回首頁

回第03期

「 克萊恩瓶」主題變奏曲


全文閱覽

作        者  弗蘭佐尼 Gregorio Franzoni

作者簡介 弗蘭佐尼在義大利的中學及卡格利亞里大學 (University of Cagliari)教數學。

譯        者  王夏聲

譯者簡介 王夏聲為新竹交通大學應用數學系副教授

本文出處    Notices 56 (2012) No.8 AMS。

致        謝    本文的圖形是由Wolfram Research Inc. 的Mathematica 所繪製,一些3D 數據是以McNeel 的Rhinoceros, v.4 做處理和修飾。

延伸閱讀

參考資料 

[1] F. Ap�ry, Models of the Real Projective Plane, Vieweg, 1987.

[2] F. Ap�ry and G. Franzoni, Il rovesciamento della sfera: un modello materiale della fase centrale, Rendiconti del Seminario della Facolt� di Scienze dell’Universit� di Cagliari (1999), 1–18.

 [3] T. Banchoff, Minimal submanifolds of the bicylinder boundary, Boletim da Sociedade Brasileira de Matematica 7 (1976), 37–57.

[4] Steven Feiner, David Salesin, and Thomas Banchoff, Dial: A Diagrammatic Animation Language, IEEE Computer Graphics and Applications, September (1982), 43–54.

[5] T. Banchoff, Beyond the Third Dimension: Geometry, Computer Graphics and Higher Dimensions, Second Edition, Freeman, 1990.

[6] , private communication.

[7] C. P. Bruter, Mathematics and Art, Springer, Paris, 2002.

[8] R. Caddeo and A. Gray, Curve e Superfici, Volume I, CUEC, 2000.

[9] Concise Encyclopedia of Mathematics, Second Edition, CRC Press LLC, 2003.

[10] P. Chang, Klein bottle in four parts, 1993, http:// www.ifp.illinois.edu/~sdickson/Klein/Klein. html.

[11] S. Dickson, Klein bottle graphic, 1991, http:// library.wolfram.com/infocenter/MathSource/ 4560/.

[12] Ivars Peterson, Plastic Math, Science News, vol. 140, no. 5, Aug. 3, 1991, 72–73.

[13] G. Fischer, Mathematische Modelle: Mathematical Models, Vieweg, Inc., 1986.

[14] G. K. Francis, A topological picturebook, SpringerVerlag, New York, 1987.

[15] D. Hilbert and S. Cohn-Vossen, Geometry and the Imagination, Chelsea Publishing Co., New York, 1952.

[16] A. Jackson, Dirk Struik celebrates his 100th, Notices of the AMS 42 (1995), 43–45.

[17] I. James and E. Thomas, Note on the classification of cross-sections, Topology 4 (1966), 351–359.

[18] F. Klein, �ber Riemann’s theorie der algebraischen Funktionen und ihrer Integrale, Teubner Verlag, Leipzig, 1882.

[19] H. B. Lawson, Complete minimal surfaces in S 3, Ann. of Math. 92 (1970), 335–374.

[20] R. S. Palais, The visualization of mathematics: Towards a mathematical exploratorium, Notices of the AMS 46 (1999), 647–658.

[21] U. Pinkall, Regular homotopy classes of immersed surfaces, Topology 24 (1985), 421–432.

[22] C. H. S�quin, Art, math, and computers: New ways of creating pleasing shapes, Bridges 1998, Mathematical Connections in Art, Music, and Science , Reza Sarhangi, Editor, 1998, 1–10.

[23] , From M�bius bands to Klein-Knottles, to appear in the Proceedings of the Bridges Conference, 2012.

[24] M. Trott, Constructing an algebraic Klein bottle, Mathematica in Education and Research 8 (1999), 24–27.

[25] http://www.wolfram.com.

[26] http://www.zcorp.com.