[1] F. Ap�ry, Models of
the Real Projective
Plane, Vieweg, 1987.
[2] F. Ap�ry and G.
Franzoni, Il
rovesciamento della sfera: un modello materiale della fase centrale,
Rendiconti
del Seminario della Facolt� di Scienze dell’Universit� di Cagliari
(1999),
1–18.
[3]
T. Banchoff, Minimal submanifolds of the bicylinder boundary, Boletim
da
Sociedade Brasileira de Matematica 7 (1976), 37–57.
[4] Steven Feiner, David
Salesin, and
Thomas Banchoff, Dial: A Diagrammatic Animation Language, IEEE Computer
Graphics and Applications, September (1982), 43–54.
[5] T. Banchoff, Beyond
the Third
Dimension: Geometry, Computer Graphics and Higher Dimensions, Second
Edition,
Freeman, 1990.
[6] , private
communication.
[7] C. P. Bruter,
Mathematics and Art,
Springer, Paris, 2002.
[8] R. Caddeo and A. Gray,
Curve e
Superfici, Volume I, CUEC, 2000.
[9] Concise Encyclopedia
of Mathematics,
Second Edition, CRC Press LLC, 2003.
[10] P. Chang, Klein
bottle in four parts,
1993, http:// www.ifp.illinois.edu/~sdickson/Klein/Klein. html.
[11] S. Dickson, Klein
bottle graphic,
1991, http:// library.wolfram.com/infocenter/MathSource/ 4560/.
[12] Ivars Peterson,
Plastic Math, Science
News, vol. 140, no. 5, Aug. 3, 1991, 72–73.
[13] G. Fischer,
Mathematische Modelle:
Mathematical Models, Vieweg, Inc., 1986.
[14] G. K. Francis, A
topological
picturebook, SpringerVerlag, New York, 1987.
[15] D. Hilbert and S.
Cohn-Vossen,
Geometry and the Imagination, Chelsea Publishing Co., New York, 1952.
[16] A. Jackson, Dirk
Struik celebrates his
100th, Notices of the AMS 42 (1995), 43–45.
[17] I. James and E.
Thomas, Note on the
classification of cross-sections, Topology 4 (1966), 351–359.
[18] F. Klein, �ber
Riemann’s theorie der
algebraischen Funktionen und ihrer Integrale, Teubner Verlag, Leipzig,
1882.
[19] H. B. Lawson,
Complete minimal surfaces
in S 3, Ann. of Math. 92 (1970), 335–374.
[20] R. S. Palais, The
visualization of
mathematics: Towards a mathematical exploratorium, Notices of the AMS
46
(1999), 647–658.
[21] U. Pinkall, Regular
homotopy classes
of immersed surfaces, Topology 24 (1985), 421–432.
[22] C. H. S�quin, Art,
math, and
computers: New ways of creating pleasing shapes, Bridges 1998,
Mathematical
Connections in Art, Music, and Science , Reza Sarhangi, Editor, 1998,
1–10.
[23] , From M�bius bands
to Klein-Knottles,
to appear in the Proceedings of the Bridges Conference, 2012.
[24] M. Trott,
Constructing an algebraic
Klein bottle, Mathematica in Education and Research 8 (1999), 24–27.
[25] http://www.wolfram.com.
[26] http://www.zcorp.com.