ENTANGLEMENT PRINCIPLE AND FRACTIONAL CALDERON PROBLEM
FOR NONLOCAL PARABOLIC OPERATORS
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ABSTRACT. We examine inverse problems for the variable-coefficient nonlocal parabolic operator
(08¢ — Ag)®, where 0 < s < 1. This article makes two primary contributions. First, we introduce a
novel entanglement principle for these operators under suitable smoothness conditions. Second, we
prove that lower-order perturbations can be uniquely determined from the associated Dirichlet-to-
Neumann map using this principle. However, due to insufficient solution regularity, direct application
of the entanglement principle to the inverse problem is not feasible. To address this, we derive a
modified entanglement principle, enabling the effective resolution of related inverse problems.
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1. INTRODUCTION

Inverse problems for space-fractional equations have garnered considerable attention in recent
years, not only due to their distinctive mathematical features, but also because of their wide range
of applications in physics, biology, finance, and related fields.

A pioneering breakthrough in this dlrectlon is the resolution of the Calderén problem for the
fractional Schrédinger equation (see [GSU20]), which concerns the recovery of an unknown bounded
potential from exterior measurements. One of the key contributions in [GSU20] is the establishment
of the unique continuation property (UCP) for the fractional Laplacian operator (—A)%, 0 < s < 1,
which states that

u=(—A)’u =0 in a nonempty open subset of R" — w =0 in R".
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This fundamental property leads to the Runge approzimation property, which asserts that any L>-
function on a given open set can be approximated by solutions of the fractional Schrédinger equation
((—A)S —|—q)u = 0. Either UCP or Runge approximation can then be used to show that a lower-order
perturbation ¢ can be uniquely determined from exterior data, under suitable regularity conditions
on q.

Following this seminal work [GSUZ20], a substantial body of research has emerged on inverse
problems for various space- fractlonal models For example, simultaneous recovery results for multiple
parameters were obtained in [CLL19, CLR20], while the determination of bounded potentials for
anisotropic nonlocal Schrodinger equatlons was investigated in [GLX17]. These problems remain
open in the local case s = 1 for dimensions n > 3, suggesting that nonlocality appears to provide
significant advantages in addressing such inverse problems. For further developments on both linear
and nonlinear nonlocal inverse problems in various settings, we refer the reader to the following
articles [HL19, HL20, LL22, GRSU20, CMRU22, I 8, GRSU20, LLR20, GU21] and
the references therein.

In particular, owing to the close connection between nonlocal and local settings, interior coeffi-
cients can be recovered elther via reductions based on the Caffarelli-Silvestre extension (see, e.g.,
[CGRU23, Riil25, LLU 724]) or by employing heat semigroup methods on closed Riemannian
manifolds (see, e.g., | Fei24, FKU24, Lin24]). Both approaches share a similar philosophy:
they transfer certain nonlocal mformatlon to its local counterpart, or to the associated heat equa-
tion. In contrast, a local-to-nonlocal reduction was studied in [LNZ24] for the classical Schrédinger
equation in transversal anisotropic geometry.

More recently, the study of perturbation by nonlocal operators has gathered interest because
of their intrinsic mathematical properties and potential applications. The corresponding unique
continuation property, referred to as the entanglement principle, was established in [FKU24] for
the fractional Laplace-Beltrami operator and in [F1.24] for the fractional Laplacian. Its remarkable
capacity to disentangle contributions from each fractional power in a nonlocal operator is expected
to inspire further developments in nonlocal inverse problems. For a comprehensive survey of this
rapidly evolving field, we refer the reader to the recent monograph [LLL25].

1

1.1. Mathematical formulations and main results. In this work, we focus on inverse prob-
lems associated with fractional nonlocal parabolic operators. Let’s begin by defining the parabolic
operator

My =0 — A,

where the Laplace—Beltrami operator Ag is defined as follows:

0
Jk_~
Z dx; < 919 8@';6)'

]kl

Here the metric g = (gjk(x))Kj pen € CF(R™R™™) satisfies the ellipticity condition, i.e., there

exists a constant A € (0,1) such that

(1.1) AP < Z gk (@)€&k < ATHEL

7,k=1

for any € R™ and for any £ = (§1,...,&,) € R"™. Also, |g| stands for the absolute value of the
determinant of g, and ¢/* are the components of the inverse of g = (gk(z)), <jk<n:
The fractional powers of the parabolic operator H, is defined by o

Hou = (0 — Ag)°u, s> 0,
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of a function u = u(zx,t) : R**' — R, n € N. These space-time nonlocal operators are found in
various applications, including continuous-time random walks and mathematical biology. In contrast
with the operators like dyu + (—A,)?, the space and time variables in H, are coupled together with
order s in time ¢ and order 2s in space .

To define such operators, when g = I, (the n x n identity matrix), we simply write H := 9, — A as
a heat operator, where A denotes the classical Laplace operator. In this case, since the coefficients
of H are constants, the operator H® can be defined via the Fourier transform as follows:

(Hou)(&, p) = (ip + |€2)%A(, p),  for (£, p) € R" X R,

for u € S(R™!), which is the Schwartz space of smooth, rapidly decreasing functions in R" x R.

Here f denotes the Fourier transform of f in both space and time variables (z,t). For the latter
purpose, we also use F,(f) and F;(f) to denote the Fourier transform of f with respect to z and
t, respectively. However, using the method of the Fourier transform to define the operator Hy with
variable coefficients is not directly applicable. Fortunately, another more flexible approach through
the parabolic language of semigroups is available to handle Hj, see for instance, [ST17] and also
the discussion in Section 2. In particular, it can also provide the explicit formula for Hj at the
space-time point (z, ).

1.1.1. Previous work on nonlocal parabolic inverse problems. Let us revisit inverse problems re-
lated to nonlocal parabolic operators. We consider the Calderén-type problem for the equation
(’Hf] + V) u = 0 with a time-dependent potential V' = V' (z,t). The goal is to recover V from exterior
measurements Ay defined below.

Let uy be the solution to the problem

(H;—l—V)u:O in Qrp,
(1.2) u=f in (Qe)r,
u=20 in R" x {t < -T1},
where we use the standing notations
Qe :=R"\ Q,
and
Ar = Ax (-T,7),

for any subset A C R™ and a fixed real number T" > 0 throughout this work. Notice that our initial
condition in (1.2) is needed due to the natural nonlocality of the operator H;.
To study inverse problems for (1.2), we require an additional eigenvalue condition: Suppose that

{0} is not a Dirichlet eigenvalue of (1.2) in the sense that

(Hy+V)u=0 inQp,
(13) If u € H¥(R"") solves { u =0 in ()7,

u=20 in R" x {t < -T},
then v = 0 in R7.

Here the space H*(R"!) is defined in Section 2. It is well-known that for all bounded potentials
V >0, (1.3) is satisfied automatically. Since the condition (1.3) ensures unique solvability of the
forward problem for (1.2) (see Section 2), we can formally define the Dirichlet-to-Neumann (DN)
map Ay of (1.2) by

Ay FE(Q)r) = H(@Q0)r), [0 Hiugl g
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By using the DN map Ay, it has been shown in [LLRE20, BS24] that the time-dependent potential
V' can be recovered uniquely.

We would also like to point out that in the works [LLU22, LL.U23], the authors show the nonlocal-
to-local reduction with respect to both the heat semigroup and the Caffarelli-Silvestre extension
approaches. More precisely, they demonstrated that the nonlocal DN map for nonlocal parabolic
equations can determine their local DN map for local parabolic equations.

1.1.2. Main results. In this article, we extend our study to the models with the fractional poly-
parabolic operators ch\;l b Hg* for constants by. As mentioned above, several previous works have
been devoted to studying inverse problems for the operator Hy with local perturbation. However,
when nonlocal operators perturb it, the complicated nonlocal interactions contributed from different
terms make the problem challenging to solve. To decouple their entangled effect, we introduce a
novel approach in Theorem 1.2 and use it to study the related inverse problems in Theorem 1.4.

Now we state the setting of the problem to be investigated and the key approach. Given an
integer N > 2, let O C R" be a nonempty open set. Suppose that uy € C°(R"*!), for k=1,..., N.
Inspired by the papers [FKU24, FL24] which address the entanglement issue for fractional elliptic
operators, we are interested in the following question:

(IP-1) Given N > 2. Suppose that {ux}_, C C®(R"") satisfies

N
utlp, = ... = unlp, = <Zbkﬂgkuk>
k=1

where {by} C C\ {0}, and {ay} C (0,00) \ N are given real numbers. Does there hold uy =0
in R} forallk=1,...,N?
The notation N denotes the set of all positive integers, and Z denotes the set of all integers. Note
that when N = 1, for a single operator Hg, this property is referred to as the unique continuation
property (UCP) and has been studied in [LLR20, BS24].

= O7
Or

Remark 1.1. Restrictions on the exponents {ak}]kvzl are necessary, since for general choices of
{ar |, Question (IP-1) does not always hold. To illustrate this, consider the case N = 2. Let
a € (0,00)\N and set oy = a+m, as = a for some m € N. Given a nonempty open subset O C R™,
let up € C*°(RY}) be a nontrivial function such that uy =0 in Or. Since 7—[;” is a local operator for
m € N, by defining uz := —Hg'u1, it follows that ug = 0 in Or and, moreover, the equation

Hglul + HgQUQ =0 in Or.
However, u1 and us are not trivial functions.

The above counterexample shows that no such principle exists for local operators, and it leads to
the following optimal condition for our entanglement principle:

Assumption 1. We assume {ay}y_; C (0,00) \ N with a1 < as < ... < an, and that they satisfy
ap—oj €7 for all j #k,

which is required to ensure a positive answer to Question (IP-1). This nonresonance condition guar-
antees that the fractional powers remain genuinely distinct and cannot be reduced to local operators
by integer shifts.

Our first main result, which decouples the entangled effects, is stated as follows.

Theorem 1.2 (Entanglement principle). Let O C R™ be a nonempty open set for n > 2. Let
N €N, T >0, and {ag}2_, C (0,00) \ N satisfy Assumption 1. Suppose g € C(R";R™*")
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satisfy (1.1). Assume that {u}_, C C®((—00,T); S(R")) satisfy the following estimates: given
any B = (Bo,P1,---,0n) € (NU {0})”“, there exist positive constants Cg and & such that

(1.4) |DJ juk(,1)| < Calpp(x)e™, |8 >0 for (x,t) € R" x {t < —T'},
18]
fO?” k= 1, . ,N, where Df,t = m and QO,@? S S(Rn) If
N
(1.5) utlp, =... =unlo, =0 and (Zbk%f;kukz> =0
k=1 Or

hold for some {bx}i_, C C\ {0}, then uy, =0 in R% for allk=1,...,N.

Theorem 1.2 extends the entanglement principle established in [FKU24, FL24] for elliptic opera-
tors to the parabolic setting. Specifically, [FK1U24] proved the validity of the entanglement principle
for the Laplace-Beltrami operator in the compact case, while [F'1.24] addressed the non-compact
case for the classical Laplace operator.

We also would like to emphasize that the decay condition (1.4) will not impose any additional
assumption in the study of inverse problem in Theorem 1.4. Moreover, when N = 1, (1.4) can be
removed in Theorem 1.2, see Remark 3.4 for more detailed discussions.

Remark 1.3. In our case, owing to the extra time variable in the fractional parabolic equation, the
exponents {ak},]y:l only need to satisfy Assumption 1. This is different from the fractional Lapla-
cian considered in [F1.24]. Indeed, [FL24] requires additional assumptions on the odd dimensions to
remove the resonance effect, which is only a technical reason.

As an application of the above entanglement principle, we study the unique determination of a
time-dependent potential V' in fractional poly-parabolic operators defined by

N
(1.6) Py =) bH 4V,

k=1
where V' = V(x,t) € L®(Qr). Here 0 < s1 < ... < sy < land b >0 forall 1 <k < N (the
positivity of b is needed for the forward problem). We consider the initial exterior value problem

Pyu=0 in Qp,
(1.7) u=f in (Qe)7,
u=0 in R" x {t < -T}.
Assume that
{0} is not a Dirichlet eigenvalue of Py .

Theorem 2.4 guarantees the well-posedness of the problem (1.7) and allows us to define the corre-
sponding exterior DN map

N
Ayt HPN(Q)r) = H N (Q)r),  f Y beHibuy
k=1

)

(QE)T

where uy is the unique solution of (1.7). A rigorous definition of the DN map can be found in
Section 2.4.
We are interested in the following question.

(IP-2) Can one determine the potential V € L (Qr) using the exterior DN map Ay of (1.7)7

The second main result of the paper answers this question.



6 R.-Y. LAI, Y.-H. LIN, AND L. YAN

Theorem 1.4 (Global uniqueness). Given N € N, {bx}_| C (0,00), and 0 < s1 < ... < sy < 1,
let Q@ C R™ be a bounded Lipschitz domain for n > 2, and Wy, Ws € Q. be nonempty open subsets.
Suppose g € C(R™; R"™™) satisfy (1.1). Let V; = Vj(x,t) € L>*(Qr), and Ay, be the DN map of

(S M+ V)u=0 in Qr,

u=f in ()7,

u=0 in R" x {t < =T},

for j =1,2. Then the relation
AVLH(WQ) sz‘ Wa)r for any f € CZ((Wh)r)
implies that Vi = Vo in Qp.

Note that Theorem 1.4 extends the earlier results in [LLR20, BS24] (the works studied a global
uniqueness for the case N = 1) to multiple terms of nonlocal parabolic operators.

1.2. Organization of the article. In Section 2, we recall several functional spaces and introduce
nonlocal parabolic operators through the semigroup theory, together with well-posedness results for
initial exterior value problems and rigorous definitions of the DN maps. Section 3 is devoted to
establishing the entanglement principle for nonlocal parabolic operators. Finally, in Section 4, we
prove the remaining main result regarding the global uniqueness of the potential in Theorem 1.4.

2. PRELIMINARIES

In this section, we introduce the function spaces used in this paper and recall several useful
properties of the nonlocal parabolic operator H;.

2.1. Function spaces. We start by recalling the (fractlonal) Sobolev spaces. Givena € R, H*(R") =
We2(R") is the L?-based fractional Sobolev space (see /12] for example) with the norm

lall oy == (|7 { (€) ]:w“}HL2(Rn)7
where (&) = (1 + 16\2)% Let O C R™ be an open set. We define

H*(O) :={ulo: ue H*R")},

H%(0) := closure of C°(O) in H*(R").

The space H*(O) is complete under the norm

lull o0y = inf {HU”H&(RTL) : v e HYR™) and v|p = u}
Given an open set B C R""1 if f = f(z,t) and g = g(z,t) are L? functions in B, we denote the
L? inner product by

(}.9)5 = /B 17 dedt.

For the nonlocal space-time operator H* = (9; — A)®, we will work on the following Lions-Magenes
Sobolev spaces H*%/2(R"™ x R) (see [LM72, Chapter 4.2] and in particular equation (2.3) there). To
simplify this notation and to emphasize the coupling between time and space variables, hereinafter
we abbreviate it by H*(R"*!). More precisely, for a € R, we consider

HY(R™™) = {u € LA(R"™) : |Jullggaqgntr) < 00} = H*2(R” x R),

where

(2.1) [IEA— /R (A lip 6P [, p)Pdpds < oo.
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: 1/2 _
Note that [ip + €2 = (|pf> +[€[)"* and 272(|p| + [¢[2) < (Ip® + €[/ < |o| + €2 As
the “classical” fractional Sobolev spaces (see [McL00]), the following notations follow naturally by
treating spacetime together. For an open set O and a closed set F in R™*!, n > 1, we define

H"(0) := {ulo : uve HYR")},
H®(0) := closure of C2°(0) in H*(R"),
% =HEHR") == {u e HYR""") : supp(u) C F}.
Also, C°(R™1) is dense in H*(R™"!) under the norm || - [|ga(gn+1). Moreover,
(H*(0))* =H"%(0), (H*(0))* =H"%0), for a € R.

2.2. The nonlocal parabolic operator. The definition for the nonlocal parabolic operator Hj
was given in [Bal60] (also see [BDLCRS21, BS24]) for 0 < s < 1. It is known that heat operator

-

Oy — Ay in R™ x R possesses a globally defined fundamental solution p,(x,y), which satisfies

eTR1(x) = / pr(z,y)dVy(y) =1, for every x € R" and 7 > 0,
where e™®¢ stands for the heat semigroup associated to the operator Ay. For u € S(R"), we have
eTRay(z) = / pr(z,y)u(y) dVy(y), for every x € R™ and 7 > 0.

Here the Riemannian volume form dVj is given by dV,(y) = /|g| dy. For the purpose of simplifying
the notation, in what follows, we will only use dy to represent dV;(y). Meanwhile, the heat kernels
pr(x,y) satisfies

1\ ejley? 1 \™?  cpley?
(22) Cl (471’7’) e ! 4T S pT(.’E,y) S CQ (47‘[‘7’) (& 2 4t s

for some positive constants ci, co, C; and C5 and for all z,y € R™, 7 > 0.
Since 0; and —A, are commutable, we have e~ ™Mo = ¢™29 0779 and the evolution semigroup is
given by

(2.3) e Mou(x,t) = e Pou(z,t — 1) = / pr(z,y)uly,t —7)dy, 7>0, foruec SR™M),

n

where p,(z,y) is the heat kernel given as before, and S(R"!) stands for the Schwartz space. Mean-
while, it is held that

e Ml (x,t) = / pr(z,y)dy = 1, for every (z,t) € R", and 7 > 0.

Note that {e_THg }T>0 is a strongly continuous contractive semigroup such that!

|e” oy — ull 2mni1y = O(7), as 7 — 0.

Let us first give the explicit formula of Hj via the heat semigroup.

Definition 2.1 (Balakrishnan formula). Given s € (0,1) and u € S(R™™!), the nonlocal parabolic
operator H; can be defined as (see [3524, Section 2])

1 Ry dr
(=) /0 (e"tou(z, t) — u(z,t)) i

IThe notation O(7) is the Bachmann-Landau notation.

(2.4) ’HZu(x, t):=
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Note that Hyu € L2(R™Y) for u € S(R™!) by the functional calculus. Using (2.3), we can
rewrite (2.4) as follows:

Hyu(x,t) = /OOO /n (u(y,t — 1) —u(x,t)) Ks(z,y, 7) dydr,

where
_ 1 pe(zy)
Ks(z,y,7) = T(—s) 71t
In particular, as g = I,,, the kernel K4(z,y,7) has an explicit representation formula
|2
1 eJ 47?-!|

]Cs(mava) =

(47r)”/2F(—s) Tn/2+1+s )
where we used the heat kernel for the heat operator 9, — A precisely.

Remark 2.2. Recall that the fractional Laplace—Beltrami operator can also be defined in a similar
way, which is

1 dr

- TAgv ) — oz
= ['(—s) /O (8 (z) ( )) s
= /0 /n(U(y) —v(x))Ks(x,y, 7) dydr.

Using the Fourier transform with respect to the time variable ¢ € R, one can express Hju in terms
of the Fourier transform. In doing so, we first denote by F) the spectral measure associated to H,,
ie.,

(—=4y)"v(z) :=

My = —/ AE}.
0

We then observe that the heat semigroup {eTAg}T>O can be written by spectral measures as an
identity of gamma functions [BS24, Section 2]: -

(2.5) B — / T e MdE, and / R PR
0 I'(=s) Jo Tits ’

for A > 0 and o € R, where i = /—1. Taking the Fourier transform in the time variable on (2.3)
yields

File Mou)(z,0) = e 7T (Fu(-, o)) (2).

Together with (2.5), this gives the Fourier analogue of the definition (2.4) as follows:

R () = [ O io) B Fut o)

s

Moreover, we define the adjoint operator Hj ,

following manner

of Hj in terms of the spectral resolution in the

Fir(Hyu)(,0) = /OOO()\ —io)* dE\(Fuu(-,0)), foru e SR,

A}

We also recall the following property from [B524, Section 2]
(Hy f,h) = (M3 £ 1) = (£, 15 h)

= / /m(k+i0)5d<EAftf,m>(-,o) do, for f, h e S(R™1).
RJO
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From the resolution of the parabolic version of the Kato square root problem in [AEN20] and
interpolation type argument, H*(R"*!) is the completion of S(R"*!) with respect to the following
norm:

1/2

(/R /OOO (@t A +i0P)" d|Ex(Fuc-, )?) da) s (0,1), foruc SR,
Therefore, we get from the Cauchy-Schwarz inequality that
(2.7) (H3f by = (HP MR < O e o) Bl e oy
for some constant C' > 0 independent of f, h. This leads to the mapping properties
HpHAR™) > HP(R™)  and K, : HY(R™) —» H*(R™).

We refer to [BS24, Section 2] for related discussions.
For general o E (0,00) \ N, we write & = m + s, where m is the integer part of « and s € (0, 1).
Based on [MCSAOL, Chapter 5], we can write

Hy =My = Hy(Hg') = Hy' (H3),

where H' = (0; — Ay)"™ is a local differential operator.

2.3. The well-posedness. In this section, we will show the unique existence of solutions to the

initial exterior value problems (1.7) by adapting the arguments developed in [LLR20, BS24], in which
the well-posed problems (1.2) were proved for a constant and a variable coefﬁment, respectively.

To show the problem (1.7) has a unique solution, we consider the following initial exterior value
problem instead:

Pyu=F in Qrp,
(2.8) u=f in (Q)r,

u=0 in R" x {t < =T},
where F' € (H%)*, f e H"((Q)r), and Py is defined in (1.6).

Let 0 < 51 < ... < sy < 1, and consider the sesquilinear form By (-, ) on H*¥ (R"1) x Hs~ (R7+1)
defined by

N
By (u,w) i= Y b (Mg 2w, H2w) o sy + (Vi 0) 12y -
k=1

According to [LLR20, CLR20], we need to study a time-localized problem. We denote the cut-off of
a function u(z,t) on the time variable ¢ by

ur(t, ) :== ult,z)x—1,7)(t)

where x(_7,7(t) is a characteristic function for ¢t € R. Since the characteristic function is a multiplier
in the Sobolev space H(R) for |y| < 3, we have ur € H*(R""!) when u € H*(R"!) for 0 < s < 1,
see [LLR20, Section 2]. We are ready to define the weak solution for (2.8).

Definition 2.3. Let 2 be a bounded open set in R™ and T > 0. Assume 0 < 51 < ... < sy <1, and
V € L*™(Qr) such that 0 is not a Dirichlet eigenvalue of the problem (2.8). Given F € (H;l)* and
T

f e HV((Q)7), we say that u € HSN (R™Y) s a weak solution of (2.8) if v := (u— f)r € H% and

By (u,w) = (F, w>(H;lT)*XH%, for any w € H%
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Theorem 2.4 (Well-posedness). Let Q be a bounded open set in R™ and T'> 0. Let N € N and
{b 1Y, C (0,00). Suppose g € C°(R™;R™") satisfies (1.1). Assume 0 < s1 < ... < sy < 1 and
V € L*™(Qr) such that 0 is not a Dirichlet eigenvalue of the problem (2.8). Given F € (H%)* and

fe ﬁsN((Qe)T), there exists a unique solution ur € H*N (R™1) to the problem (2.8) satisfying
lur [y ety < C(IF | gaenye + I len (@0)r))

T
for some constant C > 0 independent of F, f, and u.

Proof. Let v := (u — f)r and F:=F— Py f, then v € H;i and vy = v. It suffices to show that for
T

F € (HEY)*, there exists a unique solution v € HEY such that
QT QT

I SN
By (v,w) = (F, w>(H;lT)*XH%, for any w € HW'

Consider the bilinear form
BV(Ua w) + //’(’Ua w)LQ(QT)a
for p > || min{V,0}| (0, in H;ﬁ The boundedness of this bilinear form
T

N
By (v,w) + p(v,w)r2(0p) < C Y ollgss @y [wllgon @etr) + Cllvll oy [wl e @a
p)
< Clllasy @ty wllgsy @nt1y  for any v, w € Hf_liT,

follows directly from (2.7).
We now prove the coercity in the space H;i Note that for k = 1,..., N, we have for v € H;l
T T

that
(M 20, 1220 / / (A+ i)™ d|| Ex(Fiv) (-, 0)||? do
RJO

(2.9) = /R/Ooo X+ io|* (cos(sp0) + isin(spf))) d||Ex(Fw)(-,0)|? do

:// A+ i | cos(sx8) d| E(Frv) (-, o)|2 do,
RJO

where tanf = o /) and we utilized the fact that sin(sxf) is an odd function in the last step. Since
A > 0 implies 0 € (=3, %), we have for all s, € (0,1) that
SET _ ST
S(sp0) > cos (2E2) > 2 = :
cos(sif) > cos ( 5 ) > 1g€1§nNcos< 5 ) cs >0
Therefore, using the fact > || min{V, 0}/ (q,), equation (2.9) and the equivalent norm between
(2.6) and (2.1), we obtain

(2.10)

N N
Bwuw+ummmmﬂz§)MHW%J@f@WH20§34¢Jw+mﬂ”wmmfﬁw.
k=1 k=1"R"
Applying the Hardy-Littlewood-Sobolev inequality for the z-variable and the fact that v is compactly
supported in z-variable, it yields for any s € (0, 1),

(2.11) / meFk§p2aw>/H ) 2F(, p) |22 ey dp = Cllv][F 2@y,

GMN21] for a detailed explanation. Coercivity then follows from (2.10) and (2.11),

see [LLR20, BGMN
+ (U U)LQ(QT) 2 CHUHHSN (Rn+1)*

that is, BV( )
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By Lax-Milgram theorem, there exists a unique solution v = G, F € H;TN such that
T

BV('U, w) + N(Ua w)Lz(QT) = <ﬁ7w>(H

SNyeypiy, forany w € HZY
Qr Qr T

along with

Qp
In particular, G, : (7—[?21; ) — ’H?{; is bounded and by the compact Sobolev embedding, the operator

HUHH% < CHFH(HSN)*-

G, : L*(Qr) — L*(Q7) is compact. Then the spectral theorem implies that the eigenvalues of G,

are ﬁ with A\; — +o00. Fredholm alternative and the assumption 0 is not a Dirichlet eigenvalue

of Py ensure the existence and uniqueness of the problem under consideration. O

Remark 2.5. The assumption that {0} is not a Dirichlet eigenvalue of Py implies {0} is not a
Dirichlet eigenvalue of the adjoint of Py. Similarly, we can establish the well-posedness result for
the adjoint problem to (2.8). Under the hypothesis of Theorem 2.4, there exists a unique solution
u € HSN (R"Y) to the future exterior problem

(Zévzl bHys +V)u=F inQr,
u=f in (Qe)r,
u=0 in R" x {t > T}.
2.4. The Dirichlet-to-Neumann map. Based on the well-posedness results of initial exterior

problems (1.7), let us define the corresponding DN maps Ay by means of the bilinear form By .
We first introduce the following quotient spaces for our exterior data by

X:=H"R" x [-T, T])/H%,
equipped with the norm
1Al == inf |If 4 &l s (n), for f € H*N(R" x [T, T]).
peH N

Qp

Denote X* as the dual of X. We now define the DN maps as follows:

(Av[f], [ o wxc = Bv(uy,Q), for [f],[¢] € X,

where uy € H*N (R"*1) is the solution of (1.7) with the Dirichlet data f.
Analogously, one can also define the adjoint DN maps by utilizing the following natural pairing
property

<[f]? A*V[C}>Xxx* = <AV[f]7 [<]>X*XX’ for [f]? [C] € X,

Also, the adjoint DN maps can be represented as

(], AvICDxixx; = Bv(fiue),  ([Al,

where u; € H*N (R"1) is the solution of the adjoint equation (Yo, byHsk + V)ue = 0 with the
Dirichlet data ¢ in ()7 and u¢ = 0 for t > T'. To simplify the notations, we use f to denote [f].

Proposition 2.6. Let Q) be a bounded open set in R™ and T > 0. Let N € N. Assume that
(b}, € (0,00),0< 81 <...<sy <1, and V € L®(Qr) such that 0 is not a Dirichlet eigenvalue
of the problem (2.8). Then the DN map Ay defined above is well-defined and bounded.

Proof. We first show that Ay only depends on the equivalence classes. For f, ( € H*N (R" x [T, T1).
Let ¢, ¢ € Hgi Since uy and ugi4 both solve the equation (1.7) with the same exterior data,
T

Theorem 2.4 implies uy = uyy4. By the linearity of By in the second component, it yields
By (uft¢,C+¢) = By (us,( +1) = By (uy, () + By (ug, ¥).
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Using the fact that supp(y)) C Qr and uy solves (1.7), we get By (us,) = 0. This proves that
(Av(f + @), (C+v)) = (Avf,¢) and thus Ay is well-defined.
The boundedness of Ay follows from

AV £, O < |Bv(ugte, ¢+ )| < Cllugtgllgsn ey 1€+ 9l grsn metr)
and taking the infimum with respect to ¢, 1) € H‘;iT O

3. THE ENTANGLEMENT PRINCIPLE

The aim of this section is to show the entanglement principles for the fractional parabolic operators
on the Euclidean domain. To this end, we first recall the result demonstrated in [F K124, Proposition
3.1], which will play a crucial role of decoupling the mixed fractional parabolic operators later.

Proposition 3.1 ([FKU24, Proposition 3.1]). Let N € N and {ax}_, C (0,00) \ N satisfy As-
sumption 1. Given a > 0, suppose that {fk}évzl C C*((0,00)), there exist positive constants ¢ and
d such that the function f = fi, (k=1,...,N) fulfills

(3.1) 1f(7)| <ce™, 1€ (a,00), and |f(r)] < ce*g, 7 € (0,al.

Additionally, if there exists £ € NU {0} such that
N 00
ZI’(m—i—l—{—aQ/ fe(r)T™™dr =0, forall m=40,0+1,0+2 ...,
k=1 0

then fr(1) =0 for all T € (0,00), and for allk =1,...,N.

Note that [FKU24, Proposition 3.1] shows the case when a = 1. The same result still holds for
any given constant a > 0 by following the same arguments there.

Remark 3.2. Let us emphasize the essential difference of the entanglement principle between [FKU24,
FL24] and this work.

(i) The works [FKU24, FL24] investigate the entanglement principle for nonlocal elliptic oper-
ators, and we study an analogous tenet for the nonlocal parabolic operator. Particularly, in
[FKU24], the authors investigated the entanglement principle for fractional Laplace—Beltrami
operators on closed Riemannian manifolds. Thanks to the compactness, the first inequality
in (3.1) can be achieved naturally by its heat kernel estimate.

(ii) In [F'1L.24], the authors considered the same problem on R™, for the fractional Laplace operator.
Due to the lack of compactness, the first inequality in (3.1) can not be satisfied. Hence,
the authors introduced the super-exponential decay condition, allowing them to transfer the
problem to the spherical mean vanishing property. In this work, we are in the non-compact
setting as well as [F'L24]. However, thanks to the representation formulas (2.3) and (2.4),
one can introduce a suitable decay condition of u(z,t) with respect to the time variable, so
that the first inequality in (3.1) still holds. Given this, one may expect the entanglement
principle to hold for the nonlocal parabolic operator.

(iii) Let us point out that the entanglement principle for fractional Laplace—Beltrami operators
(—Ay)? remains open in the non-compact Euclidean space R"™, which seems to be a challenging
problem to resolve.

The following theorem lays the foundation of the proof of Theorem 1.2 for {ay}2_, C (0,00) \ N.

Theorem 3.3. Let O C R™ be a nonempty open set forn > 2. Let N e N, T >0, and 0 < 51 <
... < sn < 1. Suppose that {vi}Y | € C®((—o0,T); S(R™)) satisfies the following estimates: given
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any multi-indez 8 = (Bo, B, .., Bn) € (NU{ON" ™, there exist positive constants Cs and 0 such
that

Colpo(@)|e, 18] =0
Colps(@)l, 18] =1

and k=1,...,N, where pg € S(R"). If

(3.2) | D2 g (2, )] < { for (z,t) e R" x {t < —T},

N

(3.3) vilp, = = UN|p, =0 and <Z7—[;k‘vk>
k=1

=0

Or

hold, then vy =0 in RY. for allk =1,...,N.

Proof. Similar to the arguments as in [FKU24, FL24, LLU22], via the condition (3.3), the iteration
arguments yield for m = 1,2, ... that

N

H;nvl‘OT =... :H;”UN‘OT =0, and (ZH;kH?vk> =0.
k=1 Or
Let w € O be an open nonempty subset such that
(3.4) dist(w,R™\ O) > 2k,
for some constant x > 0. For (z,t) € wy, we have by (2.4) that
N N 1 & - dr
. S m — —T m
(3.5) 0= ;Hngg vz, t) = ; F<_Sk)/(; (e ™Mo v ()~
N
1 & Y dr
= 2T ;e e )

(™Mo Hgop) (,0)=(~ 1) (e~ o vg) ()

Next, fix tg € (—=7,T), we shall show no contribution arises at the endpoints when conducting

integration by parts in 7. That is, for £ =0, 1,..., m — 1, the following terms
3.6 oL (emMouy) (a,t !
(3.6) (€ vg) (, O)W

vanish at 7 — 07 and 7 — +o00. Since ty — (—7') > 0, let us denote
a:=ty— (-T)=to+T > 0.

Under this assumption, we have

(3.7) to— 7€ (—o00,-T) if 7€ (a,0),

and

(3.8) to—71€e[-T,T) ifre(0,a]
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To show the boundary terms (3.6) vanish, it suffices to show the following two estimates.

T € (a,0), we have

‘8f(e_THgvk)(1:,to)’ = | (e_THg’Hf;vk> (z,t0)|

1 n/2 czlz yl?
SC’Q/ () e ‘7—[ v ( y,to—T‘dy

4T

(2.2)
(39) < C / o 02\36 yl? ‘(’Dg ){dy
7—’I'L/2 R

By (3.7) and (3.2) and ’Hg = (0t — Ag)*

S CHWHLOO(W) ’
—_——

L =2 n
Jgn e T do=(47T)2

for some ¢; € S(R™), and thus

1 1
4 -7
|8T (6 Hg’l}k) (,I,to)m‘ < CHQIOEHLOO(R'”)W — 0, as T — OQ.

Similarly, for 7 € (0, a], we have

1\"? _. o—u?
‘aﬁ(efmgvk)(%to)‘ SC'Q/ <4> e \H vk(y, to — 7)| dy
Rn T

C colo— yl

SH/Q/ e "Hvky,to—v"dy
T Rn\o
(3.10)

By (3.8) so that H? gVk(y,to —7) =0 fory € O
< ie_cw2 su H”Hev )‘
- /2 p b LY(R"\O)

§Ce_$, foerw@O,
which leads to

1 c 1
0/ — _c
‘87_ (6 THg?}k) ([E,to)m‘ S Ce TW — 0, as T — 0+.

For

Since we have shown that the boundary values vanish, by applying m-times integration by parts

in 7 to (3.5), we get

Vk / (e—THgvk) (x,to)T—(m+1+sk) dr
0

T(m+ 1+ sg) / fre(m)T"™dr, for any m € NU{0},
0

where the function

(3.11) Fulr) = L

L(=sp)T'(1 + s

(77w (o )7,

and the constant vy is defined as vy, = (1 4+ s5)(2 + sg) ... (M + s) = Dmtltsy) © Note that the

I(1+sg)
smoothness of vy (z,t) and p,(z,y) yield fi(7) € C*((0,00)).
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In addition, we will show that fi(7) satisfies the bound (3.1) so that we will be able to apply
Proposition 3.1. As (3.10) for ¢ = 0 implies the case 7 € (0, a], it remains to show the exponential
decay in the interval 7 € (a,00). To this end, by following a similar argument as in (3.9) and utilizing
(3.2) with |8] = 0, it gives rise to the succeeding estimate for fi(7), 7 € (a, 00):

| fe ()] < | (e7™Mowy) (x, to)T~ 50|

< Cyr—(1Fs8) L\Y? et
< Cor o Inr e 4r ’Uk(y,tO_T”d?/

By (2.2)

Cr—Fsk) o _ealo—yl?
ST —a e’ )/ e a |poly)| dy

By (3.7) and (3.2)

< CT_(1+Sk)66(tO_T)HQOOHLoo(Rn)

|2

Jgn e AT do=(4nT) 3

< Ce™e™|| o poo (rn),

since to€(—T,T")

for some g € S(R™). With this estimate, we can now apply Proposition 3.1 to obtain that fi(7) is
identically zero, for 7 € (0,00). Indeed the definition of f(7) in (3.11) implies

(e‘THgvk)(as,to) =0 forzcw, 7>0and k=1,...,N.
Since tg € (=7, T) can be arbitrary, we further deduce
(3.12) (e*TH-"vk)(x,t) =0 for (z,t) ewp, T>0and k=1,...,N.

Now, since w € O and k > 0 in (3.4) are arbitrarily chosen, as a result, substituting (3.12) and (3.3)
into (2.4), we have

v = Hfvp =0, in Op, for k=1,...,N.
Finally, applying the (weak) UCP for nonlocal parabolic operators H;, s € (0,1) (see [B524, LLR20]),
we can ensure vy = 0 in RY, for £ =1,..., N. This concludes the proof. O

With Theorem 3.3, we can prove Theorem 1.2.

Proof of Theorem 1.2. For ay, = my+ s € Ry \N, where my, is the integer part of oy, and s € (0,1)
is the fractional part of ax. In particular, we have HZ* = ’H;"”Sk = Hg (’Hg”k) Note that

{ug}_, € C*®((—00,T); S(R)), and we let

vg = bpHy*uy, by € C\{0}, fork=1,...,N,
which is also in C°°((—o0,T); S(R™)). Since Hy* is a local operator, the condition (1.5) implies
(3.3), and the condition (1.4) leads to (3.2). By Theorem 3.3, we deduce v = 0 in R7., and thus

Hy'mup, = 0 in R with uklo, = 0. Lastly, the UCP of the classical parabolic operators Hg't in Rip
leads to the desired result u; = 0 in R%.. This proves the assertion. (|

We conclude this section with some remarks regarding the exponential decay conditions.
Remark 3.4.
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(i) The exponential decay condition (3.2) is needed only for N > 2 (entangled nonlocal parabolic)
i Theorem 8.8 in order to break the nonlocal effect arising from every fractional operator
Hgk. When N =1 (single H; ), however, the UCP holds without such decay condition and it
has been shown in the works [BS24, LLR20, LLU22]. As a result, (1.4) in Theorem 1.2 can
be removed when one considers N = 1.

(ii) Although the decay conditions (1.4) and (3.2) seem strong, for the study of inverse problems,
both (1.4) and (3.2) hold automatically provided that the solution of the initial exterior value
problem has zero initial data, namely, v = 0 in R™ x {t < =T}, see Section 4 for detailed
discussions.

4. INVERSE PROBLEMS AND PROOF OF MAIN RESULTS

4.1. Global uniqueness for the fractional poly-parabolic operators. It is known that the
proof of uniqueness can be established by employing the UCP together with the Runge approximation
property. In what follows, we present an alternative formulation of the entanglement principle by
additionally imposing an initial value vanishing condition (4.1), which helps to shorten the arguments
for the UCP in [LLR20, BS24]. It is worth mentioning that when we deal with the inverse problem,
(4.1) is fulfilled naturally due to the initial condition in the problem under consideration.

Proposition 4.1 (Modified entanglement principle). Let O C R™ be a nonempty open set for
n>2 Let NeN, T >0, {b})_, C(0,00), and 0 < 51 < ... < sy < 1. Let uy, € H*(R" 1), for
k=1,...,N. If

(41) u1:...:uN:0mR"><{t§—T},
and
N
(4.2) ul\OT =...= UN‘OT = (Zkagkuk) =0,
k=1 Or
hold, then u; = ... =uny =0 in R} forallk=1,...,N.

Proof. The proof can be reduced to Proposition 3.1 after an appropriate deduction. Note that the
functions u; € H* (R"*!) are not necessarily smooth, thus Theorem 3.3 cannot be applied directly
to the current setting. To address this lack of smoothness, we utilize certain properties of the heat
kernel, combined with a smooth mollifier, which enables us to approximate the functions u; and
thereby overcome the regularity issue.

To this end, for € > 0, we denote

T. =T —¢.
Consider the one-dimensional standard mollifier ¢ € C§°(R) with compact support supp ¢ C (—1,1),
and satisfy 0 < ¢ and ||¢|[z2@®) = 1. For each € > 0, we define p.(t) := e tp(t/e) and thus
ve € C®(R) with suppp. C (—e,e). For each z € R", since ug(z,-) is locally integrable in ¢
variable, the function

£

Upe(z,t) = (up * @) (x,t) = / ug(xz, t —n)ps(n)dn, te (—o0,Tz),

—€

and ug(x,-) € C*°(R). Also, up.(x,-) = ug(x,-) almost everywhere as ¢ — 0 for k=1,...,N.
Next, for s € (0, 1), recalling the definition (2.4) and using a direct computation give

(HZUKE) (x,t) = (HZ(uk * gog))(ac,t) = ((HZuk) * gpa)(x,t), (z,t) € Or,,
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which can be seen since Hyu(z,t) is defined via a convolution in ¢. This implies

N N

D (Hyku) % o) (w t) = ) (HyFuge) (1), (x,t) € Or..
k=1 k=1
Together with (4.2) and (4.1), we get
e =...=uyne=0,in (O x (~T. — 26, T.)) U (R" x {t < —T. — 2¢}),

4.3 N
( ) Z 'H;kuk,s = 0, in OT5~
k=1

Applying H', m =1, 2,..., to (4.3) leads to

N
H;nulﬁ‘@n_ =...= %;nuN,E|OT5 = (Z bk/f‘[;n—i-skuk’g) =0,
k=1 Or,
Let w @ O such that
dist(w,R™\ O) > 2k,

for some constant x > 0. For (z,t) € wr,, we have by (2.4) that

a A dr
(4.4) 0= bHFH upe(z,t) =Y - (—ksk) /0 (e ™MoH up ) (a, t) Tty

k=1 k=1

= i\f: b /Oo(l)mﬁm (e_Tngk ) (z 25)i
k=1 I'(=sk) Jo T N

Next, fix tg € (=T, T:.), we shall show no contribution arises at the endpoints when conducting
integration by parts in 7. That is, for £ =0, 1,..., m — 1, the following terms
Y4 —
(4.5) oL (e"Mouy, ) (2,t0) = s

vanish at 7 — 07 and 7 — +o0.
Let us denote

a:=ty— (-T)=to+T >0,
and split 7 into the following regions:
to—7 € (=00, —T. —2) if 7€ (a+e,00),
and
to—71€[-T.—2¢,T.) if € (0,a+¢]

We first show the boundary terms (4.5) vanish when 7 — oo. For 7 € (a + ¢, 00), we have tg — 7 €
(—o0, =T — 2¢), and
Ule=...=une=01in R" x {t < -T, — 2¢}.

Therefore

|04 (e o) (x, to)| = | (efTH"Hf,Uk,s) (z,t0)|

1 n/2 col—y|?
(4.6) s@/ QM> e T [ Hbupe(y,to — )| dy

=0.
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Now, notice the function (e‘Tngk,g) (x,t) is C*-smooth for (z,t,7) € R"! x (0,00). This can
be seen via the integral formula (2.3) and the heat kernel p,(z,y) is C*°-smooth for (z,y) € R™ x R"
and 7 > 0 (see [Dav90], Chapter 5). Moreover, it is also known that the function (e~ "*ouy, ) (x,t)
satisfies

(4.7) li%l+ (e*TH-"ukf) (z,t) = upe(x,t) for (z,t) € R™L,
T—

{(87- + Hg) (e Moug ) (z,t) =0 for (z,t,7) € R"" x R,

where the above limit holds in the L?-sense, for all k = 1,..., N.
Next, we shall show no contribution arises at 7 — 07. For 7 € (0,a + €], we have tg — 7 €
[T — 2¢,T;) and

Ule=...=une =0in O x (=1, — 2¢,1;).

For z € w € O, using (4.7) and binomial expansion, the Lebesgue dominated convergence theorem
infers that

|05 (e M oug ) (w, t0)| = |(8: — Ag) (7 oun.c) (z, to) |

_ /n Zzt (f) O (—Ag) " (pr(z,y)ure) (y, to — 7) dy|

_ f: (f) /H%n\o(—Ag)é_ipT(x,y)8§Uk7a(y,t0 —7) dy‘
=1

- é <f> /Rn\o(_@)g‘ipf(fr,y)afuk,s(y’to —7)dy|,

where we used p;(z,y) is the heat kernel solving the heat equation

(87' - Ag)pT(xay) =0,

for x 2y, z,y € R" and 7 > 0 (since x € w and y € R™\ O). Utilizing [Gri9
known that the heat kernel satisfies the following time-derivative estimate

5, Theorem 3.1], it is

y Lt e —yP /)N eou?
4.9 - = | ' T
( ) }87- pT($7y)‘ <C =i min(ﬂ Rz)l ‘ o

forany £ € N, R > 0, z,y € R" and for some constants C, N, > 0 with N’ =/¢ — ¢+ [+ 1. Thus,
inserting (4.9) into (4.8), we have

¢ 2/ \N'
- ¢ (L+]z—y[* /7)Y _lewi?)
14 TH )
(4.10) |0z (e T upe) (z, to)| < 0;21 <z> /R”\O i min(r, R2)! e” i |Btunc(y,to — 7)| dy.
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Thanks to the bound (4.10), for 7 € (0,a + €], by the Holder inequality, we have
(4.11)
/ (Lo =y /)Y s
R

. T i to — M)\ d
mo T min(r, R?)! 7 |Ofune (g, to — )] dy

_« : ° (L+]pf /)N el 1/2
<Ce = sup Otuge(-,to — 7) n (/ — e p"ldp
to—TE(-To—2e.T) H [Raliz HL2(R ) . T2 min(7, R2)2l )
change of variable p/\/T+—p
< . Tn/2 o0 9 2N/ . ) 1/2
<Ce 7 sup Ojug. (- to — T) n S / (14 p2)2N pr=le=er® 4p ’
tO_TE(_TE_2€7TE) H ! . HL2 (R ) 7—22721 mln(T7 R2)2l 0

finite

and, moreover, the Minkowski inequality and Young’s inequality give the following bound
10 ke (-, to = )| 2y < Null L2 gnty 105 0ell L2y < Nullese 1) 10; e | 2 ry
for some constants cg, c1,C > 0. Recalling that uy ((x,t) is smooth in ¢, using the estimate (4.11),

one can ensure

‘8£ (e ™Moug ) (2, t0) as 7— 0.

Tsk—i—m—f ‘ - 0’
Since we have shown that the boundary values vanish, by applying m-times integration by parts
in 7 to (4.4), we get

o
I

Yk S 1) (mt1tsg) g
F(—Sk)/o (e uk’,E)(x7 0)7- T

1= T

L(m+1+ sg) / fre(m)T"™dr, for any m € NU {0},
0

B
Il

1
where for each fixed € > 0, the function fj .(7) is defined as
b

['(—sk)T(1 + sg) ("M oupe) (x, to)r (k)

(4.12) Jre(T) ==

and the constant 7y is defined as
C(m+1+syg)
I'(1+ sg)
Note that the smoothness of uy .(x,t) in time variable brings out f (1) € C*((0, c0)).

In addition, we will show that fj .(7) satisfies the bound (3.1) so that we will be able to apply
Proposition 3.1.

e For 7 € (a+¢,00), fre(7) =0 is implied by (4.6) by taking ¢ = 0.
e For 7 € (0,a + €], we can derive similarly as in (4.11) by taking ¢ =i = 0 and get

|fre(r)]| < Ce™ 7,

Ve = (1+sK) (24 sg)...(m+sE) =

for some constant cg > 0.

With this estimate, we can now apply Proposition 3.1 to obtain that fi .(7) is identically zero, for
7 € (0,00) and for all k =1,..., N. Indeed the definition of fj.(7) in (4.12) implies

(e_Tﬂguk@)(:U,tg) =0 forzcew, 7>0and k=1,...,N.
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Since tg € (=T, T.) can be arbitrary, we further deduce
(e_Tngkﬁ)(x,t) =0 for (z,t) €wp, 7>0and k=1,...,N.
Now, since w € O and x > 0 are arbitrarily chosen, we further have
uge = Hytuge =0, in O, for k=1,...,N.

Applying the (weak) UCP for nonlocal parabolic operators Hg, s € (0,1) (see [B524, LLR20]), we

can ensure ug. = 0 in Ry, for K = 1,...,N. Then u; = 0 in R} follows from the fact that g,
converges to uy almost everywhere as € — 0. This proves the assertion. U

Remark 4.2. Let us emphasize that the nonlocal operator Hg has constant coefficients in the time
variable. This allows the use of a convolution argument to relax the reqularity assumptions for
certain functions. Consequently, one may weaken the regularity hypotheses in Theorem 1.2.

Remark 4.3. The entanglement principle also applies to the adjoint fractional poly-parabolic oper-
N Sk . .
ator Y 14 by Hgh. More precisely, if

uy=...=uy =20 ianX{tZT},
and
N
ul’OT =...= UN‘OT = <Zbk'H;i‘*uk> = 0,
k=1 Or

thenu, = 0 inRY forallk = 1,...,N. The proof proceeds in the same way as that of Proposition 4.1,
except that one reverses the sign in the t-variable.

To study the inverse problems, we only need one single function in the entanglement principle to
prove our result, i.e., u := u; = ... = uy in R"*!. Below, we will apply Proposition 4.1 to prove
the Runge approximation for fractional poly-parabolic operators.

For 0 < s1 < ... < sy < 1, {bg}2_; C (0,00), and T > 0, we recall the notation Qp =
Q x (=T,T) C R"*!. Let V € L*(Qy) satisfy the eigenvalue condition (1.3). For f € HN((Qe)7),
let uy € H*N (R™*1) solve the problem

(z{j:l biHSE + V)uf —0 inQp,
(413) ufr = f in (Qe)Ta

up =0 in R" x {t < -T}.
It is known that x(_o 77(t)uy(t, ) is the unique solution of (4.13).

Lemma 4.4 (Runge approximation). Forn > 1, let W C Qc be a nonempty open subset and T > 0
be a real number. Then the set

R ={ufla, : uy is the solution to (4.13), f e C(Wr)}
is dense in L?(Qr).

Proof. The proof is standard and relies on the Hahn-Banach theorem. It suffices to show that if
(v, w)2(q,) = 0 for all v € R, then necessarily w = 0. To proceed, let w € L?(Qr). Assume that

(X(—oo,T]ufaw)LQ(QT) = (ufa w)LQ(QT) =0, forall fe€ CEO(WT)a

where X (_oo s denotes the unique solution of (4.13) in {27. Here we have used the fact that, as
before, the future data does not influence the solution in Q.
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Next, let ¢ € H*(R™"*!) be the solution of

N .
(4.14) { (Z’f 1O+ V)¢’ v I,
=0 in (Qe)r U(R™x (R\ (=T,T))),
where the well-posedness of (4.14) is guaranteed by Remark 2.5. Then,

L2(R2) (f’ Z by )L2(WT)’

for all f € C°(Wr), where in the last identity we used the fact that f is supported in Wr and uy
solves (4.13). As (4.15) holds for all f € C2°(Wr), it yields

(4.15) 0= (up,w)r2Qp) = (“f —/ (Zbk%Sk +V) )

N
> bHiEG =0 in W,

Combining it with ¢ = 0 in Wy (from (4.14)), we apply the entanglement principle (see Remark
4.3) to deduce
¢ =0 in R7}.
Moreover, from (4.14) again, the exterior condition of ¢ in the past and future time vanish, which
implies ¢ = 0 in R"*1. Hence we infer that Hj%¢ = 0 in R*™!, for all k = 1,..., N. Finally, by
substituting this ¢ back into (4.14), we can conclude w = 0, which proves the Runge approximation.
O

Before proving Theorem 1.4, we also need the following integral identity.

Lemma 4.5 (Integral identity). Let Q7 C R"*! be the bounded open set and let Vi, Vo € L™ (Qr)

satisfy the eigenvalue condition (1.3). Then, for any exterior Dirichlet data fi, fo € ﬁsN((Qe)T),
we have

(4.16) <(AV1 - sz)fla f2>HS((Qe)T)*><HS((Qe)T) — ((‘/1 - ‘/2)U1,UZ)QT )
where uy € HN (R”‘H) is the weak solution of
(S e+ V)ur =0 in Q,
=h in (Qe)r,
up =0 in R" x {t < -T},
and ug € HN (R”+1) is the weak solution of
(2521 bk'H;’ﬁk + VQ)UQ =0 mn QT,
= f2 m (Qe)Ta
uz =0 in R" x {t > T}.
Proof. By the adjoint property, the DN map, one has
(Avi = Ave) 1, F2) i () ) o ((90) 1)
= (AV1f17f2>Hs(( Qe)7)* xHs ((Q <f1> V2f2>
== BV1 ('LLl,UQ) - BVQ(u17u2)
= ((Vl - V2)u1’QT7u2‘QT)QT :

This completes the proof. O

H3((Qe))xH((Qe)7)*

Now, we can prove Theorem 1.4.
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Proof of Theorem 1.4. We follow the same argument as the proof of [LLLR20, Theorem 1.1]. If
AV1f|(W2)T = AV2f|(W2)T for any f € C°((W1)r), where W and W are nonempty open subsets of
Q.. By the integral identity (4.16), we have

/ (Vi = Vo)uq ug dadt = 0,
Qr

where uy, us € H*N (R™) solve (Z]kvz1 b H gk +V1)u1 =0and (Z]kvzl b H g% +V2)u2 =0withu; =0
for {t < =T} and ug = 0 for {t > T'}. Also, uj, us have the same exterior value f € C°((W1)r).

Given an arbitrary ¢ € L?(€7) and by using the Runge approximation of Lemma 4.4, there exists
two sequences of functions {u} }sen, {u?}reny C HN(R™1) that fulfill

N N
(D bHeE + Vi)ug = () beHik + Va)ui = 0 in Qr,
k=1 k=1

supp (ug) C ()7, supp (uf) € ()7,

oy =647k ¥y, =172
where 01, Q2 C R™ are two open sets containing (2, and r}, r2 — 0 in L?*(Qr) as £ — co. By

substituting the solutions uz into the integral identity and passing to the limit as £ — oo, we infer
that

/ (V1 - Vg) ¢da;dt =0.
Qr
As ¢ € L?(Qr) is arbitrary, we can conclude that V43 = V5 in Q7. This completes the proof. O
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