1. David H. Bailey, BBP-type formulas,
manuscript, 2011, available at http://davidhbailey.com/dhbpapers/bbp-formulas.pdf. A web database version is available at http://www.bbp.
carma.newcastle.edu.au.
2. David H. Bailey and Jonathan M. Borwein,
Ancient Indian square roots: An exercise in
forensic paleomathematics, American Mathematical
Monthly 119, no. 8 (Oct. 2012), 646–657.
3. David H. Bailey, Peter B. Borwein, and
Simon Plouffe, On the rapid computation of
various polylogarithmic constants, Mathematics of Computation 66, no. 218 (1997), 903–913.
4. David H. Bailey and David J. Broadhurst,
Parallel integer relation detection: Techniques and
applications, Mathematics of Computation 70, no. 236
(2000), 1719–1736.
5. J. M. Borwein and D. H. Bailey,
Mathematics by Experiment: Plausible Reasoning in the 21st Century, A
K Peters Ltd., 2004. Expanded Second Edition,
2008.
6. L. Berggren, J. M. Borwein, and P. B.
Borwein, Pi: A Source Book, Springer-Verlag, 1997, 2000,
2004. Fourth edition in preparation, 2011.
7. Bibhutibhusan Datta, The Bakhshali
mathematics, Bulletin of the Calcutta Mathematical
Society 21, no. 1 (1929), 1–60.
8. Rudolf Hoernle, On the Bakhshali
Manuscript, Alfred Holder, Vienna, 1887.
9. Georges Ifrah, The Universal History of
Numbers: From Prehistory to the Invention of the
Computer, translated by David Vellos, E. F. Harding,
Sophie Wood, and Ian Monk, John Wiley and Sons, New
York, 2000.
10. Alexander Yee, Large computations, 7
Mar 2011, available at http://www.numberworld.org/nagisa_runs/computations.html.
11. Alexander Yee and Shigeru Kondo, 5
trillion digits of pi—new world record, 7 Mar 2011,
available at http://www.numberworld.org/misc_runs/pi-5t/details.html.