[AC17]
Mark J. Ablowitz and Justin T. Cole, Tight-binding methods for
general longitudinally driven photonic lattices: Edge states and solitons,
Phys. Rev. A 96 (2017), Paper No. 043868,
DOI 10.1103/PhysRevA.96.043868.
[AC22]
Mark J. Ablowitz and Justin T. Cole, Nonlinear optical waveguide
lattices: asymptotic analysis, solitons, and topological insulators,
Phys. D 440 (2022),
Paper No. 133440, DOI 10.1016/j.physd.2022.133440.
MR4461678
[AOP16]
János K. Asbóth, László Oroszlány, and András Pályi, A
short course on topological insulators: Band structure and
edge states in one and two dimensions, Lecture Notes in Physics,
vol. 919, Springer, Cham, 2016, DOI 10.1007/978-3-319-25607-8. MR3467967
[Ber84]
M. V. Berry, Quantal phase factors accompanying adiabatic changes,
Proc. Roy. Soc. London Ser. A 392 (1984), no. 1802, 45–57, DOI 10.1098/rspa.1984.0023. MR738926
[Chi06]
Carmen Chicone, Ordinary differential equations with applications, 2nd
ed., Texts in Applied Mathematics, vol. 34, Springer-Verlag,
New York, 2006, DOI 10.1007/0-387-35794-7.
[FHS05]
Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki, Chern
numbers in discretized Brillouin Zone: Efficient method of computing
(spin) Hall conductances, J. Phys. Soc. Jpn. 74 (2005),
no. 6, 1674–1677, DOI10.1143/JPSJ.74.1674.
[Hal88]
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels:
Condensed-matter realization of the “parity anomaly”,
Phys. Rev. Lett. 61 (1988), 2015–2018, DOI10.1103/PhysRevLett.61.2015.
[HR08]
F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in
photonic crystals with broken time-reversal symmetry,
Phys. Rev. Lett. 100 (2008), Paper No. 013904, DOI 10.1103/PhysRevLett.100.013904.
[JS14]
John D. Joannopoulos and Marin Soljačić, Topological photonics,
Nature Photonics 8 (2014), 821–829, DOI10.1038/nphoton.2014.248.
[LC22] Zhihao Lan, Menglin L. N.
Chen, Fei Gao, Shuang Zhang, and Wei E. I. Sha, A brief review of topological
photonics in one, two, and three dimensions, Reviews in Physics 9 (2022),
Paper No. 100076, DOI10.1016/j.revip.2022.100076. 1002 NOTICES
OF THE AMERICAN
MATHEMATICAL
SOCIETY
VOLUME
71, NUMBER
8
[LFR24]
J. L. Lado and J. Fernández-Rossier, Theory of edge states in
graphene-like systems, Encyclopedia of condensed matter
physics (second edition), 2024, pp. 350–360, DOI 10.1016/B978-0-323-90800-9.00207-9.
[MS21]
Y.-P. Ma and H. Susanto, Topological edge solitons and their stability in a
nonlinear Su-Schrieffer-Heeger model, Phys.
Rev. E 104 (2021),
no. 5, Paper No. 054206, DOI10.1103/physreve.104.054206. MR4349854
[Nak90]
Mikio Nakahara, Geometry, topology and physics, Graduate
Student Series in Physics, Adam Hilger, Ltd., Bristol, 1990, DOI
10.1887/0750306068. MR1065614
[RH08]
Srinivas Raghu and Frederick Duncan Michael Haldane, Analogs
of quantum-Hall-effect edge states in photonic crystals,
Phys. Rev. A 78 (2008), no. 3, Paper No. 033834, DOI
10.1103/PhysRevA.78.033834.
[RZ13] Mikael C. Rechtsman,
Julia M. Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel Podolsky, Felix Dreisow,
Stefan Nolte, Mordechai Segev, and Alexander Szameit, Photonic
Floquet topological insulators, Nature 496 (2013), no. 7444, 196–200, DOI 10.1038/nature12066.
[SSH79]
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene,
Phys. Rev. Lett. 42 (1979), 1698–1701, DOI 10.1103/PhysRevLett.42.1698.
[Van18]
David Vanderbilt, Berry phases in electronic structure theory: Electric
polarization, orbital magnetization and topological insulators,
Cambridge University Press, 2018, DOI10.1017/9781316662205.
[WCJS08]
Zheng Wang, Y. D. Chong, John D. Joannopoulos, and Marin Soljačić, Reflection-free
one-way edge modes in a gyromagnetic photonic crystal, Phys. Rev. Lett. 100 (2008),
Paper No. 013905, DOI 10.1103/PhysRevLett.100.013905.
[WCJS09]
Zheng Wang, Yidong Chong, J. D. Joannopoulos, and Marin Soljačić, Observation
of unidirectional backscattering-immune topological electromagnetic states,
Nature 461 (2009),
no. 7265, 772–775, DOI 10.1038/nature08293.
[Zak89]
J. Zak, Berry’s
phase for energy bands in solids, Phys. Rev. Lett. 62 (1989),
2747–2750, DOI 10.1103/Phys-RevLett.62.2747.