabolic operators

∑N
k=1 bkHαkg for constants bk. As mentioned above, several previous works have

been devoted to studying inverse problems for the operator Hsg with local perturbation. However,
when nonlocal operators perturb it, the complicated nonlocal interactions contributed from different
terms make the problem challenging to solve. To decouple their entangled effect, we introduce a
novel approach in Theorem 1.21.2 and use it to study the related inverse problems in Theorem 1.41.4.

Now we state the setting of the problem to be investigated and the key approach. Given an
integer N ≥ 2, let O ⊂ Rn be a nonempty open set. Suppose that uk ∈ C∞(Rn+1), for k = 1, . . . , N .
Inspired by the papers [FKU24FKU24, FL24FL24] which address the entanglement issue for fractional elliptic
operators, we are interested in the following question:

(IP-1) Given N ≥ 2. Suppose that {uk}Nk=1 ⊂ C∞(Rn+1) satisfies

u1|OT = . . . = uN |OT =

( N∑
k=1

bkHαkg uk

)∣∣∣∣
OT

= 0,

where {bk} ⊂ C \ {0}, and {αk} ⊂ (0,∞) \N are given real numbers. Does there hold uk ≡ 0
in RnT for all k = 1, . . . , N?

The notation N denotes the set of all positive integers, and Z denotes the set of all integers. Note
that when N = 1, for a single operator Hsg, this property is referred to as the unique continuation
property (UCP) and has been studied in [LLR20LLR20, BS24BS24].

Remark 1.1. Restrictions on the exponents {αk}Nk=1 are necessary, since for general choices of

{αk}Nk=1, Question (IP-1)(IP-1) does not always hold. To illustrate this, consider the case N = 2. Let
α ∈ (0,∞)\N and set α1 = α+m, α2 = α for some m ∈ N. Given a nonempty open subset O ⊂ Rn,
let u1 ∈ C∞(RnT ) be a nontrivial function such that u1 = 0 in OT . Since Hmg is a local operator for
m ∈ N, by defining u2 := −Hmg u1, it follows that u2 = 0 in OT and, moreover, the equation

Hα1
g u1 +Hα2

g u2 = 0 in OT .

However, u1 and u2 are not trivial functions.

The above counterexample shows that no such principle exists for local operators, and it leads to
the following optimal condition for our entanglement principle:

Assumption 1. We assume {αk}Nk=1 ⊂ (0,∞) \ N with α1 < α2 < . . . < αN , and that they satisfy

αk − αj /∈ Z for all j 6= k,

which is required to ensure a positive answer to Question (IP-1)(IP-1). This nonresonance condition guar-
antees that the fractional powers remain genuinely distinct and cannot be reduced to local operators
by integer shifts.

Our first main result, which decouples the entangled effects, is stated as follows.

Theorem 1.2 (Entanglement principle). Let O ⊂ Rn be a nonempty open set for n ≥ 2. Let
N ∈ N, T > 0, and {αk}Nk=1 ⊂ (0,∞) \ N satisfy Assumption 11. Suppose g ∈ C∞(Rn;Rn×n)
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satisfy (1.11.1). Assume that {uk}Nk=1 ⊂ C∞((−∞, T );S(Rn)) satisfy the following estimates: given

any β = (β0, β1, . . . , βn) ∈ (N ∪ {0})n+1, there exist positive constants Cβ and δ such that∣∣Dβ
x,tuk(x, t)

∣∣ ≤ Cβ|ϕβ(x)|eδt, |β| ≥ 0 for (x, t) ∈ Rn × {t ≤ −T},(1.4)

for k = 1, . . . , N , where Dβ
x,t = ∂|β|

∂
β0
t ∂x

β1
1 ... ∂xβnn

and ϕβ ∈ S(Rn). If

u1|OT = . . . = uN |OT = 0 and

( N∑
k=1

bkHαkg uk

)∣∣∣∣
OT

= 0(1.5)

hold for some {bk}Nk=1 ⊂ C \ {0}, then uk ≡ 0 in RnT for all k = 1, . . . , N .

Theorem 1.21.2 extends the entanglement principle established in [FKU24FKU24, FL24FL24] for elliptic opera-
tors to the parabolic setting. Specifically, [FKU24FKU24] proved the validity of the entanglement principle
for the Laplace–Beltrami operator in the compact case, while [FL24FL24] addressed the non-compact
case for the classical Laplace operator.

We also would like to emphasize that the decay condition (1.41.4) will not impose any additional
assumption in the study of inverse problem in Theorem 1.41.4. Moreover, when N = 1, (1.41.4) can be
removed in Theorem 1.21.2, see Remark 3.43.4 for more detailed discussions.

Remark 1.3. In our case, owing to the extra time variable in the fractional parabolic equation, the
exponents {αk}Nk=1 only need to satisfy Assumption 11. This is different from the fractional Lapla-
cian considered in [FL24FL24]. Indeed, [FL24FL24] requires additional assumptions on the odd dimensions to
remove the resonance effect, which is only a technical reason.

As an application of the above entanglement principle, we study the unique determination of a
time-dependent potential V in fractional poly-parabolic operators defined by

(1.6) PV :=
N∑
k=1

bkHskg + V,

where V = V (x, t) ∈ L∞(ΩT ). Here 0 < s1 < . . . < sN < 1 and bk > 0 for all 1 ≤ k ≤ N (the
positivity of bk is needed for the forward problem). We consider the initial exterior value problem

(1.7)


PV u = 0 in ΩT ,

u = f in (Ωe)T ,

u = 0 in Rn × {t ≤ −T}.

Assume that

{0} is not a Dirichlet eigenvalue of PV .

Theorem 2.42.4 guarantees the well-posedness of the problem (1.71.7) and allows us to define the corre-
sponding exterior DN map

ΛV : HsN ((Ωe)T )→ H−sN ((Ωe)T ), f 7→
N∑
k=1

bkHskg uf
∣∣∣∣
(Ωe)T

,

where uf is the unique solution of (1.71.7). A rigorous definition of the DN map can be found in
Section 2.42.4.

We are interested in the following question.

(IP-2) Can one determine the potential V ∈ L∞(ΩT ) using the exterior DN map ΛV of (1.71.7)?

The second main result of the paper answers this question.
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Theorem 1.4 (Global uniqueness). Given N ∈ N, {bk}Nk=1 ⊂ (0,∞), and 0 < s1 < . . . < sN < 1,
let Ω ⊂ Rn be a bounded Lipschitz domain for n ≥ 2, and W1, W2 b Ωe be nonempty open subsets.
Suppose g ∈ C∞(Rn;Rn×n) satisfy (1.11.1). Let Vj = Vj(x, t) ∈ L∞(ΩT ), and ΛVj be the DN map of

(∑N
k=1 bkHskg + Vj

)
u = 0 in ΩT ,

u = f in (Ωe)T ,

u = 0 in Rn × {t ≤ −T},
for j = 1, 2. Then the relation

ΛV1f
∣∣
(W2)T

= ΛV2f
∣∣
(W2)T

, for any f ∈ C∞c ((W1)T )

implies that V1 = V2 in ΩT .

Note that Theorem 1.41.4 extends the earlier results in [LLR20LLR20, BS24BS24] (the works studied a global
uniqueness for the case N = 1) to multiple terms of nonlocal parabolic operators.

1.2. Organization of the article. In Section 22, we recall several functional spaces and introduce
nonlocal parabolic operators through the semigroup theory, together with well-posedness results for
initial exterior value problems and rigorous definitions of the DN maps. Section 33 is devoted to
establishing the entanglement principle for nonlocal parabolic operators. Finally, in Section 44, we
prove the remaining main result regarding the global uniqueness of the potential in Theorem 1.41.4.

2. Preliminaries

In this section, we introduce the function spaces used in this paper and recall several useful
properties of the nonlocal parabolic operator Hsg.

2.1. Function spaces. We start by recalling the (fractional) Sobolev spaces. Given a ∈ R, Ha(Rn) =
W a,2(Rn) is the L2-based fractional Sobolev space (see [DNPV12DNPV12] for example) with the norm

‖u‖Ha(Rn) :=
∥∥F−1

x

{
〈ξ〉aFxu

}∥∥
L2(Rn)

,

where 〈ξ〉 = (1 + |ξ|2)
1
2 . Let O ⊂ Rn be an open set. We define

Ha(O) := {u|O : u ∈ Ha(Rn)},

H̃a(O) := closure of C∞c (O) in Ha(Rn).

The space Ha(O) is complete under the norm

‖u‖Ha(O) := inf
{
‖v‖Ha(Rn) : v ∈ Ha(Rn) and v|O = u

}
.

Given an open set B ⊂ Rn+1, if f = f(x, t) and g = g(x, t) are L2 functions in B, we denote the
L2 inner product by

(f, g)B :=

ˆ
B
fg dxdt.

For the nonlocal space-time operator Hs = (∂t −∆)s, we will work on the following Lions-Magenes

Sobolev spaces Hs,s/2(Rn ×R) (see [LM72LM72, Chapter 4.2] and in particular equation (2.3) there). To
simplify this notation and to emphasize the coupling between time and space variables, hereinafter
we abbreviate it by Hs(Rn+1). More precisely, for a ∈ R, we consider

Ha(Rn+1) :=
{
u ∈ L2(Rn+1) : ‖u‖Ha(Rn+1) <∞

}
= Ha,a/2(Rn × R),

where

‖u‖2Ha(Rn+1) =

ˆ
Rn+1

(1 + |iρ+ |ξ|2|)a|û(ξ, ρ)|2dρdξ <∞.(2.1)
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Note that |iρ + |ξ|2| =
(
|ρ|2 + |ξ|4

)1/2
and 2−1/2(|ρ| + |ξ|2) ≤ (|ρ|2 + |ξ|4)1/2 ≤ |ρ| + |ξ|2. As

the “classical” fractional Sobolev spaces (see [McL00McL00]), the following notations follow naturally by
treating spacetime together. For an open set O and a closed set F in Rn+1, n ≥ 1, we define

Ha(O) :=
{
u|O : u ∈ Ha(Rn+1)

}
,

H̃a(O) := closure of C∞c (O) in Ha(Rn+1),

Ha
F = Ha

F (Rn+1) :=
{
u ∈ Ha(Rn+1) : supp(u) ⊂ F

}
.

Also, C∞c (Rn+1) is dense in Ha(Rn+1) under the norm ‖ · ‖Ha(Rn+1). Moreover,

(Ha(O))∗ = H̃−a(O), (H̃a(O))∗ = H−a(O), for a ∈ R.

2.2. The nonlocal parabolic operator. The definition for the nonlocal parabolic operator Hsg
was given in [Bal60Bal60] (also see [BDLCRS21BDLCRS21, BS24BS24]) for 0 < s < 1. It is known that heat operator
∂t −∆g in Rn × R possesses a globally defined fundamental solution pτ (x, y), which satisfies

eτ∆g1(x) =

ˆ
Rn
pτ (x, y) dVg(y) = 1, for every x ∈ Rn and τ > 0,

where eτ∆g stands for the heat semigroup associated to the operator ∆g. For u ∈ S(Rn), we have

eτ∆gu(x) =

ˆ
Rn
pτ (x, y)u(y) dVg(y), for every x ∈ Rn and τ > 0.

Here the Riemannian volume form dVg is given by dVg(y) =
√
|g| dy. For the purpose of simplifying

the notation, in what follows, we will only use dy to represent dVg(y). Meanwhile, the heat kernels
pτ (x, y) satisfies

C1

(
1

4πτ

)n/2
e−

c1|x−y|
2

4τ ≤ pτ (x, y) ≤ C2

(
1

4πτ

)n/2
e−

c2|x−y|
2

4τ ,(2.2)

for some positive constants c1, c2, C1 and C2 and for all x, y ∈ Rn, τ > 0.
Since ∂t and −∆g are commutable, we have e−τHg = eτ∆g ◦ e−τ∂t , and the evolution semigroup is

given by

e−τHgu(x, t) := eτ∆gu(x, t− τ) =

ˆ
Rn
pτ (x, y)u(y, t− τ) dy, τ > 0, for u ∈ S(Rn+1),(2.3)

where pτ (x, y) is the heat kernel given as before, and S(Rn+1) stands for the Schwartz space. Mean-
while, it is held that

e−τHg1(x, t) =

ˆ
Rn
pτ (x, y) dy = 1, for every (x, t) ∈ Rn+1, and τ > 0.

Note that
{
e−τHg

}
τ≥0

is a strongly continuous contractive semigroup such that11

‖e−τHgu− u‖L2(Rn+1) = O(τ), as τ → 0.

Let us first give the explicit formula of Hsg via the heat semigroup.

Definition 2.1 (Balakrishnan formula). Given s ∈ (0, 1) and u ∈ S(Rn+1), the nonlocal parabolic
operator Hsg can be defined as (see [BS24BS24, Section 2])

Hsgu(x, t) :=
1

Γ(−s)

ˆ ∞
0

(
e−τHgu(x, t)− u(x, t)

) dτ

τ1+s
.(2.4)

1The notation O(τ) is the Bachmann–Landau notation.
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Note that Hsgu ∈ L2(Rn+1) for u ∈ S(Rn+1) by the functional calculus. Using (2.32.3), we can
rewrite (2.42.4) as follows:

Hsgu(x, t) =

ˆ ∞
0

ˆ
Rn

(u(y, t− τ)− u(x, t))Ks(x, y, τ) dydτ,

where

Ks(x, y, τ) :=
1

Γ(−s)
pτ (x, y)

τ1+s
.

In particular, as g = In, the kernel Ks(x, y, τ) has an explicit representation formula

Ks(x, y, τ) =
1

(4π)n/2Γ(−s)
e−
|x−y|2

4τ

τn/2+1+s
,

where we used the heat kernel for the heat operator ∂τ −∆ precisely.

Remark 2.2. Recall that the fractional Laplace–Beltrami operator can also be defined in a similar
way, which is

(−∆g)
s v(x) :=

1

Γ(−s)

ˆ ∞
0

(
eτ∆gv(x)− v(x)

) dτ

τ1+s

=

ˆ ∞
0

ˆ
Rn

(v(y)− v(x))Ks(x, y, τ) dydτ.

Using the Fourier transform with respect to the time variable t ∈ R, one can express Hsgu in terms
of the Fourier transform. In doing so, we first denote by Eλ the spectral measure associated to Hg,
i.e.,

Hg = −
ˆ ∞

0
λdEλ.

We then observe that the heat semigroup
{
eτ∆g

}
τ≥0

can be written by spectral measures as an

identity of gamma functions [BS24BS24, Section 2]:

eτ∆g =

ˆ ∞
0

e−λτ dEλ and
1

Γ(−s)

ˆ ∞
0

e−(λ+iσ)τ − 1

τ1+s
dτ = (λ+ iσ)s,(2.5)

for λ > 0 and σ ∈ R, where i =
√
−1. Taking the Fourier transform in the time variable on (2.32.3)

yields

Ft(e−τHgu)(x, σ) = e−iστeτ∆g(Ftu(·, σ))(x).

Together with (2.52.5), this gives the Fourier analogue of the definition (2.42.4) as follows:

Ft(Hsgu)(·, σ) =

ˆ ∞
0

(λ+ iσ)s dEλ(Ftu(·, σ)).

Moreover, we define the adjoint operator Hsg,∗ of Hsg in terms of the spectral resolution in the
following manner

Ft(Hsg,∗u)(·, σ) =

ˆ ∞
0

(λ− iσ)s dEλ(Ftu(·, σ)), for u ∈ S(Rn+1).

We also recall the following property from [BS24BS24, Section 2]

〈Hsgf, h〉 =
〈
Hs/2g f,Hs/2g,∗ h

〉
=
〈
f,Hsg,∗h

〉
=

ˆ
R

ˆ ∞
0

(λ+ iσ)s d〈EλFtf,Fth〉(·, σ) dσ, for f, h ∈ S(Rn+1).
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From the resolution of the parabolic version of the Kato square root problem in [AEN20AEN20] and
interpolation type argument, Hs(Rn+1) is the completion of S(Rn+1) with respect to the following
norm:

(2.6)

(ˆ
R

ˆ ∞
0

((
1 + |λ+ iσ|2

)s/2
d‖Eλ(Ftu(·, σ))‖2

)
dσ

)1/2

, s ∈ (0, 1), for u ∈ S(Rn+1).

Therefore, we get from the Cauchy-Schwarz inequality that

(2.7)
〈
Hsgf, h

〉
=
〈
Hs/2g f,Hs/2g,∗ h

〉
≤ C‖f‖Hs(Rn+1)‖h‖Hs(Rn+1)

for some constant C > 0 independent of f, h. This leads to the mapping properties

Hsg : Hs(Rn+1)→ H−s(Rn+1) and Hsg,∗ : Hs(Rn+1)→ H−s(Rn+1).

We refer to [BS24BS24, Section 2] for related discussions.
For general α ∈ (0,∞) \ N, we write α = m + s, where m is the integer part of α and s ∈ (0, 1).

Based on [MCSA01MCSA01, Chapter 5], we can write

Hαg = Hm+s
g = Hsg

(
Hmg

)
= Hmg

(
Hsg
)
,

where Hmg = (∂t −∆g)
m is a local differential operator.

2.3. The well-posedness. In this section, we will show the unique existence of solutions to the
initial exterior value problems (1.71.7) by adapting the arguments developed in [LLR20LLR20, BS24BS24], in which
the well-posed problems (1.21.2) were proved for a constant and a variable coefficient, respectively.

To show the problem (1.71.7) has a unique solution, we consider the following initial exterior value
problem instead:

(2.8)


PV u = F in ΩT ,

u = f in (Ωe)T ,

u = 0 in Rn × {t ≤ −T},

where F ∈ (HsN
ΩT

)∗, f ∈ HsN ((Ωe)T ), and PV is defined in (1.61.6).

Let 0 < s1 < . . . < sN < 1, and consider the sesquilinear form BV (·, ·) on HsN (Rn+1)×HsN (Rn+1)
defined by

BV (u,w) :=
N∑
k=1

bk
(
Hsk/2g u,Hsk/2g,∗ w

)
L2(Rn+1)

+ (V u,w)L2(ΩT ) .

According to [LLR20LLR20, CLR20CLR20], we need to study a time-localized problem. We denote the cut-off of
a function u(x, t) on the time variable t by

uT (t, x) := u(t, x)χ[−T,T ](t),

where χ[−T,T ](t) is a characteristic function for t ∈ R. Since the characteristic function is a multiplier

in the Sobolev space Hγ(R) for |γ| < 1
2 , we have uT ∈ Hs(Rn+1) when u ∈ Hs(Rn+1) for 0 < s < 1,

see [LLR20LLR20, Section 2]. We are ready to define the weak solution for (2.82.8).

Definition 2.3. Let Ω be a bounded open set in Rn and T > 0. Assume 0 < s1 < . . . < sN < 1, and
V ∈ L∞(ΩT ) such that 0 is not a Dirichlet eigenvalue of the problem (2.82.8). Given F ∈ (HsN

ΩT
)∗ and

f ∈ H̃sN ((Ωe)T ), we say that u ∈ HsN (Rn+1) is a weak solution of (2.82.8) if v := (u− f)T ∈ HsN
ΩT

and

BV (u,w) = 〈F,w〉(HsN
ΩT

)∗×HsN
ΩT

, for any w ∈ HsN
ΩT
.
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Theorem 2.4 (Well-posedness). Let Ω be a bounded open set in Rn and T > 0. Let N ∈ N and
{bk}Nk=1 ⊂ (0,∞). Suppose g ∈ C∞(Rn;Rn×n) satisfies (1.11.1). Assume 0 < s1 < . . . < sN < 1 and
V ∈ L∞(ΩT ) such that 0 is not a Dirichlet eigenvalue of the problem (2.82.8). Given F ∈ (HsN

ΩT
)∗ and

f ∈ H̃sN ((Ωe)T ), there exists a unique solution uT ∈ HsN (Rn+1) to the problem (2.82.8) satisfying

‖uT ‖HsN (Rn+1) ≤ C
(
‖F‖(HsN

ΩT
)∗ + ‖f‖HsN ((Ωe)T )

)
for some constant C > 0 independent of F , f , and u.

Proof. Let v := (u− f)T and F̃ := F − PV f , then v ∈ HsN
ΩT

and vT = v. It suffices to show that for

F̃ ∈ (HsN
ΩT

)∗, there exists a unique solution v ∈ HsN
ΩT

such that

BV (v, w) = 〈F̃ , w〉(HsN
ΩT

)∗×HsN
ΩT

, for any w ∈ HsN
ΩT
.

Consider the bilinear form
BV (v, w) + µ(v, w)L2(ΩT ),

for µ ≥ ‖min{V, 0}‖L∞(ΩT ) in HsN
ΩT

. The boundedness of this bilinear form

BV (v, w) + µ(v, w)L2(ΩT ) ≤ C
N∑
k=1

‖v‖Hsk (Rn+1)‖w‖Hsk (Rn+1) + C‖v‖L2(Rn+1)‖w‖L2(Rn+1)

≤ C‖v‖HsN (Rn+1)‖w‖HsN (Rn+1) for any v, w ∈ HsN
ΩT
,

follows directly from (2.72.7).
We now prove the coercity in the space HsN

ΩT
. Note that for k = 1, . . . , N , we have for v ∈ HsN

ΩT
that 〈

Hsk/2g v,Hsk/2g,∗ v
〉

=

ˆ
R

ˆ ∞
0

(λ+ iσ)sk d‖Eλ(Ftv)(·, σ)‖2 dσ

=

ˆ
R

ˆ ∞
0
|λ+ iσ|sk (cos(skθ) + i sin(skθ))) d‖Eλ(Ftv)(·, σ)‖2 dσ

=

ˆ
R

ˆ ∞
0
|λ+ iσ|sk cos(skθ) d‖Eλ(Ftv)(·, σ)‖2 dσ,

(2.9)

where tan θ = σ/λ and we utilized the fact that sin(skθ) is an odd function in the last step. Since
λ > 0 implies θ ∈ (−π

2 ,
π
2 ), we have for all sk ∈ (0, 1) that

cos(skθ) ≥ cos
(skπ

2

)
≥ min

1≤k≤N
cos
(skπ

2

)
=: cs > 0.

Therefore, using the fact µ ≥ ‖min{V, 0}‖L∞(ΩT ), equation (2.92.9) and the equivalent norm between
(2.62.6) and (2.12.1), we obtain
(2.10)

BV (v, v) + µ(v, v)L2(ΩT ) ≥
N∑
k=1

bk
(
Hsk/2g v,Hsk/2g,∗ v

)
Rn+1 ≥ C

N∑
k=1

ˆ
Rn+1

∣∣iρ+ |ξ|2
∣∣sk |v̂(ξ, ρ)|2 dξdρ.

Applying the Hardy-Littlewood-Sobolev inequality for the x-variable and the fact that v is compactly
supported in x-variable, it yields for any sk ∈ (0, 1),ˆ

Rn+1

∣∣iρ+ |ξ|2
∣∣sk |v̂(ξ, ρ)|2 dξdρ ≥

ˆ
R
‖(−∆x)sk/2Ftv(·, ρ)‖2L2(Rn) dρ ≥ C‖v‖

2
L2(Rn+1),(2.11)

see [LLR20LLR20, BGMN21BGMN21] for a detailed explanation. Coercivity then follows from (2.102.10) and (2.112.11),
that is, BV (v, v) + µ(v, v)L2(ΩT ) ≥ C‖v‖2HsN (Rn+1).
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By Lax–Milgram theorem, there exists a unique solution v = GµF̃ ∈ HsN
ΩT

such that

BV (v, w) + µ(v, w)L2(ΩT ) = 〈F̃ , w〉(HsN
ΩT

)∗×HsN
ΩT

, for any w ∈ HsN
ΩT
,

along with

‖v‖HsN
ΩT

≤ C‖F̃‖(HsN
ΩT

)∗ .

In particular, Gµ : (HsNΩT )∗ → HsNΩT is bounded and by the compact Sobolev embedding, the operator

Gµ : L2(ΩT ) → L2(ΩT ) is compact. Then the spectral theorem implies that the eigenvalues of Gµ
are 1

λj+µ
with λj → +∞. Fredholm alternative and the assumption 0 is not a Dirichlet eigenvalue

of PV ensure the existence and uniqueness of the problem under consideration. �

Remark 2.5. The assumption that {0} is not a Dirichlet eigenvalue of PV implies {0} is not a
Dirichlet eigenvalue of the adjoint of PV . Similarly, we can establish the well-posedness result for
the adjoint problem to (2.82.8). Under the hypothesis of Theorem 2.42.4, there exists a unique solution
u ∈ HsN (Rn+1) to the future exterior problem

(∑N
k=1 bkH

sk
g,∗ + V

)
u = F in ΩT ,

u = f in (Ωe)T ,

u = 0 in Rn × {t ≥ T}.

2.4. The Dirichlet-to-Neumann map. Based on the well-posedness results of initial exterior
problems (1.71.7), let us define the corresponding DN maps ΛV by means of the bilinear form BV .

We first introduce the following quotient spaces for our exterior data by

X := HsN (Rn × [−T, T ])/HsN
ΩT
,

equipped with the norm

‖[f ]‖X := inf
φ∈HsN

ΩT

‖f + φ‖Hs(Rn), for f ∈ HsN (Rn × [−T, T ]).

Denote X∗ as the dual of X. We now define the DN maps as follows:〈
ΛV [f ], [ζ]

〉
X∗×X := BV (uf , ζ), for [f ], [ζ] ∈ X,

where uf ∈ HsN (Rn+1) is the solution of (1.71.7) with the Dirichlet data f .
Analogously, one can also define the adjoint DN maps by utilizing the following natural pairing

property 〈
[f ],Λ∗V [ζ]

〉
X×X∗ :=

〈
ΛV [f ], [ζ]

〉
X∗×X, for [f ], [ζ] ∈ X,

Also, the adjoint DN maps can be represented as

〈[f ],Λ∗V [ζ]〉X1×X∗1 = BV (f, uζ), 〈[h],

where uζ ∈ HsN (Rn+1) is the solution of the adjoint equation
(∑N

k=1 bkH
sk
g,∗ + V

)
uζ = 0 with the

Dirichlet data ζ in (Ωe)T and uζ = 0 for t ≥ T . To simplify the notations, we use f to denote [f ].

Proposition 2.6. Let Ω be a bounded open set in Rn and T > 0. Let N ∈ N. Assume that
{bk}Nk=1 ⊂ (0,∞), 0 < s1 < . . . < sN < 1, and V ∈ L∞(ΩT ) such that 0 is not a Dirichlet eigenvalue
of the problem (2.82.8). Then the DN map ΛV defined above is well-defined and bounded.

Proof. We first show that ΛV only depends on the equivalence classes. For f, ζ ∈ HsN (Rn×[−T, T ]).
Let φ, ψ ∈ HsN

ΩT
. Since uf and uf+φ both solve the equation (1.71.7) with the same exterior data,

Theorem 2.42.4 implies uf = uf+φ. By the linearity of BV in the second component, it yields

BV (uf+φ, ζ + ψ) = BV (uf , ζ + ψ) = BV (uf , ζ) +BV (uf , ψ).
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Using the fact that supp(ψ) ⊂ ΩT and uf solves (1.71.7), we get BV (uf , ψ) = 0. This proves that
〈ΛV (f + φ), (ζ + ψ)〉 = 〈ΛV f, ζ〉 and thus ΛV is well-defined.

The boundedness of ΛV follows from

|〈ΛV f, ζ〉| ≤ |BV (uf+φ, ζ + ψ)| ≤ C‖uf+φ‖HsN (Rn+1)‖ζ + ψ‖HsN (Rn+1)

and taking the infimum with respect to φ, ψ ∈ HsN
ΩT

. �

3. The entanglement principle

The aim of this section is to show the entanglement principles for the fractional parabolic operators
on the Euclidean domain. To this end, we first recall the result demonstrated in [FKU24FKU24, Proposition
3.1], which will play a crucial role of decoupling the mixed fractional parabolic operators later.

Proposition 3.1 ([FKU24FKU24, Proposition 3.1]). Let N ∈ N and {αk}Nk=1 ⊂ (0,∞) \ N satisfy As-

sumption 11. Given a > 0, suppose that {fk}Nk=1 ⊂ C∞((0,∞)), there exist positive constants c and
δ such that the function f = fk (k = 1, . . . , N) fulfills

|f(τ)| ≤ ce−δτ , τ ∈ (a,∞), and |f(τ)| ≤ ce−
δ
τ , τ ∈ (0, a].(3.1)

Additionally, if there exists ` ∈ N ∪ {0} such that

N∑
k=1

Γ(m+ 1 + αk)

ˆ ∞
0

fk(τ)τ−m dτ = 0, for all m = `, `+ 1, `+ 2, . . . ,

then fk(τ) = 0 for all τ ∈ (0,∞), and for all k = 1, . . . , N .

Note that [FKU24FKU24, Proposition 3.1] shows the case when a = 1. The same result still holds for
any given constant a > 0 by following the same arguments there.

Remark 3.2. Let us emphasize the essential difference of the entanglement principle between [FKU24FKU24,
FL24FL24] and this work.

(i) The works [FKU24FKU24, FL24FL24] investigate the entanglement principle for nonlocal elliptic oper-
ators, and we study an analogous tenet for the nonlocal parabolic operator. Particularly, in
[FKU24FKU24], the authors investigated the entanglement principle for fractional Laplace–Beltrami
operators on closed Riemannian manifolds. Thanks to the compactness, the first inequality
in (3.13.1) can be achieved naturally by its heat kernel estimate.

(ii) In [FL24FL24], the authors considered the same problem on Rn, for the fractional Laplace operator.
Due to the lack of compactness, the first inequality in (3.13.1) can not be satisfied. Hence,
the authors introduced the super-exponential decay condition, allowing them to transfer the
problem to the spherical mean vanishing property. In this work, we are in the non-compact
setting as well as [FL24FL24]. However, thanks to the representation formulas (2.32.3) and (2.42.4),
one can introduce a suitable decay condition of u(x, t) with respect to the time variable, so
that the first inequality in (3.13.1) still holds. Given this, one may expect the entanglement
principle to hold for the nonlocal parabolic operator.

(iii) Let us point out that the entanglement principle for fractional Laplace–Beltrami operators
(−∆g)

s remains open in the non-compact Euclidean space Rn, which seems to be a challenging
problem to resolve.

The following theorem lays the foundation of the proof of Theorem 1.21.2 for {αk}Nk=1 ⊂ (0,∞) \N.

Theorem 3.3. Let O ⊂ Rn be a nonempty open set for n ≥ 2. Let N ∈ N, T > 0, and 0 < s1 <
. . . < sN < 1. Suppose that {vk}Nk=1 ⊂ C∞((−∞, T );S(Rn)) satisfies the following estimates: given
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any multi-index β = (β0, β1, . . . , βn) ∈ (N ∪ {0})n+1, there exist positive constants Cβ and δ such
that

∣∣Dβ
x,tvk(x, t)

∣∣ ≤ {C0

∣∣ϕ0(x)
∣∣eδt, |β| = 0

Cβ|ϕβ(x)|, |β| ≥ 1
, for (x, t) ∈ Rn × {t ≤ −T},(3.2)

and k = 1, . . . , N , where ϕβ ∈ S(Rn). If

(3.3) v1|OT = . . . = vN |OT = 0 and

( N∑
k=1

Hskg vk
)∣∣∣∣
OT

= 0

hold, then vk ≡ 0 in RnT for all k = 1, . . . , N .

Proof. Similar to the arguments as in [FKU24FKU24, FL24FL24, LLU22LLU22], via the condition (3.33.3), the iteration
arguments yield for m = 1, 2, . . . that

Hmg v1

∣∣
OT

= . . . = Hmg vN
∣∣
OT

= 0, and

( N∑
k=1

Hskg Hmg vk
)∣∣∣∣
OT

= 0.

Let ω b O be an open nonempty subset such that

(3.4) dist(ω,Rn \ O) ≥ 2κ,

for some constant κ > 0. For (x, t) ∈ ωT , we have by (2.42.4) that

0 =

N∑
k=1

Hskg Hmg vk(x, t) =

N∑
k=1

1

Γ(−sk)

ˆ ∞
0

(
e−τHgHmg vk

)
(x, t)

dτ

τ1+sk
(3.5)

=
N∑
k=1

1

Γ(−sk)

ˆ ∞
0

(−1)m∂mτ
(
e−τHgvk

)
(x, t)

dτ

τ1+sk︸ ︷︷ ︸
(e−τHgHmg vk)(x,t)=(−1)m∂mτ (e−τHgvk)(x,t)

.

Next, fix t0 ∈ (−T, T ), we shall show no contribution arises at the endpoints when conducting
integration by parts in τ . That is, for ` = 0, 1, . . . , m− 1, the following terms

(3.6) ∂`τ
(
e−τHgvk

)
(x, t0)

1

τ sk+m−`

vanish at τ → 0+ and τ → +∞. Since t0 − (−T ) > 0, let us denote

a := t0 − (−T ) = t0 + T > 0.

Under this assumption, we have

(3.7) t0 − τ ∈ (−∞,−T ) if τ ∈ (a,∞),

and

(3.8) t0 − τ ∈ [−T, T ) if τ ∈ (0, a].
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To show the boundary terms (3.63.6) vanish, it suffices to show the following two estimates. For
τ ∈ (a,∞), we have∣∣∂`τ(e−τHgvk)(x, t0)

∣∣ =
∣∣ (e−τHgH`gvk) (x, t0)

∣∣
≤ C2

ˆ
Rn

(
1

4πτ

)n/2
e−

c2|x−y|
2

4τ

∣∣H`gvk(y, t0 − τ)
∣∣ dy︸ ︷︷ ︸

By (2.22.2)

≤ C

τn/2

ˆ
Rn
e−

c2|x−y|
2

4τ

∣∣ϕ`(y)
∣∣ dy︸ ︷︷ ︸

By (3.73.7) and (3.23.2) and H`g = (∂t −∆g)`

≤ C
∥∥ϕ`∥∥L∞(Rn)︸ ︷︷ ︸

´
Rn e

−|x|
2

4τ dx=(4πτ)
n
2

,

(3.9)

for some ϕ` ∈ S(Rn), and thus∣∣∂`τ (e−τHgvk) (x, t0)
1

τ sk+m−`
∣∣ ≤ C‖ϕ`‖L∞(Rn)

1

τ sk+m−` → 0, as τ →∞.

Similarly, for τ ∈ (0, a], we have∣∣∂`τ(e−τHgvk)(x, t0)
∣∣ ≤ C2

ˆ
Rn

(
1

4πτ

)n/2
e−

c2|x−y|
2

4τ

∣∣H`gvk(y, t0 − τ)
∣∣ dy

≤ C

τn/2

ˆ
Rn\O

e−
c2|x−y|

2

4τ

∣∣H`gvk(y, t0 − τ)
∣∣ dy︸ ︷︷ ︸

By (3.83.8) so that H`gvk(y, t0 − τ) = 0 for y ∈ O

≤ C

τn/2
e−

c2κ
2

τ sup
t∈(−T,T )

∥∥∥H`gvk(·, t)∥∥∥
L1(Rn\O)

≤ Ce−
c
τ , for x ∈ ω b O,

(3.10)

which leads to ∣∣∂`τ (e−τHgvk) (x, t0)
1

τ sk+m−`
∣∣ ≤ Ce− cτ 1

τ sk+m−` → 0, as τ → 0+.

Since we have shown that the boundary values vanish, by applying m-times integration by parts
in τ to (3.53.5), we get

0 =

N∑
k=1

γk
Γ(−sk)

ˆ ∞
0

(
e−τHgvk

)
(x, t0)τ−(m+1+sk) dτ

=

N∑
k=1

Γ(m+ 1 + sk)

ˆ ∞
0

fk(τ)τ−m dτ, for any m ∈ N ∪ {0},

where the function

(3.11) fk(τ) :=
1

Γ(−sk)Γ(1 + sk)

(
e−τHgvk

)
(x, t0)τ−(1+sk),

and the constant γk is defined as γk := (1 + sk)(2 + sk) . . . (m + sk) = Γ(m+1+sk)
Γ(1+sk) . Note that the

smoothness of vk(x, t) and pτ (x, y) yield fk(τ) ∈ C∞((0,∞)).
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In addition, we will show that fk(τ) satisfies the bound (3.13.1) so that we will be able to apply
Proposition 3.13.1. As (3.103.10) for ` = 0 implies the case τ ∈ (0, a], it remains to show the exponential
decay in the interval τ ∈ (a,∞). To this end, by following a similar argument as in (3.93.9) and utilizing
(3.23.2) with |β| = 0, it gives rise to the succeeding estimate for fk(τ), τ ∈ (a,∞):∣∣fk(τ)| ≤

∣∣ (e−τHgvk) (x, t0)τ−(1+sk)
∣∣

≤ C2τ
−(1+sk)

ˆ
Rn

(
1

4πτ

)n/2
e−

c2|x−y|
2

4τ

∣∣vk(y, t0 − τ)
∣∣ dy︸ ︷︷ ︸

By (2.22.2)

≤ Cτ−(1+sk)

τn/2
eδ(t0−τ)

ˆ
Rn
e−

c2|x−y|
2

4τ

∣∣ϕ0(y)
∣∣ dy︸ ︷︷ ︸

By (3.73.7) and (3.23.2)

≤ Cτ−(1+sk)eδ(t0−τ)
∥∥ϕ0

∥∥
L∞(Rn)︸ ︷︷ ︸

´
Rn e

−|x|
2

4τ dx=(4πτ)
n
2

≤ CeδT e−δτ‖ϕ0‖L∞(Rn)︸ ︷︷ ︸
since t0∈(−T,T )

,

for some ϕ0 ∈ S(Rn). With this estimate, we can now apply Proposition 3.13.1 to obtain that fk(τ) is
identically zero, for τ ∈ (0,∞). Indeed the definition of fk(τ) in (3.113.11) implies(

e−τHgvk
)
(x, t0) = 0 for x ∈ ω, τ > 0 and k = 1, . . . , N.

Since t0 ∈ (−T, T ) can be arbitrary, we further deduce(
e−τHgvk

)
(x, t) = 0 for (x, t) ∈ ωT , τ > 0 and k = 1, . . . , N.(3.12)

Now, since ω b O and κ > 0 in (3.43.4) are arbitrarily chosen, as a result, substituting (3.123.12) and (3.33.3)
into (2.42.4), we have

vk = Hskg vk = 0, in OT , for k = 1, . . . , N.

Finally, applying the (weak) UCP for nonlocal parabolic operatorsHsg, s ∈ (0, 1) (see [BS24BS24, LLR20LLR20]),
we can ensure vk ≡ 0 in RnT , for k = 1, . . . , N . This concludes the proof. �

With Theorem 3.33.3, we can prove Theorem 1.21.2.

Proof of Theorem 1.21.2. For αk = mk+sk ∈ R+ \N, where mk is the integer part of αk and sk ∈ (0, 1)
is the fractional part of αk. In particular, we have Hαkg = Hmk+sk

g = Hskg
(
Hmkg

)
. Note that

{uk}Nk=1 ⊂ C∞((−∞, T );S(Rn)), and we let

vk := bkHmkg uk, bk ∈ C \ {0}, for k = 1, . . . , N,

which is also in C∞((−∞, T );S(Rn)). Since Hmkg is a local operator, the condition (1.51.5) implies
(3.33.3), and the condition (1.41.4) leads to (3.23.2). By Theorem 3.33.3, we deduce vk = 0 in RnT , and thus
Hmkg uk = 0 in RnT with uk|OT = 0. Lastly, the UCP of the classical parabolic operators Hmkg in RnT
leads to the desired result uk = 0 in RnT . This proves the assertion. �

We conclude this section with some remarks regarding the exponential decay conditions.
Remark 3.4.
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(i) The exponential decay condition (3.23.2) is needed only for N ≥ 2 (entangled nonlocal parabolic)
in Theorem 3.33.3 in order to break the nonlocal effect arising from every fractional operator
Hskg . When N = 1 (single Hsg), however, the UCP holds without such decay condition and it
has been shown in the works [BS24BS24, LLR20LLR20, LLU22LLU22]. As a result, (1.41.4) in Theorem 1.21.2 can
be removed when one considers N = 1.

(ii) Although the decay conditions (1.41.4) and (3.23.2) seem strong, for the study of inverse problems,
both (1.41.4) and (3.23.2) hold automatically provided that the solution of the initial exterior value
problem has zero initial data, namely, u = 0 in Rn × {t ≤ −T}, see Section 44 for detailed
discussions.

4. Inverse problems and proof of main results

4.1. Global uniqueness for the fractional poly-parabolic operators. It is known that the
proof of uniqueness can be established by employing the UCP together with the Runge approximation
property. In what follows, we present an alternative formulation of the entanglement principle by
additionally imposing an initial value vanishing condition (4.14.1), which helps to shorten the arguments
for the UCP in [LLR20LLR20, BS24BS24]. It is worth mentioning that when we deal with the inverse problem,
(4.14.1) is fulfilled naturally due to the initial condition in the problem under consideration.

Proposition 4.1 (Modified entanglement principle). Let O ⊂ Rn be a nonempty open set for
n ≥ 2. Let N ∈ N, T > 0, {bk}Nk=1 ⊂ (0,∞), and 0 < s1 < . . . < sN < 1. Let uk ∈ Hsk(Rn+1), for
k = 1, . . . , N . If

(4.1) u1 = . . . = uN = 0 in Rn × {t ≤ −T},

and

(4.2) u1|OT = . . . = uN |OT =

( N∑
k=1

bkHskg uk
)∣∣∣∣
OT

= 0,

hold, then u1 = . . . = uN = 0 in RnT for all k = 1, . . . , N .

Proof. The proof can be reduced to Proposition 3.13.1 after an appropriate deduction. Note that the
functions uk ∈ Hsk(Rn+1) are not necessarily smooth, thus Theorem 3.33.3 cannot be applied directly
to the current setting. To address this lack of smoothness, we utilize certain properties of the heat
kernel, combined with a smooth mollifier, which enables us to approximate the functions uk and
thereby overcome the regularity issue.

To this end, for ε > 0, we denote

Tε := T − ε.

Consider the one-dimensional standard mollifier ϕ ∈ C∞0 (R) with compact support suppϕ ⊂ (−1, 1),
and satisfy 0 ≤ ϕ and ‖ϕ‖L2(R) = 1. For each ε > 0, we define ϕε(t) := ε−1ϕ(t/ε) and thus
ϕε ∈ C∞(R) with suppϕε ⊂ (−ε, ε). For each x ∈ Rn, since uk(x, ·) is locally integrable in t
variable, the function

uk,ε(x, t) := (uk ∗ ϕε)(x, t) =

ˆ ε

−ε
uk(x, t− η)ϕε(η) dη, t ∈ (−∞, Tε),

and uk,ε(x, ·) ∈ C∞(R). Also, uk,ε(x, ·)→ uk(x, ·) almost everywhere as ε→ 0 for k = 1, . . . , N .
Next, for s ∈ (0, 1), recalling the definition (2.42.4) and using a direct computation give(

Hsguk,ε
)
(x, t) =

(
Hsg(uk ∗ ϕε)

)
(x, t) =

(
(Hsguk) ∗ ϕε

)
(x, t), (x, t) ∈ OTε ,
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which can be seen since Hsgu(x, t) is defined via a convolution in t. This implies

N∑
k=1

((Hskg uk) ∗ ϕε)(x, t) =
N∑
k=1

(Hskg uk,ε)(x, t), (x, t) ∈ OTε .

Together with (4.24.2) and (4.14.1), we get

(4.3)

u1,ε = . . . = uN,ε = 0, in (O × (−Tε − 2ε, Tε)) ∪ (Rn × {t ≤ −Tε − 2ε}) ,
N∑
k=1

Hskg uk,ε = 0, in OTε .

Applying Hmg , m = 1, 2, . . . , to (4.34.3) leads to

Hmg u1,ε|OTε = . . . = Hmg uN,ε|OTε =

(
N∑
k=1

bkHm+sk
g uk,ε

)∣∣∣∣
OTε

= 0,

Let ω b O such that

dist(ω,Rn \ O) ≥ 2κ,

for some constant κ > 0. For (x, t) ∈ ωTε , we have by (2.42.4) that

0 =

N∑
k=1

bkHskg Hmg uk,ε(x, t) =

N∑
k=1

bk
Γ(−sk)

ˆ ∞
0

(
e−τHgHmg uk,ε

)
(x, t)

dτ

τ1+sk
(4.4)

=
N∑
k=1

bk
Γ(−sk)

ˆ ∞
0

(−1)m∂mτ
(
e−τHguk,ε

)
(x, t)

dτ

τ1+sk
.

Next, fix t0 ∈ (−Tε, Tε), we shall show no contribution arises at the endpoints when conducting
integration by parts in τ . That is, for ` = 0, 1, . . . , m− 1, the following terms

(4.5) ∂`τ
(
e−τHguk,ε

)
(x, t0)

1

τ sk+m−`

vanish at τ → 0+ and τ → +∞.
Let us denote

a := t0 − (−T ) = t0 + T > 0,

and split τ into the following regions:

t0 − τ ∈ (−∞,−Tε − 2ε) if τ ∈ (a+ ε,∞),

and

t0 − τ ∈ [−Tε − 2ε, Tε) if τ ∈ (0, a+ ε].

We first show the boundary terms (4.54.5) vanish when τ →∞. For τ ∈ (a+ ε,∞), we have t0 − τ ∈
(−∞,−Tε − 2ε), and

u1,ε = . . . = uN,ε = 0 in Rn × {t ≤ −Tε − 2ε}.
Therefore ∣∣∂`τ(e−τHguk,ε)(x, t0)

∣∣ =
∣∣ (e−τHgH`guk,ε) (x, t0)

∣∣
≤ C2

ˆ
Rn

(
1

4πτ

)n/2
e−

c2|x−y|
2

4τ

∣∣H`guk,ε(y, t0 − τ)
∣∣ dy

= 0.

(4.6)
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Now, notice the function
(
e−τHguk,ε

)
(x, t) is C∞-smooth for (x, t, τ) ∈ Rn+1 × (0,∞). This can

be seen via the integral formula (2.32.3) and the heat kernel pτ (x, y) is C∞-smooth for (x, y) ∈ Rn×Rn
and τ > 0 (see [Dav90Dav90], Chapter 5). Moreover, it is also known that the function

(
e−τHguk,ε

)
(x, t)

satisfies

(4.7)

{
(∂τ +Hg)

(
e−τHguk,ε

)
(x, t) = 0 for (x, t, τ) ∈ Rn+1 × R+,

lim
τ→0+

(
e−τHguk,ε

)
(x, t) = uk,ε(x, t) for (x, t) ∈ Rn+1,

where the above limit holds in the L2-sense, for all k = 1, . . . , N .
Next, we shall show no contribution arises at τ → 0+. For τ ∈ (0, a + ε], we have t0 − τ ∈

[−Tε − 2ε, Tε) and

u1,ε = . . . = uN,ε = 0 in O × (−Tε − 2ε, Tε).

For x ∈ ω b O, using (4.74.7) and binomial expansion, the Lebesgue dominated convergence theorem
infers that ∣∣∂`τ(e−τHguk,ε)(x, t0)

∣∣ =
∣∣(∂t −∆g)

`
(
e−τHguk,ε

)
(x, t0)

∣∣
=

∣∣∣∣ ˆ
Rn

∑̀
i=1

(
`
i

)
∂it(−∆g)

`−i(pτ (x, y)uk,ε
)
(y, t0 − τ) dy

∣∣∣∣
=

∣∣∣∣ ∑̀
i=1

(
`
i

) ˆ
Rn

(−∆g)
`−ipτ (x, y)∂ituk,ε(y, t0 − τ) dy

∣∣∣∣
=

∣∣∣∣ ∑̀
i=1

(
`
i

)ˆ
Rn\O

(−∆g)
`−ipτ (x, y)∂ituk,ε(y, t0 − τ) dy

∣∣∣∣
=

∣∣∣∣ ∑̀
i=1

(
`
i

)ˆ
Rn\O

(−∂τ )`−ipτ (x, y)∂ituk,ε(y, t0 − τ) dy

∣∣∣∣,

(4.8)

where we used pτ (x, y) is the heat kernel solving the heat equation

(∂τ −∆g)pτ (x, y) = 0,

for x 6= y, x, y ∈ Rn and τ > 0 (since x ∈ ω and y ∈ Rn \ O). Utilizing [Gri95Gri95, Theorem 3.1], it is
known that the heat kernel satisfies the following time-derivative estimate

∣∣∂`−iτ pτ (x, y)
∣∣ ≤ C (1 + |x− y|2 /τ)N

′

τ `−i min(τ,R2)l
e−
|x−y|2

4τ ,(4.9)

for any ` ∈ N, R > 0, x, y ∈ Rn and for some constants C,N ′, l > 0 with N ′ = `− i + l + 1. Thus,
inserting (4.94.9) into (4.84.8), we have

∣∣∂`τ(e−τHguk,ε)(x, t0)
∣∣ ≤ C ∑̀

i=1

(
`
i

)ˆ
Rn\O

(1 + |x− y|2 /τ)N
′

τ `−i min(τ,R2)l
e−
|x−y|2

4τ

∣∣∂ituk,ε(y, t0 − τ)
∣∣ dy.(4.10)



ENTANGLEMENT PRINCIPLE FOR THE NONLOCAL PARABOLIC OPERATORS 19

Thanks to the bound (4.104.10), for τ ∈ (0, a+ ε], by the Hölder inequality, we have

ˆ
Rn\O

(1 + |x− y|2 /τ)N
′

τ `−i min(τ,R2)l
e−
|x−y|2

4τ

∣∣∂ituk,ε(y, t0 − τ)
∣∣ dy

≤ Ce−
c0
τ sup
t0−τ∈(−Tε−2ε,Tε)

∥∥∂ituk,ε(·, t0 − τ)
∥∥
L2(Rn)

(ˆ ∞
κ

(1 + |ρ|2 /τ)2N ′

τ2`−2i min(τ,R2)2l
e−

c1|ρ|
2

τ ρn−1 dρ

)1/2

︸ ︷︷ ︸
change of variable ρ/

√
τ 7→ρ

≤ Ce−
c0
τ sup
t0−τ∈(−Tε−2ε,Tε)

∥∥∂ituk,ε(·, t0 − τ)
∥∥
L2(Rn)

(
τn/2

τ2`−2i min(τ,R2)2l

ˆ ∞
0

(1 + ρ2)2N ′ρn−1e−c1ρ
2
dρ︸ ︷︷ ︸

finite

)1/2

,

(4.11)

and, moreover, the Minkowski inequality and Young’s inequality give the following bound∥∥∂ituk,ε(·, t0 − τ)
∥∥
L2(Rn)

≤ ‖u‖L2(Rn+1)‖∂itϕε‖L2(R) ≤ ‖u‖Hsk (Rn+1)‖∂itϕε‖L2(R)

for some constants c0, c1, C > 0. Recalling that uk,ε(x, t) is smooth in t, using the estimate (4.114.11),
one can ensure ∣∣∂`τ (e−τHguk,ε) (x, t0)

1

τ sk+m−`
∣∣→ 0, as τ → 0+.

Since we have shown that the boundary values vanish, by applying m-times integration by parts
in τ to (4.44.4), we get

0 =
N∑
k=1

γk
Γ(−sk)

ˆ ∞
0

(
e−τHguk,ε

)
(x, t0)τ−(m+1+sk) dτ

=

N∑
k=1

Γ(m+ 1 + sk)

ˆ ∞
0

fk,ε(τ)τ−m dτ, for any m ∈ N ∪ {0},

where for each fixed ε > 0, the function fk,ε(τ) is defined as

(4.12) fk,ε(τ) :=
bk

Γ(−sk)Γ(1 + sk)

(
e−τHguk,ε

)
(x, t0)τ−(1+sk),

and the constant γk is defined as

γk := (1 + sk)(2 + sk) . . . (m+ sk) =
Γ(m+ 1 + sk)

Γ(1 + sk)
.

Note that the smoothness of uk,ε(x, t) in time variable brings out fk,ε(τ) ∈ C∞((0,∞)).
In addition, we will show that fk,ε(τ) satisfies the bound (3.13.1) so that we will be able to apply

Proposition 3.13.1.

• For τ ∈ (a+ ε,∞), fk,ε(τ) = 0 is implied by (4.64.6) by taking ` = 0.
• For τ ∈ (0, a+ ε], we can derive similarly as in (4.114.11) by taking ` = i = 0 and get

|fk,ε(τ)| ≤ Ce−
c2
τ ,

for some constant c2 > 0.

With this estimate, we can now apply Proposition 3.13.1 to obtain that fk,ε(τ) is identically zero, for
τ ∈ (0,∞) and for all k = 1, . . . , N . Indeed the definition of fk,ε(τ) in (4.124.12) implies(

e−τHguk,ε
)
(x, t0) = 0 for x ∈ ω, τ > 0 and k = 1, . . . , N.
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Since t0 ∈ (−Tε, Tε) can be arbitrary, we further deduce(
e−τHguk,ε

)
(x, t) = 0 for (x, t) ∈ ωTε , τ > 0 and k = 1, . . . , N.

Now, since ω b O and κ > 0 are arbitrarily chosen, we further have

uk,ε = Hskg uk,ε = 0, in OTε , for k = 1, . . . , N.

Applying the (weak) UCP for nonlocal parabolic operators Hskg , sk ∈ (0, 1) (see [BS24BS24, LLR20LLR20]), we
can ensure uk,ε ≡ 0 in RnTε , for k = 1, . . . , N . Then uk ≡ 0 in RnT follows from the fact that uk,ε
converges to uk almost everywhere as ε→ 0. This proves the assertion. �

Remark 4.2. Let us emphasize that the nonlocal operator Hsg has constant coefficients in the time
variable. This allows the use of a convolution argument to relax the regularity assumptions for
certain functions. Consequently, one may weaken the regularity hypotheses in Theorem 1.21.2.

Remark 4.3. The entanglement principle also applies to the adjoint fractional poly-parabolic oper-
ator

∑N
k=1 bkH

sk
g,∗. More precisely, if

u1 = . . . = uN = 0 in Rn × {t ≥ T},

and

u1|OT = . . . = uN |OT =

( N∑
k=1

bkHskg,∗uk
)∣∣∣∣
OT

= 0,

then uk ≡ 0 in RnT for all k = 1, . . . , N . The proof proceeds in the same way as that of Proposition 4.14.1,
except that one reverses the sign in the t-variable.

To study the inverse problems, we only need one single function in the entanglement principle to
prove our result, i.e., u := u1 = . . . = uN in Rn+1. Below, we will apply Proposition 4.14.1 to prove
the Runge approximation for fractional poly-parabolic operators.

For 0 < s1 < . . . < sN < 1, {bk}Nk=1 ⊂ (0,∞), and T > 0, we recall the notation ΩT =

Ω× (−T, T ) ⊂ Rn+1. Let V ∈ L∞(ΩT ) satisfy the eigenvalue condition (1.31.3). For f ∈ H̃sN ((Ωe)T ),
let uf ∈ HsN (Rn+1) solve the problem

(∑N
k=1 bkHskg + V

)
uf = 0 in ΩT ,

uf = f in (Ωe)T ,

uf = 0 in Rn × {t ≤ −T}.
(4.13)

It is known that χ(−∞,T ](t)uf (t, x) is the unique solution of (4.134.13).

Lemma 4.4 (Runge approximation). For n ≥ 1, let W ⊂ Ωe be a nonempty open subset and T > 0
be a real number. Then the set

R = {uf |ΩT : uf is the solution to (4.134.13), f ∈ C∞c (WT )}

is dense in L2(ΩT ).

Proof. The proof is standard and relies on the Hahn-Banach theorem. It suffices to show that if
(v, w)L2(ΩT ) = 0 for all v ∈ R, then necessarily w ≡ 0. To proceed, let w ∈ L2(ΩT ). Assume that(

χ(−∞,T ]uf , w
)
L2(ΩT )

= (uf , w)L2(ΩT ) = 0, for all f ∈ C∞c (WT ),

where χ(−∞,T ]uf denotes the unique solution of (4.134.13) in ΩT . Here we have used the fact that, as
before, the future data does not influence the solution in ΩT .
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Next, let φ ∈ Hs(Rn+1) be the solution of{(∑N
k=1 bkH

sk
g,∗ + V

)
φ = w in ΩT ,

φ = 0 in (Ωe)T ∪ (Rn × (R \ (−T, T ))),
(4.14)

where the well-posedness of (4.144.14) is guaranteed by Remark 2.52.5. Then,

0 = (uf , w)L2(ΩT ) =
(
uf − f,

( N∑
k=1

bkHskg,∗ + V
)
φ
)
L2(RnT )

= −
(
f,

N∑
k=1

bkHskg,∗φ
)
L2(WT )

,(4.15)

for all f ∈ C∞c (WT ), where in the last identity we used the fact that f is supported in WT and uf
solves (4.134.13). As (4.154.15) holds for all f ∈ C∞c (WT ), it yields

N∑
k=1

bkHskg,∗φ = 0 in WT .

Combining it with φ = 0 in WT (from (4.144.14)), we apply the entanglement principle (see Remark
4.34.3) to deduce

φ = 0 in RnT .
Moreover, from (4.144.14) again, the exterior condition of φ in the past and future time vanish, which
implies φ ≡ 0 in Rn+1. Hence we infer that Hskg,∗φ = 0 in Rn+1, for all k = 1, . . . , N . Finally, by
substituting this φ back into (4.144.14), we can conclude w ≡ 0, which proves the Runge approximation.

�

Before proving Theorem 1.41.4, we also need the following integral identity.

Lemma 4.5 (Integral identity). Let ΩT ⊂ Rn+1 be the bounded open set and let V1, V2 ∈ L∞(ΩT )

satisfy the eigenvalue condition (1.31.3). Then, for any exterior Dirichlet data f1, f2 ∈ H̃sN ((Ωe)T ),
we have

〈(ΛV1 − ΛV2)f1, f2〉Hs((Ωe)T )∗×Hs((Ωe)T ) = ((V1 − V2)u1, u2)ΩT
,(4.16)

where u1 ∈ HsN (Rn+1) is the weak solution of
(∑N

k=1 bkHskg + V1

)
u1 = 0 in ΩT ,

u1 = f1 in (Ωe)T ,

u1 = 0 in Rn × {t ≤ −T},

and u2 ∈ HsN (Rn+1) is the weak solution of
(∑N

k=1 bkH
sk
g,∗ + V2

)
u2 = 0 in ΩT ,

u2 = f2 in (Ωe)T ,

u2 = 0 in Rn × {t ≥ T}.

Proof. By the adjoint property, the DN map, one has

〈(ΛV1 − ΛV2)f1, f2〉Hs((Ωe)T )∗×Hs((Ωe)T )

= 〈ΛV1f1, f2〉Hs((Ωe)T )∗×Hs((Ωe)T ) −
〈
f1,Λ

∗
V2
f2

〉
Hs((Ωe)T )×Hs((Ωe)T )∗

= BV1(u1, u2)−BV2(u1, u2)

= ((V1 − V2)u1|ΩT , u2|ΩT )ΩT
.

This completes the proof. �

Now, we can prove Theorem 1.41.4.
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Proof of Theorem 1.41.4. We follow the same argument as the proof of [LLR20LLR20, Theorem 1.1]. If
ΛV1f |(W2)T

= ΛV2f |(W2)T
for any f ∈ C∞c ((W1)T ), where W1 and W2 are nonempty open subsets of

Ωe. By the integral identity (4.164.16), we haveˆ
ΩT

(V1 − V2)u1 u2 dxdt = 0,

where u1, u2 ∈ HsN (Rn) solve
(∑N

k=1 bkHskg +V1

)
u1 = 0 and

(∑N
k=1 bkH

sk
g,∗+V2

)
u2 = 0 with u1 = 0

for {t ≤ −T} and u2 = 0 for {t ≥ T}. Also, u1, u2 have the same exterior value f ∈ C∞c ((W1)T ).
Given an arbitrary φ ∈ L2(ΩT ) and by using the Runge approximation of Lemma 4.44.4, there exists

two sequences of functions {u1
`}`∈N, {u2

`}`∈N ⊂ HsN (Rn+1) that fulfill( N∑
k=1

bkHskg + V1

)
u1
` =

( N∑
k=1

bkHskg,∗ + V2

)
u2
` = 0 in ΩT ,

supp
(
u1
`

)
⊆ (Ω1)T , supp

(
u2
`

)
⊆ (Ω2)T ,

u1
`

∣∣
ΩT

= φ+ r1
` , u2

`

∣∣
ΩT

= 1 + r2
` ,

where Ω1, Ω2 ⊂ Rn are two open sets containing Ω, and r1
` , r

2
` → 0 in L2(ΩT ) as ` → ∞. By

substituting the solutions uj` into the integral identity and passing to the limit as ` → ∞, we infer
that ˆ

ΩT

(V1 − V2)φdxdt = 0.

As φ ∈ L2(ΩT ) is arbitrary, we can conclude that V1 = V2 in ΩT . This completes the proof. �
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