[1]
G.
Blind and R. Blind, The semiregular polytopes, Comment. Math. Helvetici 66 (1991),
150–154.
[2]
J.
Brandts, S. Korotov, M. Kˇrížek, and J. Šolc, On nonobtuse simplicial
partitions, SIAM Rev. 51 (2009), 317–335.
[3]
S.
Baranidharan, V. S. K. Balagurusamy, A. Srinivasan, E. S. R. Gopal, and V.
Sasisekharan, Nonperiodic tilings in 2-dimensions: 4- and 7-fold symmetries, Phase Transition 16 (1989), 621–626.
[4]
A.
Bravais, Mémoire sur les systčmes formés par les points distribués
réguličrement sur un plan ou dans l’espace, J. Ecole Polytech. 19 (1850),
1–128.
[5]
L.
Chen, R. V. Moody, and J. Patera, Noncrystallographic root systems, in Quasicrystals and Discrete Geometry
(J. Patera, ed.), Fields Inst.
Monographs, vol. 10, 1998, 135–178.
[6]
H. S.
M. Coxeter, Regular
Polytopes, Methuen, London, New York, 1948, 1963.
[7]
P.
Engel, Geometric Crystallography: An
Axiomatic Introduction to Crystallography, D. Reidel, Boston, Lancaster, Tokyo, 1986.
[8]
D.
Eppstein, J. M. Sullivan, and A. Üngör, Tiling space and slabs with acute
tetrahedra, Comput. Geom.:
Theory and Appl. 27
(2004), 237–255.
[9]
B.
Grünbaum, Dodecahedron and assorted parallelohedra, zonohedra, monohedra,
isozonohedra and otherhedra, Math.
Intelligencer 32 (2010), no. 4, 5–15.
[10] B. Grünbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman, New York, 1987.
[11] P. Guyot, News on five-fold symmetry, Nature 326 (1987), 640–641.
[12] T. C. Hales, Cannonballs and honeycombs, Notices Amer. Math. Soc. 47 (2000), 440–449.
[13] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[14] F. Krafft (ed.), Johannes Kepler: Was die Welt im
Innersten zusammenhält—Antworten aus Keplers Schriften mit einer Enleitung,
Erläuterungen und Glossar herausgegeben von Fritz Krafft, Marix Verlag, GmbH, Wiesbaden, 2005.
[15] M. Kˇrížek and J. Šolc, From Kepler’s
mosaics to five-fold symmetry (in Czech), Pokroky Mat. Fyz. Astronom. 54 (2009),
41–56.
[16] V. I. Levenshtein, On bounds for packing
in ndimensional Euclidean space, Soviet Math. Dokl. 20 (1979),
417–421.
[17] M. Livio, The Golden Ratio, Headline, London, 2002.
[18] Z. Masáková, J. Patera, and E. Pelantová,
Inflation centers of the cut and project quasicrystal, J. Phys. A: Math. Gen. 31 (1998), 1443–1453.
[19] A. M. Odlyzko and N. J. A. Sloane, New
bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J.
Combin. Theory Ser. A 26
(1979), 210–214.
[20] R. Penrose, Role of aesthetics in pure
and applied mathematical research, Bull.
Inst. Maths. Appl. 10
(1974), 266–271.
[21] V. Sasisekharan, A new method for
generation of quasi-periodic structures with n fold
axes: Application to five and seven folds, Pramana 26
(1986), 283–293.
[22] E. Schulte, Tilings, in Encyclopedia of Physical Science and
Technology, third ed., vol. 16, Academic Press, San
Diego, 2001, 273–282.
[23] A. Šolcová, Johannes Kepler, The Founder of Celestial Mechanics (in Czech), Prometheus, Prague, 2004.
[24] D. M. Y. Sommerville, Semi-regular
networks of the plane in absolute geometry, Trans. Roy. Soc. Edinburgh 41 (1905),
725–747.
[25] J. Stillwell, The story of the 120-cell, Notices Amer. Math. Soc. 48 (2001), 17–24.
[26] A. Subramaniam and K. Ramakrishnan,
Rational approximants to 5-, 8-, and 7-fold two-dimensional tilings, Zeitschrift für Kristallographie 218 (2003), 590.
[27] H. Unkelbach, Die kantensymmetrischen,
gleichkantigen Polyeder, Deutsche
Math. 5 (1940), 306–316.
[28] M. van Leeuwen, Computing Kazhdan-Lustig-
Vogan polynomials for split E8, Nieuw Archief voor Wiskunde 9 (2008),
113–116.