研究趣向:

在科學計算此研究領域的研究趣向是在「非線性薛丁格方程之數值計算」上,可分為兩類, (I)求解玻色愛因斯坦凝聚現象之基態解與激態解; (II)孤波解的穩定分析。
    (I)求解玻色愛因斯坦凝聚現象之基態解與激態解: 針對玻色愛因斯坦凝聚現象所對應的非線性薛丁格方程式進行探討, 並將問題轉化成一非線性代數方程組之求解的研究工作[1,2,3]。
    (II)孤波解的穩定分析: 針對非線性薛丁格方程式的孤波解進行穩定性之探討, 於孤波解附近做展開,取其線性算子並且計算其對應的譜分佈[4]。



參考著作:

  1. S. M. Chang, C. S. Lin, T. C. Lin and W. W. Lin, Segregated Nodal Domains of Two-Dimensional Multispecies Bose-Einstein Condensates, Physica D, Vol. 196, Issues 3-4 (2004), pp. 341-361.

  2. S. M. Chang, W. W. Lin and S. F. Shieh, Gauss-Seidel-type Methods for Energy States of a Multi-Component Bose-Einstein Condensate, J. Comput. Phys., Vol. 202, Issue 1 (2005), pp. 367–390.

  3. S. M. Chang, Y. C. Kuo, W. W. Lin and S. F. Shieh, A Continuation BSOR-Laczos-Galerkin Method for Positive Bound States of a Multi-Component Bose-Einstein Condensate, J. Comput. Phys., Vol. 210, Issue 2 (2005), pp. 439-458.

  4. S. M. Chang, S. Gustafson, K. Nakanishi and T. P. Tsai, Spectra of Linearized Operators for NLS Solitary Waves, SIAM J. Math. Anal., Vol. 39, No. 4 (2007), pp. 1070-1111.


  Back