回首頁

回第19期

機器學習
數學理論與科學應用

本文預覽

作        者 鄂維南(Weinan E)

作者簡介 鄂維南是普林斯頓大學數學系教授,應用數學與計算數學博士學程主任,同時也是運籌學與金融工程學系的合聘教授。以他在應用數學和科學計算的相關領域方面的工作而聞名,特別是在非線性隨機偏微分方程、計算流體動力學、計算化學和機器學習等方面。

譯  者 葉千雅

譯者簡介 葉千雅是新竹高工數學科教師。

本文出處 本文譯自“Machine Learning: Mathematical Theory and Scientific Applications”, Notices of the American Mathematical Society 66 (2019) No.11, AMS。感謝AMS 同意轉載翻譯。同文是2019 年7 月15 日在西班牙瓦倫西亞舉行的第九屆國際工業和應用數學大會(ICIAM 2019)中,本文作者於彼得亨利希獎(Peter Henrici Prize)演講的筆錄。

延伸閱讀
 
參考資料

[1] Ainsworth M and Oden JT, A Posteriori Error Estimation in Finite Element Analysis, Wiley, 2000.  MR1885308
[2] Bardos C, Golse F and Levermore D, Fluid dynamic limits of kinetic equations. I. Formal derivations, J. Statist. Phys., Vol. 63, No. 1/2, 1991. MR1115587
[3] Bartlett PL and Mendelson S, Rademacher and Gaussian complexities: risk bounds and structural results, J. Mach. Learn. Res., 3(Nov):463–482, 2002. MR1984026
[4] Barron AR, Universal approximation bounds for superpo- sitions of a sigmoidal function, IEEE Trans. Inform. Theory 39(3):930–945,  1993.  MR1237720
[5] Behler J and Parrinello M, Generalized neural-network representation of high-dimensional potential-energy sur- faces, Phys. Rev. Lett. 98, 146401, 2007.
[6] Cai ZN, Fan YW and Li R, Globally hyperbolic regulariza- tion of Grad’s moment system in one dimensional space, Comm. Math. Sci. 11(2), 2012, pp. 547–571. MR3002565
[7] Dirac PA, Quantum mechanics of many-electron systems, Proc. Roy. Soc. London. Series A, Vol. 123, No. 792, 1929.
[8] E W, Principles of Multiscale Modeling, Cambridge Univer
sity Press, 2011. MR2830582
[9] E W, Han J, and Jentzen A, Deep learning-based numeri- cal methods for high-dimensional parabolic partial differ- ential equations and backward stochastic differential equa- tions, Comm. Math. Stats., vol. 5, no. 4, pp.
349–380, 2017.
MR3736669
[10] E W, Ma C, and Wu L, Barron spaces and the compositional function spaces for neural network models, arXiv.org/abs/1906.08039, 2019.
[11] E W and Zhou Y, A mathematical model for linguistic universals, arXiv.org/abs/1907.12293, 2019.
[12] Han J, Ma C, Ma Z, and E W, Uniformly accurate ma- chine learning based hydrodynamic models for kinetic equations,  arXiv:1907.03937,  2019.
[13] Parr RG and Yang W, Density-Functional Theory of Atoms and Molecules, Oxford Science Publications, 1989.
[14] Pardoux E and Peng SG, Adapted solution of a backward stochastic differential equation, Systems Control Lett., Vol. 14, Issue 1, 1990. MR1037747
[15] Van Dyke M, Perturbation Methods in Fluid Mechanics, an- notated edition,  Parabolic Press,  1975.  MR0416240
[16] Wang H, Zhang LF, Han J, and E W, DeePMD-kit: A deep learning package for many-body potential  energy representation  and  molecular  dynamics,  Comput.  Phys. ACKNOWLEDGMENT. Machine learning is an area in which young people are playing a particularly active role. This is also reflected in the work reported here. In particular, I am grateful to my young collaborators for their contribution to the work reported here: Jiequn Han, Arnulf Jentzen, Qianxiao Li, Chao Ma, Zheng Ma, Cheng Tai, Han Wang, Qingcan Wang, Lei Wu, Linfeng Zhang, and Yajun Zhou. I am also grateful to Reza Malek-Madani for his suggestions, which helped to im- prove the draft. Comm., vol. 228, pp. 178–184, 2018. https://github.com/deepmodeling/deepmd-kit.
[17] Zhang L, Han J, Wang H, Saidi W, Car R, and E W, End- to-end symmetry preserving inter-atomic potential energy model for finite and extended systems, NIPS, 2018.
[18] Zhang L, Wang H, Car R, and E W, Active learning of uni- formly accurate inter-atomic potentials for materials simu- lation, arXiv:1810.11890, 2018.