回首頁

回第01期

有五階對稱的晶格嗎?


全文閱覽

作        者 科里澤克 Michal K ížek、梭茨 Jakub Šolc、莎可娃 Alena Šolcová

作者簡介 
譯        者 黃俊瑋

譯者簡介 黃俊瑋為師大博士班,主修數學史。譯有《數學偵探物語》,並與洪萬生教授等人合著《摺摺稱奇:初登大雅之堂的摺紙數學》。

本文出處    Notices 59 (2012) no.1, AMS。感謝三位作者提供本文圖片。

延伸閱讀 

參考資料

[1]     G. Blind and R. Blind, The semiregular polytopes, Comment. Math. Helvetici 66 (1991), 150–154.

[2]     J. Brandts, S. Korotov, M. Kˇrížek, and J. Šolc, On nonobtuse simplicial partitions, SIAM Rev. 51 (2009), 317–335.

[3]     S. Baranidharan, V. S. K. Balagurusamy, A. Srinivasan, E. S. R. Gopal, and V. Sasisekharan, Nonperiodic tilings in 2-dimensions: 4- and 7-fold symmetries, Phase Transition 16 (1989), 621–626.

[4]     A. Bravais, Mémoire sur les systčmes formés par les points distribués réguličrement sur un plan ou dans l’espace, J. Ecole Polytech. 19 (1850), 1–128.

[5]     L. Chen, R. V. Moody, and J. Patera, Noncrystallographic root systems, in Quasicrystals and Discrete Geometry (J. Patera, ed.), Fields Inst. Monographs, vol. 10, 1998, 135–178.

[6]     H. S. M. Coxeter, Regular Polytopes, Methuen, London, New York, 1948, 1963.

[7]     P. Engel, Geometric Crystallography: An Axiomatic Introduction to Crystallography, D. Reidel, Boston, Lancaster, Tokyo, 1986.

[8]     D. Eppstein, J. M. Sullivan, and A. Üngör, Tiling space and slabs with acute tetrahedra, Comput. Geom.: Theory and Appl. 27 (2004), 237–255.

[9]     B. Grünbaum, Dodecahedron and assorted parallelohedra, zonohedra, monohedra, isozonohedra and otherhedra, Math. Intelligencer 32 (2010), no. 4, 5–15.

[10]  B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.

[11]  P. Guyot, News on five-fold symmetry, Nature 326 (1987), 640–641.

[12]  T. C. Hales, Cannonballs and honeycombs, Notices Amer. Math. Soc. 47 (2000), 440–449.

[13]  T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.

[14]  F. Krafft (ed.), Johannes Kepler: Was die Welt im Innersten zusammenhält—Antworten aus Keplers Schriften mit einer Enleitung, Erläuterungen und Glossar herausgegeben von Fritz Krafft, Marix Verlag, GmbH, Wiesbaden, 2005.

[15]  M. Kˇrížek and J. Šolc, From Kepler’s mosaics to five-fold symmetry (in Czech), Pokroky Mat. Fyz. Astronom. 54 (2009), 41–56.

[16]  V. I. Levenshtein, On bounds for packing in ndimensional Euclidean space, Soviet Math. Dokl. 20 (1979), 417–421.

[17]  M. Livio, The Golden Ratio, Headline, London, 2002.

[18]  Z. Masáková, J. Patera, and E. Pelantová, Inflation centers of the cut and project quasicrystal, J. Phys. A: Math. Gen. 31 (1998), 1443–1453.

[19]  A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J. Combin. Theory Ser. A 26 (1979), 210–214.

[20]  R. Penrose, Role of aesthetics in pure and applied mathematical research, Bull. Inst. Maths. Appl. 10 (1974), 266–271.

[21]  V. Sasisekharan, A new method for generation of quasi-periodic structures with n fold axes: Application to five and seven folds, Pramana 26 (1986), 283–293.

[22]  E. Schulte, Tilings, in Encyclopedia of Physical Science and Technology, third ed., vol. 16, Academic Press, San Diego, 2001, 273–282.

[23]  A. Šolcová, Johannes Kepler, The Founder of Celestial Mechanics (in Czech), Prometheus, Prague, 2004.

[24]  D. M. Y. Sommerville, Semi-regular networks of the plane in absolute geometry, Trans. Roy. Soc. Edinburgh 41 (1905), 725–747.

[25]  J. Stillwell, The story of the 120-cell, Notices Amer. Math. Soc. 48 (2001), 17–24.

[26]  A. Subramaniam and K. Ramakrishnan, Rational approximants to 5-, 8-, and 7-fold two-dimensional tilings, Zeitschrift für Kristallographie 218 (2003), 590.

[27]  H. Unkelbach, Die kantensymmetrischen, gleichkantigen Polyeder, Deutsche Math. 5 (1940), 306–316.

[28]  M. van Leeuwen, Computing Kazhdan-Lustig- Vogan polynomials for split E8, Nieuw Archief voor Wiskunde 9 (2008), 113–116.