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Binary Classification Problem

Supervised learning in Machine Learning

Find a decision function (classifier) to discriminate
two categories data sets.

Successful applications:

(A Fundamental Problem in Data Mining)

Fisher Linear Discriminator
Discrimination Analysis in Statistics

Decision Tree, Neural Network, k-NN and
Support Vector Machines, etc.

Marketing, Bioinformatics, Fraud detection



Binary Classification Problem

Given a training dataset

Main goal:
Predict the unseen class label for new data

xi ∈ A+⇔ yi = 1 & xi ∈ Aà⇔ yi = à 1

S = {(xi, yi)
ììxi ∈ Rn, yi ∈ {à 1, 1}, i = 1, . . .,m}

Find a function                  by learning from dataf : Rn → R

f(x) > 0⇒ x ∈ A+ and f(x) < 0⇒ x ∈ Aà

The simplest function is linear: f(x) = w0x+ b



Binary Classification Problem
Linearly Separable Case

A-

A+

x0w + b = à 1
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Breast Cancer Diagnosis Application
97% Tenfold Cross Validation Correctness

494 Benign, 286 Malignant



Binary Classification Problem
Linearly Separable Case

A-

A+

x0w + b = à 1
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Support Vector Machines
Maximizing the Margin between Bounding Planes

A+

A-

x0w+ b = 1

x0w+ b = à 1



Why Use Support Vector Machines?
Powerful tools for Data Mining

SVM classifier is an optimally defined surface
SVMs have a good geometric interpretation
SVMs can be generated very efficiently
Can be extended from linear to nonlinear case

Typically nonlinear in the input space
Linear in a higher dimensional “feature space”
Implicitly defined by a kernel function

Have a sound theoretical foundation
Based on Statistical Learning Theory



Summary of Notations

Let S = {(x1, y1), (x
2, y2), . . .(x

m, ym)} be a
training dataset and represented by matrices

A =

(x1)0

(x2)0...
(xm)0

⎡⎢⎣
⎤⎥⎦ ∈ Rmân, D =

y1 á á á 0...
. . .

...
0 á á á ym

" #
∈ Rmâm

1 = [1, 1, . . ., 1]0 ∈ Rm.D(Aw+ 1b)>1 , where

Aiw+ b > + 1, for Dii = + 1,
Aiw+ b 6 à 1, for Dii = à 1

equivalent to



(Two Different Measures of Training Error)

min
(w,b,ø)∈Rn+1+m

2
1||w||22 + 2

C||ø||22
D(Aw+ 1b) + ø>1

2-Norm Soft Margin (Primal form):

1-Norm Soft Margin (Primal form):
min

(w,b,ø)∈Rn+1+m
2
1||w||22 + C1 0ø

D(Aw+ 1b) + ø>1, ø > 0

Margin is maximized by minimizing reciprocal of      
margin.

Support Vector Machine Formulations



Tuning Procedure
How to determine C?

overfitting

The final value of parameter is the one with 
the maximum testing set correctness !

C



(Motivation of the Kernel Trick)

The decision function (classifier)

max
ë∈Rm

10ëà 2
1

Support Vector Machine in Dual Form

1-Norm Soft Margin (Dual form):

ë0DAA0Dë

06ë6C110Dë = 0,

w = A0Dë =
P
ëj>0

m

yiëiA
0
iThe normal vector

The bias, is determined by KKT conditionsb

f(x) = ë0DAx+ b =
P
ëi>0

m

yiëi(Aix) + b

All we need to know is the inner products of data



Two-spiral Dataset
(94 White Dots & 94 Red Dots)
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The value of kernel function represents  the  
inner product of two training points in feature 
space

Kernel functions merge two steps
1. map input data from input space to

feature space (might be infinite dim.)
2. do inner product in the feature space

Kernel Technique
Based on Mercer’s Condition (1909)



Examples of  Kernel
K(A,B) : Rmân âRnâl 7à→Rmâl

A ∈ Rmân, a ∈ Rm, ö ∈ R, d is an integer:
Polynomial Kernel :(AA 0 + öaa 0)dï

)(Linear KernelAA 0: ö = 0, d = 1

Gaussian (Radial Basis) Kernel:

eàökAiàAjk22, i,j=1, . . .,mK(A,A0)ij =

Theij-entry ofK(A,A0) represents the “similarity”
of data pointsAi Ajand



(Applying the Kernel Trick)

1-Norm Soft Margin Nonlinear SVM:

Nonlinear Support Vector Machines

1-Norm Soft Margin Linear SVM:

max
ë∈Rm

10ëà 2
1ë0DAA0Dë 06ë6C1s.t. 10Dë = 0,

Applying the kernel trick and running linear SVM in 
the feature space without knowing the nonlinear
mapping

max
ë∈Rm

10ëà 2
1ë0DK(A,A0)Dë

06ë6C1s.t. 10Dë = 0,

All you need to do is replacing         byAA0 K(A,A0)



(Different Measure of Margin)

D(Aw+ 1b) + ø>1

min
(w,b,ø)∈Rn+1+m

||w||1 + C10ø1-Norm SVM:

D(Aw+ 1b) + ø>1

min
(s,w,b,ø)∈R2n+1+m

1s+ C10ø

ø > 0

1-Norm SVM

Equivalent to:

ø > 0
à s 6 w 6 s

Good for feature selection and similar to the LASSO



Smooth Support Vector Machines



SVM as an
Unconstrained Minimization Problem

Hence (QP) is equivalent to the nonsmooth SVM:
min
w , b 2

Ck(1 à D(Aw + 1b))+k2
2 + 2

1(kwk2
2 + b2)

2
Ckøk2

2 + 2
1(kwk2

2 + b2)

D(Aw + 1b) + ø>1
ø>0,w, b
min

s. t.
(QP)

Change (QP) into an unconstrained MP

Reduce (n+1+m) variables to (n+1) variables

At the solution of (QP):
where (á )+= max{á ,0}

ø = (1 à D(Aw + 1b))+



Smooth the Plus Function: Integrate

Step function: xã Sigmoid function:
(1+εà5x)

1

Plus function: x+ p-function: p(x, 5)

(1+εàìx)
1

p(x, ì) := x +
ì
1 log(1 + εàìx)



SSVM: 
Smooth Support Vector Machine

(á )+Replacing the plus function in the nonsmooth
SVM by the smooth p(á , ì), gives our SSVM:

ìnonsmooth SVM as goes to infinity.
The solution of SSVM converges to the solution of

min
(w, b) ∈ Rn+12

Ckp((1 à D(Aw + 1b)), ì)k2
2 + 2

1(kwk2
2 + b2)



Newton-Armijo Method: 
Quadratic Approximation of SSVM

At each iteration we solve a linear system of:

n+1 equations in n+1 variables
Complexity depends on dimension of input space

Converges in 6 to 8 iterations

(w i, b i)
è é

generated by solving aThe sequence

(wã, bã)
quadratic approximation of SSVM, converges to the

of SSVM at a quadratic rate.unique solution

It might be needed to select a stepsize



Newton-Armijo Algorithm

Start with any(w0, b0) ∈Rn+1. Having(wi, bi),

stop if ∇Φì(w
i, bi) = 0, else :

(i) Newton Direction :

∇2Φì(w
i, bi)d

i = à∇Φì(w
i, bi)

0

(ii) Armijo Stepsize :

(wi+1, bi+1) = (wi, bi) + õid
i

õ i ∈ { 1 ,
2
1 ,

4
1 , . . .}

globally and globally and 
quadraticallyquadratically
converge to converge to 
unique unique 
solution in a solution in a 
finite number finite number 
of stepsof stepssuch that Armijo’s rule is satisfied 

Φì(w, b) = 2
Ckp((1 à D(Aw + 1b)), ì)k2

2 + 2
1(kwk2

2 + b2)



Comparisons of SSVM with other SVMs

Cleveland Heart
297 x 13

86.13
1.63

84.55
18.71

72.12
67.55

BUPA Liver
345 x 6 

70.33
1.05

64.03
19.94

69.86
124.23

Ionosphere 
351 x 34

89.63
3.69

86.10
42.41

89.17
128.15

Pima Indians
768 x 8

78.12
1.54

74.47
286.59

77.07
1138.0

WPBC(24 months)
155 x 32

83.47
2.32

71.08
6.25

82.02
12.50

WPBC(60 months)
110 x 22

68.18
1.03

66.23
3.72

61.83
4.91

mâ n
Dataset Size SSVM SVMíí á

íí2

2
SVMíí á

íí
1

LP

Tenfold test set correctness % (best in Red)
CPU time in seconds

QPLinear Eqns.



Two-spiral Dataset
(94 White Dots & 94 Red Dots)



Nonlinear SVM Motivation

Linear SVM: (Linear separator:x 0w + b = 0 )

2
C k øk 2

2 + 2
1(kw k 2

2 + b 2 )

D (Aw + 1b) + ø>1
ø>0, w, b
min

s. t.
(QP)

2
Ckp(1 à D(AA 0Dë + 1b), ì)k2

2+ 2
1(këk22 + b2)

ë, b
min
Dual SSVM with separator: x0A0Dë+ b = 0

By  QP “duality”, w = A 0Dë. Maximizing the margin 
in the “dual space” gives:

2
C k øk 2

2 + 2
1(kë k 2

2 + b 2 )

D (AA 0Dë + 1b) + ø>1
ø>0, ë, b
min

s. t.



Nonlinear Smooth SVM
K (x 0, A 0)Dë + b = 0

K (A, A 0)ReplaceAA 0 by a nonlinear kernel :

2
Ckp(1àD(K(A,A0)Dë+1b,ì)k22+ 2

1(këk2
2 + b2)

ë, b
min

Use Newton-Armijo algorithm to solve the problem
Each iteration solves m+1 linear equations in
m+1 variables

Nonlinear classifier depends on the data points with
nonzero coefficients :

K(x 0, A 0)Dë + b =
P
ë j 6=0

ëjyjK(Aj, x) + b = 0

Nonlinear Classifier:



Remark on Nonlinear SVMs
Dual Form vs. Primal Form

06ë6C1

max
ë∈Rm

10ëà 2
1ë0DK(A,A0)Dë

10Dë = 0,

Nonlinear (Conventional) SVM in Dual form:

O. L. Mangasarian
Generalized support vector machines.
Advances in Large Margin Classifiers, p.135-146, 
MIT Press, Cambridge, MA, 2000

Brings things back to Primal form
min
ë,b,ø

C á L(ø) +R(ë)

yi(
P
j=1

m

yjëjK(Ai,A
0
j) + b) + øi>1, i = 1á á ám

min
ë,b,ø

2
C ||ø||22 + 2

1 (||ë||22 + b2)

D(K(A,A0)Dë+ 1b) + ø > 1



Multiclass Classification Problem

Consider the problem which given m training examples
, where and 

is the class of .

Main goal:
Predict the unseen class label for new data

The simplest function is linear:fj(x) = w0
jx+ bj

(x1, y1), . . ., (xm, ym) xi ∈ Rn, i = 1, . . ., m
yi ∈ {1, . . ., k} xi

fj(x)>fj0(x)⇒ x ∈ {class j}, for all j06=j

fj(x), j ∈ {1, ..., k}Find k functions (classifiers)                                  by 
learning form data.



MSSVM:
Multiclass Smooth Support Vector Machine

min
(w,b,ø)∈Rk(n+1+m)àm

2
1
P
j=1

k

(w0
jwj + b2j) + 2

C
P
i=1

m P
j 6=yi

(øij)
2

subject to : w0
yi
xi + byi õ w0

jxi + bj + 1à øij

min
(ý,b)∈Rk(m+1)

2
1
P
j=1

k

(ý0
jýj + b2j) +

2
C
P
i=1

m P
j 6=yi

p((ý0
j à ý0

yi
)K(A, xi) + (bj à byi) + 1, ë)2

Single optimization formulation for Multiclass
classification problem:

SSVM for Multiclass classification problem:



3-class Classification Problem

Given three training datasets     ,       and      for each 
distinct category respectively. The linear 3-SSVM
formulation is as follows:

Here the matrix                          consists of ,     , and          
is the solution vector.

We can also apply the 3-SSVM to multiclass classification
problem very well. The idea is similar to the one-against-
one method. We call it “Smooth One-One-Rest” (SOOR)
method.

A1 A2 A3

min
ω∈R3(n+1)

2
1kωk22 + 2

Ckp(Bω+ 1, ë)k22.

B ∈ R2mâ3(n+1)

ω ∈ R3(n+1)
A1 A2 A3



Synthetic Datasets 
(For 3-class Classification Problems)

Linear Separable Nonlinear Separable



Support Vector Regression
(Linear Case:f(x) = x0w+ b)

Given the training set:

S = {(xi, yi)| xi ∈ Rn, yi ∈ R, i = 1, . . ., m}

Find a linear function, f(x) = x0w+ b such 
that f(xi) = w0xi + b ù yi, ∀i

The          guarantees the smallest overall
experiment error made by f(x) = x0w+ b

(w, b)



-Insensitive Loss Functionï
(Discard the Tiny Error)

-insensitive loss function:ï

|ø|ï = max{0, |ø| à ï}= 0 if |ø|6ï
|ø| à ï otherwise

ú

The loss made by the estimation function,f
at the data point(xi, yi) is

If ø ∈ Rn then |ø|ï ∈ Rn is defined as:
(|ø|ï)i = |øi|ï , i = 1. . .n

|f(xi) à yi|ï = max{0, |f(xi) à yi| à ï}



x

x

x

x

x

x

x

x

x

ï

-Insensitive Linear Regressionï

f(x) = x0w + b

yj à f(xj)à ï
f(xk)à yk à ï

ï

Find (w, b) with the smallest overall error



ï -insensitive Support Vector 
Regression Model

Motivated by SVM:

||w||2 should be as small as possible
Some tiny error should be discarded

min
(w,b,ø)∈Rn+1+m

2
1||w||22 + C1 0 ø| |ï

where ø| |ï ∈ Rm, ( ø| |ï)i = max{0, Aiw+ bà yi| | à ï}



Reformulated   - SVR as a  
Constrained Minimization Problem

min
(w,b,ø,øã)∈Rn+1+2m

2
1||w||22 + C10(ø+ øã)

yàAwà 1b 6 ï1 + ø
Aw+ 1bà y 6 ï1 + øã

ø, øã > 0

subject to

n+1+2m variables and 2m constrains minimization problem

ï

Enlarge the problem size and computational complexity for solving the problem



SV Regression by Minimizing 
Quadratic    -Insensitive Lossï

min
(w,b,ø)∈Rn+1+m

2
1(||w||22 + b2) + 2

C||(|ø|ï)||22

where (|ø|ï)i = |yi à (w0xi + b)|ï

The objective function is strongly convex

We are going to “smooth” and
solve the unconstrained problem directly.

||(|ø|)ï||22



-insensitive Loss Functionï

(à xà ï)+ (xà ï)+
x| |ï=(xàï)++(àxàï)+



Quadratic  -insensitive Loss Functionï

x| |2ï = ((xà ï)+ + (à xà ï)+)
2

= (x à ï)
2
+ + (à x à ï)

2
+

(x à ï ) + á (à x à ï ) + = 0



p2ï-function replace Use
ïQuadratic    -insensitive Function

p2ï(x,ì) = (p(xà ï,ì))2 +(p(àxà ï,ì))2

p(x,ì)where is defined by
p(x, ì) = x+ ì

1 log(1 + expàìx)

p -function with
ì=10, p(x,10), x∈[à3,3]



x| | 2ï p 2
ï(x, ì), ï = 1, ì = 5



-insensitive Smooth Support 
Vector Regression

ï

min
(w,b)∈Rn+1

2
1(w0w+ b2) + 2

C
P
i=1

m

p2ï(Aiw+ bà yi, ì)2
C
P
i=1

m

A iw + b à y i| |2ï

This problem is a strongly convexstrongly convex minimization 
problem without any constrain

The object function is twice differentiabletwice differentiable thus we 
can use a fast NewtonNewton--Armijo methodArmijo method to solve this 
problem

min
(w,b)∈Rn+1

Φï,ë(w, b) :=



min
(ë,b)∈Rm+1

2
1(ë0ë+ b2)

+ 2
C
P
i=1

m

p2ï(K(Ai,A
0)ë+ bà yi, ì)+ 2

C
P
i=1

m

K (A i, A
0)ë + b à y i| |2ï

Nonlinear Smooth Support Vector   
-insensitive Regressionï

Nonlinear regression function depends on the data 
points with nonzero coefficients :
K(x 0, A 0)Dë + b =

P
ë j 6=0

ëjK(Aj, x) + b = 0



Nonlinear SVM: A Full Model

Nonlinear SVM uses a full representation for a      
classifier or regression function:

ëiAs many parameters     as the data points
Nonlinear SVM function is a linear combination of 

basis functions, B = 1{ } ∪ k(á , xi)
è ém

i=1

B is an overcomplete dictionary of functions when 
is large or approaching infinity

m

f(x) =
P
i=1

m

ëik(x,Ai) + b

Fitting data to an overcomplete full model may
Increase computational difficulties & model complexity
Need more CPU time and memory space
Be in danger of overfitting



Reduced SVM: A Compressed Model
It’s desirable to cut down the model complexity

The parameters are determined by fitting entire data

RSVM classifier is in the form f(x) =
P
i=1

m

uik(x, x
i) + b

Reduced SVM randomly selects a small subset      
to generate the basis functions    :  

Sö

B
B = 1{ } ∪ k(á , xi){ }mi=1

Sö = {(xöi, yiö )
ììi = 1, . . ., mö } ò S,

yj(
P
i=1

m

uik(x
j, xi) + b) + øj>1, ∀j = 1, . . ., m

min
u,b,ø>0

C
P
j=1

m

øj + 2
1
ííuíí2

2

s.t.



Nonlinear SVM vs. RSVM
vs.

D(K(A,Aö0)uö + 1b) + ø>1

RSVM
min
u,b,ø>0

C
P
j=1

m

øj + 2
1
ííuíí2

2

D(K(A,A0)ë+ 1b) + ø>1

Nonlinear SVM
min
ë,b,ø>0

C
P
j=1

m

øj + 2
1
ííëíí2

2

K(A,A0) ∈ Rmâm K(A,Aö0) ∈ Rmâmö

K(A,A0) : K(A,Aö0) :

K(A,A0)ij = k(xi, xj) K(A,Aö0)ij = k(xi, xöj)where and



A Nonlinear Kernel Application
Checkerboard Training Set: 1000 Points in

Separate 486 Asterisks from 514 Dots
R2



Conventional SVM Result on Checkerboard
Using 50 Randomly Selected Points Out of 1000

K(A,A0) ∈ R50â50



RSVM Result on Checkerboard
Using SAME 50 Random Points Out of 1000

K(A,A 0) ∈ R1000â50



Original Function

Noise : mean=0 , û = 0.4

Parameter : C = 50, í = 1, ε = 0.5

Training time : 9.61 sec.
Mean Absolute Error (MAE) of 49x49 mesh points : 0.1761

Estimated Function

481 Data Points in R2 â R



Noise : mean=0 , û = 0.4

Estimated Function Original Function

Using Reduced Kernel: K(A,A 0) ∈ R28900â300

Parameter :C = 10000, í = 1, ï = 0.2

Training time : 22.58 sec.
MAE of 49x49 mesh points : 0.0513



Merits of RSVM
Compressed Model vs. Full Model

Model complexity point of view:
Compressed model is much simpler than full one
This may reduced the risk of overfitting

Successfully applied to other kernel based algorithms
SVR, KFDA and Kernel canonical correction analysis

ø O(m2)
ø O(mâm)

Computation point of view:
Memory usage: Nonlinear SVM           

Reduced SVM

Time complexity: Nonlinear SVM           
Reduced SVM

ø O(m3)

ø O(m3)



Why RSVM Works so Well? 
An Algebraic Explanation 

The full kernel can be approximated by a low-rank
approximation which is known as the Nyström
approximation. That is,

K(A,A0) ù K(A,A0)K(A,A0)à1K(A0, A)

For a vector u ∈ Rm

K(A,A0)u ù K(A,A0)K(A,A0)à1K(A0, A)u

= K(A,A0)u

In RSVM,    is directly determined by fitting the
entire dataset

u

= u



Spectral Analysis
K(A,A0) vs. K(A,A0)K(A,A0)à1K(A0, A)
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       The Eigen−structure: Full kernel vs. Approx. kernel of Image dataset Image(2310, 116): Max-diff: 1.496, Rel-diff of Traces: 0.021

õk

p á ||vk à vk||2



Statistical Optimality
Random selection is an optimal robust scheme

(MinMax): Minimizes the maximal bias measure
between the compressed and full models

Uniform random selection of reduced set to form
the compressed model is an optimal robust scheme
in terms of the following criteria:

Optimal sampling design for bases selection
• It minimizes the model variance



Conclusions

SSVM: A new formulation of support vector machines
as a smooth unconstrained minimization problem

No optimization (LP, QP) package is needed

Can be solved by a fast Newton-Armijo algorithm

RSVM: A new nonlinear method for massive datasets
Overcomes two main difficulties of nonlinear SVMs
Reduces the memory storage & computational time

Rectangular kernel: novel idea for kernel-based Algs.
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