回首頁

回第26期

和黎子良對談


本文預覽

受    訪    者 黎子良(Tze Leung Lai)

受訪者簡介 黎子良(1945 年6 月28 日~ 2023 年5 月21 日)是國際著名的數理統計學家,對於序貫分析、隨機最優化和適應性控制論、時間序列及隨機系統的估計和偵查問題、半參數推斷和失效時間(failure time)資料分析及機率論之研究,皆有突破性的重要貢獻。他是美國數理統計學會會士、國際數理統計學會會士,第20 屆的中央研究院院士。

訪    談    者 陸盈(Ying Lu)、斯摩爾(Dylan Small)、應志良(Zhiliang Ying)

訪談者簡介 

譯  者
 高玉齡

譯者簡介 高玉齡是業餘科普譯者。

本文出處    本文原刊登於國際數理統計學會的 Statistical Science, Vol. 36, No. 1, 158–167 https://doi.org/10.1214/20-STS775 © Institute of Mathematical Statistics, 2021。本刊感謝國際數理統計學會授權翻譯。

延伸閱讀
 
參考資料

BHAT (1982). A randomized trial of propranolol in patients with acute myocardial infarction: I. mortality results.   J. Am. Med. Assoc. 247 1707–1714.

CHEN, G. J., LAI, T. L. and WEI, C. Z. (1981). Convergence systems and strong consistency of least squares estimates in regression models. J. Multivariate Anal. 11 319–333. MR0629791 https://doi.org/10.1016/0047-259X(81)90078-6

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York. MR0270403

KOUL, H., SUSARLA, V. andVAN RYZIN, J. (1981). Regression analysis with randomly right-censored data. Ann. Statist. 9 1276–1288. MR0630110

LAI, T. L. (2009). Martingales in sequential analysis and time series, 1945–1985. J. Électron. Hist. Probab. Stat. 5 1–31. MR2520670

LAI, T. L. and ROBBINS, H. (1979). Adaptive design and stochastic approximation. Ann. Statist. 7 1196–1221. MR0550144

LAI, T. L. and ROBBINS, H. (1985). Asymptotically efficient adaptive allocation rules. Adv. in Appl. Math. 6 4–22. MR0776826 https://doi.org/10.1016/0196-8858(85)90002-8

LAI, T. L., ROBBINS, H. and WEI, C. Z. (1978). Strong consistency of least squares estimates in multiple regression. Proc. Natl. Acad. Sci. USA 75 3034–3036. MR0518953 https://doi.org/10.1073/pnas. 75.7.3034

LAI, T. L., ROBBINS, H. and WEI, C. Z. (1979). Strong consistency of least squares estimates in multiple regression. II. J. Multivariate Anal. 9 343–361. MR0548786 https://doi.org/10.1016/0047-259X(79)90093-9

LAI, T. L. and SIEGMUND, D. (1977). A nonlinear renewal theory with applications to sequential analysis. I. Ann. Statist. 5 946–954. MR0445599

LAI, T. L. and SIEGMUND, D. (1979). A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7 60–76. MR0515684

LAI, T. L. and WEI, C. Z. (1982a). Asymptotic properties of projections with applications to stochastic regression problems. J. Multivariate Anal. 12 346–370. MR0666011 https://doi.org/10.1016/0047-259X(82)90071-9

LAI, T. L. and WEI, C. Z. (1982b). A law of the iterated logarithm for double arrays of independent random variables with applications to regression and time series models. Ann. Probab. 10 320–335. MR0647507

LAI, T. L. and WEI, C. Z. (1982c). Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10 154–166. MR0642726

LAI, T. L. and WEI, C. Z. (1983a). Asymptotic properties of general autoregressive models and strong consistency of least-squares estimates of their parameters. J. Multivariate Anal. 13 1–23. MR0695924 https://doi.org/10.1016/0047-259X(83)90002-7

LAI, T. L. and WEI, C. Z. (1983b). Lacunary systems and generalized linear processes. Stochastic Process. Appl. 14 187–199. MR0679672 https://doi.org/10.1016/0304-4149(83)90071-6

LAI, T. L. andWEI, C. Z. (1985). Orthonormal Banach systems with applications to linear processes. Z. Wahrsch. Verw. Gebiete 70 381–393. MR0803679 https://doi.org/10.1007/BF00534870

LAI, T. L. and WEI, C. Z. (1986a). On the concept of excitation in least squares identification and adaptive control. Stochastics 16 227–254. MR0837613 https://doi.org/10.1080/17442508608833375

LAI, T. L. and WEI, C. Z. (1986b). Extended least squares and their applications to adaptive control and prediction in linear systems. IEEE Trans. Automat. Control 31 898–906. MR0855543 https://doi.org/10.1109/TAC.1986.1104138

LAI, T. L. and YING, Z. (1991a). Recursive identification and adaptive prediction in linear stochastic systems. SIAM J. Control Optim. 29 1061–1090. MR1110087 https://doi.org/10.1137/0329058

LAI, T. L. and YING, Z. (1991b). Parallel recursive algorithms in asymptotically efficient adaptive control of linear stochastic systems. SIAM J. Control Optim. 29 1091–1127. MR1110088 https://doi.org/10.1137/0329059

LAI, T. L.,YING, Z. and ZHENG, Z. K. (1995). Asymptotic normality of a class of adaptive statistics with applications to synthetic data methods for censored regression. J. Multivariate Anal. 52 259–279. MR1323333 https://doi.org/10.1006/jmva.1995.1013

LEONG, Y. K. (2019). From accidental statistician to interdisciplinary statistician who combines theory with practice. Imprints, Institute of Mathematical Sciences, National University of Singapore. SHEN, M., TSANG, K.W. and WONG, S. P. S. (2016). Conversations with Tze Leung Lai. ICSA Bull. 28 29–30.

TSIATIS, A. A. (1981). The asymptotic joint distribution of the efficient scores test for the proportional hazards model calculated over time. Biometrika 68 311–315. MR0614968 https://doi.org/10.1093/biomet/68.1.311