回首頁

回第25期

非週期性密鋪、有序和隨機性


本文預覽

作  者 特雷維紐(Rodrigo Treviño)

作者簡介 特雷維紐是馬里蘭大學科利奇帕克分校(University of Maryland, College Park)的數學助理教授,主要研究領域是動力系統(dynamical system)、遍歷理論(ergodic theory)、數學物理和幾何。

譯  者
 高玉齡

譯者簡介 高玉齡是業餘科普翻譯作者。

本文出處    本文譯自Rodrigo Treviño,“Aperiodic Tilings, Order, and Randomness”Notices of the American Mathematical Society 69 (September 2023) 1179 ~ 1192. ©2023 by the American Mathematical Society. All rights reserved。感謝AMS與作者們同意轉載翻譯。

延伸閱讀
 
參考資料

[AA20] Shigeki Akiyama and Pierre Arnoux (eds.), Substitution and tiling dynamics: introduction to self-inducing structures, Lecture Notes in Mathematics, vol. 2273, Springer, Cham, 2020. CIRM Jean-Morlet Chair, Fall 2017; Lecture notes from the Tiling Dynamical Systems research school held as part of Tilings and Discrete Geometry program, DOI 10.1007/978-3-030-57666-0. MR4200104

[AS99] Jean-Paul Allouche and Jeffrey Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Sequences and their applications (Singapore, 1998), Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999, pp. 1–16. MR1843077

[AP98] Jared E. Anderson and Ian F. Putnam, Topological invariants for substitution tilings and their associated -algebras, Ergodic Theory Dynam. Systems 18 (1998), no. 3, 509–537, DOI 10.1017/S0143385798100457. MR1631708

[BGM19] Michael Baake, Franz Gähler, and Neil Mañibo, Renormalisation of pair correlation measures for primitive inflation rules and absence of absolutely continuous diffraction, Comm. Math. Phys. 370 (2019), no. 2, 591–635, DOI 10.1007/s00220-019-03500-w. MR3994581

[BG13] Michael Baake and Uwe Grimm, Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 149, Cambridge University Press, Cambridge, 2013. A mathematical invitation; With a foreword by Roger Penrose, DOI 10.1017/CBO9781139025256. MR3136260

[CS06] Alex Clark and Lorenzo Sadun, When shape matters: deformations of tiling spaces, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 69–86, DOI 10.1017/S0143385705000623. MR2201938

[CN16] María Isabel Cortez and Andrés Navas, Some examples of repetitive, nonrectifiable Delone sets, Geom. Topol. 20 (2016), no. 4, 1909–1939, DOI 10.2140/gt.2016.20.1909. MR3548461

[dB81] N. G. de Bruijn, Algebraic theory of Penrose’s nonperiodic tilings of the plane. I, II, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 1, 39–52, 53–66. MR609465

[GKM15] Franz Gähler, Eugene E. Kwan, and Gregory R. Maloney, A computer search for planar substitution tilings with 𝑛-fold rotational symmetry, Discrete Comput. Geom. 53 (2015), no. 2, 445–465. MR3316232

[GL89] C. Godrèche and J. M. Luck, Quasiperiodicity and randomness in tilings of the plane, J. Statist. Phys. 55 (1989), no. 1-2, 1–28. MR1003500

[GMRS23] P. Gohlke, A. Mitchell, D. Rust, and T. Samuel, Measure Theoretic Entropy of Random Substitution Subshifts, Ann. Henri Poincaré 24 (2023), no. 1, 277–323. MR4533524

[GT22] Rachel Greenfeld and Terence Tao, A counterexample to the periodic tiling conjecture, Preprint, arXiv:arXiv:2209.08451, 2022.

[GS16] B. Grünbaum and G.C. Shephard, Tilings and patterns, Second Edition, Dover Books on Mathematics Series, Dover Publications, Incorporated, 2016.

[JS18] Antoine Julien and Lorenzo Sadun, Tiling deformations, cohomology, and orbit equivalence of tiling spaces, Ann. Henri Poincaré 19 (2018), no. 10, 3053–3088, DOI 10.1007/s00023-018-0713-3. MR3851781

[KLS15] Johannes Kellendonk, Daniel Lenz, and Jean Savinien (eds.), Mathematics of aperiodic order, Progress in Mathematics, vol. 309, Birkhäuser/Springer, Basel, 2015, DOI 10.1007/978-3-0348-0903-0. MR3380566

[Lan40] C. Dudley Langford, 1464. uses of a geometric puzzle, The Mathematical Gazette 24 (1940), no. 260, 209–211.

[MRST22] Eden Miro, Dan Rust, Lorenzo Sadun, and Gwendolyn Tadeo, Topological mixing of random substitutions, Israel J. Math. (2022).

[Sad08] Lorenzo Sadun, Topology of tiling spaces, University Lecture Series, vol. 46, American Mathematical Society, Providence, RI, 2008, DOI 10.1090/ulect/046. MR2446623

[Sol97] Boris Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems 17 (1997), no. 3, 695–738, DOI 10.1017/S0143385797084988. MR1452190